G.Projector — Global Map Projector

User's Guide: Projection List

Following is a list of the map projections included in G.Projector as of version 2.1.7, along with alternative names. Sample images of an Earth topographical map are linked for each unique projection.

Projection NameNotes
Adams Hemisphere in a Square Conformal.
Adams Orthembadic See Quartic Authalic.
Adams World in a Square I Conformal.
Adams World in a Square II Conformal.
Airy Azimuthal, minimum-error.
Aitoff Polyconic, equally spaced parallels.
Aitoff-Wagner See Wagner IX.
Albers Equal-Area Conic Conic.
American Polyconic Polyconic, equal-area, elliptical meridians.
American Polyconic (Global) Alternative version of above projection whoing the entire globe.
Apian I See Ortelius Oval.
Apian II Pseudocylindric, equally spaced parallels, elliptical meridians.
Apian II (Two-Hemisphere) Alternative version of above projection that displays entire globe as two side-by-side hemispheres.
Arden-Close Cylindrical.
Armadillo See Raisz Armadillo.
Atlantis See Mollweide Oblique and apply λ0=-30°, ϕ0=45°, and third rotation 90°.
August Epicycloidal Conformal.
Azimuthal Equal-Area Azimuthal, equal-area.
Azimuthal Equal-Area (Two-Hemisphere) Alternative version of above projection that displays entire globe as two side-by-side hemispheres.
Azimuthal Equidistant Azimuthal.
Azimuthal Equidistant (Two-Hemisphere) Alternative version of above projection that displays entire globe as two side-by-side hemispheres.
Babinet See Mollweide.
Bacon Globular Pseudocylindric.
Bacon Globular (Two-Hemisphere) Alternative version of above projection that displays entire globe as two side-by-side hemispheres.
Baker Dinomic Fusion; joins Mercator and a specially derived projection at ±45°. Often shown interrupted
Bartholomew See Winkel Tripel and enable Bartholomew scaling.
Bartholomew Nordic See Nordic.
Bartholomew Tetrahedral Pole-centered. Fusion; joins Azimuthal Equidistant in central circle to a modified Stabius-Werner II in three lobes at 23.5°N.
Behrmann See Cylindrical Equal-Area and apply ϕts=30°.
Berghaus Star Pole-centered. Fusion; joins Azimuthal Equidistant in central hemisphere to five lobes with straight edges 0°N.
Boggs Eumorphic Arithmetic average of the sinusoidal and Mollweide projections. Pseudocylindric, equal-area; Often shown interrupted.
Bonne Pseudoconic, equal-area.
Bottomley Equal-area
Braun Perspective Cylindrical.
Braun Stereographic See Cylindrical Stereographic and apply ϕts=0°.
Briesemeister See Hammer Oblique and apply λ0=0°, ϕ0=45°, and third rotation 0°, and enable Briesemeister scaling.
Breusing Geometric Azimuthal.
Breusing Geometric (Two-Hemisphere) Alternative version of above projection that displays entire globe as two side-by-side hemispheres.
Breusing Harmonic Azimuthal.
Breusing Harmonic (Two-Hemisphere) Alternative version of above projection that displays entire globe as two side-by-side hemispheres.
Bromley See Mollweide and enable Bromley scaling.
BSAM Cylindical See Cylindrical Stereographic and apply ϕts=30°.
BSE Modified Polyconic See Ginzburg VI.
Canters See Canters Polyconic W14.
Canters Polyconic W12 Polyconic, low-error, pole line.
Canters Polyconic W13 Polyconic, low-error, equally-spaced parallels, pole line.
Canters Polyconic W14 Polyconic, low-error, equally-spaced parallels, 2:1 ratio of axes, pole line.
Canters Polyconic W20 Polyconic, low-error, constant scale along the axes, oblique, pointed meta-pole.
Canters Polyconic W21 Polyconic, low-error, constant scale along the axes, oblique, pointed meta-pole.
Canters Pseudocylindric W15 Pseudocylindric, low-error, pole line.
Canters Pseudocylindric W16 Pseudocylindric, low-error, pole line.
Canters Pseudocylindric W17 Pseudocylindric, low-error, pole line.
Canters Pseudocylindric W19 Pseudocylindric, low-error, pointed pole.
Canters Pseudocylindric W33 Pseudocylindric, low-error, pointed pole, optimized for land areas excluding Antarctica.
Canters Pseudocylindric W34 Pseudocylindric, low-error, pointed pole, optimized for land areas.
Cassini Transverse cylindric.
Cassini-Soldner See Cassini.
Central Cylindrical Cylindrical.
Compact Miller Cylindrical.
Cordiform See Bonne and apply ϕ0=90°.
Craster Parabolic See Parabolic.
Cylindrical Equal-Area Cylindric, equal-area.
Cylindrical Equidistant See Equirectangular.
Cylindrical Stereographic Cylindric.
Denoyer Semi-Elliptical Pseudocylindric.
Eckert III Pseudocylindric, equally spaced parallels, elliptical meridians, pole line.
Eckert IV Pseudocylindric, equal-area, elliptical meridians, pole line.
Eckert V Pseudocylindric, equally spaced parallels, sinusoidal meridians, pole line.
Eckert VI Pseudocylindric, equal-area, sinusoidal meridians, pole line.
Eckert-Greifendorff Polyconic, equal-area.
Equidistant Conic Conic, equally spaced parallels.
Equirectangular Cylindric, equidistant.
Equirectangular Oblique Cylindric, equidistant.
Érdi-Krausz Fusion.
Fahey Pseudocylindric.
Fairgrieve See Mollweide Oblique and apply λ0=45°, ϕ0=0°, and third rotation 45°.
Foucaut Sinusoidal Weighted arithmetic mean of the cylindrical equal area and sinusoidal projections. Pseudocylindric, equal-area.
Foucaut Stereographic Pseudocylindric, equal-area.
Fournier Globular I Polyconic.
Fournier Globular I (Two-Hemisphere) Alternative version of above projection that displays entire globe as two side-by-side hemispheres.
Gall Isographic See Equirectangular and apply ϕts=45°.
Gall Orthographic See Cylindrical Equal-Area and apply ϕts=45°.
Gall Stereographic See Cylindrical Stereographic and apply ϕts=45°.
Gall-Bomford Pseudocylindrical Pseudocylindric.
Gall-Peters See Gall Orthographic.
Gilbert Two-World
Ginzburg I Azimuthal, similar to Azimuthal Equal-Area.
Ginzburg II Azimuthal, similar to Azimuthal Equal-Area.
Ginzburg IV Polyconic.
Ginzburg V Polyconic.
Ginzburg VI Polyconic.
Ginzburg VIII Pseudocylindric.
Ginzburg IX Polyconic.
Ginzburg 1966 See Ginzburg IX.
Gnomonic Azimuthal.
Gnomonic Cubed Sphere .
Goode Homolosine Fusion; joins Sinusoidal and Mollweide at ±40°44'. Often shown interrupted.
Gott Equal-Area Elliptical Equal-Area.
Gott-Mugnolo Azimuthal Azimuthal.
Gott-Mugnolo Azimuthal (Two-Hemisphere) Alternative version of above projection that displays entire globe as two side-by-side hemispheres.
Gringorten Quincuncial, equal-Area.
GS50 See Snyder GS50.
Guyou Conformal.
Hammer Polyconic, equal-area.
Hammer Oblique Alternative version of above projection allowing for oblique, transverse, and plagal aspects.
Hammer-Aitoff See Hammer.
Hammer-Wagner See Wagner VII.
Hatano Asymmetric Pseudocylindric, equal-area, elliptical meridians.
Hatano Symmetric Pseudocylindric, equal-area, elliptical meridians.
HEALPix Fusion; joins Cylindrical Equal-Area and Collignon at ±41°71'. Interrupted for all but the H=1 case.
Hexafoliate Equal-Area Pole-centered fusion: joins Azimuthal Equal-Area in central hemisphere to a modified Stabius-Werner II in six lobes at 0°N.
Hexafoliate Equidistant Pole-centered fusion: joins Azimuthal Equidistant in central heimsphere to a modified Stabius-Werner II in six lobes at 0°N.
Hill Eucyclic Polyconic, equal-area. Note: identical to Eckert IV for K=∞.
Hölzel Pseudocylindric.
Homalographic See Mollweide.
Homolographic See Mollweide.
Hufnagel Infinite series of pseudocylindrical projections deriving from input parameters A, B, Ψmax and α.
Hufnagel I See Hufnagel and apply A = 0.0, B = 0.0, Ψmax = 90°, α = 2. Identical to Mollweide.
Hufnagel II See Hufnagel and apply A = 0.055556, B = -0.055556, Ψmax = 90°, α = 2.
Hufnagel III See Hufnagel and apply A = 0.5, B = -0.055556, Ψmax = 90°, α = 2.
Hufnagel IV See Hufnagel and apply A = 0.083333, B = -0.083333, Ψmax = 90°, α = 2.
Hufnagel V See Hufnagel and apply A = 0.095238, B = -0.0.095238, Ψmax = 60°, α = 2. Similar to Eckert VI.
Hufnagel VI See Hufnagel and apply A = 0.0, B = 0.0, Ψmax = 60°, α = 2. Identical to Wagner IV.
Hufnagel VII See Hufnagel and apply A = 0.083333, B = -0.083333, Ψmax = 60°, α = 2.
Hufnagel VIII See Hufnagel and apply A = 1.0, B = 0.0, Ψmax = 45°, α = 2. Identical to Eckert IV.
Hufnagel IX See Hufnagel and apply A = 0.666667, B = 0.333333, Ψmax = 45°, α = 2.
Hufnagel X See Hufnagel and apply A = -0.666667, B = 0.666667, Ψmax = 35°, α = 2.
Hufnagel XI See Hufnagel and apply A = 0.0, B = -0.111111, Ψmax = 90°, α = 2.
Hufnagel XII See Hufnagel and apply A = 0.0, B = -0.111111, Ψmax = 40°, α = 2..44.
Kamenetskiy I See Cylindrical Stereographic and apply ϕts=55°.
Kamenetskiy II See BSAM Cylindrical.
Kavraisky V Pseudocylindric, equal-area.
Kavraisky VI See Wagner I.
Kavraisky VII Pseudocylindric, equally spaced parallels, elliptical meridians, pole line.
Kharchenko-Shabanova Cylindrical.
Lambert Azimuthal Equal-Area See Azimuthal Equal-Area.
Lambert Conformal Conic Conic, conformal.
Lambert Cylindrical Equal-Area See Cylindrical Equal-Area and apply ϕts=0°.
Lambert-Lagrange Conformal.
Larrivée
Littrow Retroazimuthal.
Logarithmic Azimuthal Azimuthal.
Loximuthal
Maurer SNo. 73 See Hill Eucyclic and apply K=0.
Maurer SNo. 231 Pole-centered fusion: joins Azimuthal Equal-Area in central hemisphere to six lobes with reflected scaling at 0°N.
Mayr Geometric mean of the cylindrical equal area and sinusoidal projections. Pseudocylindric, equal-area.
McBryde P3 Fusion; joins Parabolic and M.T. Flat-Polar Parabolic at ±49°20'. Often shown interrupted.
McBryde Q3 Fusion; joins Quartic Authalic and M.T. Flat-Polar Quartic Authalic at ±52°9'. Often shown interrupted.
McBryde S2 Fusion; joins Sinusoidal and Eckert VI at ±49°16'. Often shown interrupted.
McBryde S3 Fusion; joins Sinusoidal and ??? at ±55°51'. Often shown interrupted.
McBryde-Thomas I Pseudocylindric, equal-area, sinusoidal meridians.
McBryde-Thomas II Pseudocylindric, equal-area, sinusoidal meridians, pole line.
McBryde-Thomas III See McBryde-Thomas Flat-Polar Sinusoidal
McBryde-Thomas IV See McBryde-Thomas Flat-Polar Quartic
McBryde-Thomas V See McBryde-Thomas Flat-Polar Parabolic
McBryde-Thomas Flat-Polar Parabolic Pseudocylindric, equal-area, parabolic meridians, pole line. Often shown interrupted.
McBryde-Thomas Flat-Polar Quartic Pseudocylindric, equal-area, quartic meridians, pole line. Often shown interrupted.
McBryde-Thomas Flat-Polar Sinusoidal Pseudocylindric, equal-area, sinusoidal meridians, pole line. Often shown interrupted.
Mercator Cylindrical, conformal.
Miller Cylindrical Cylindrical.
Miller Oblated Stereographic Minimum-error.
Miller Perspective Compromise Cylindrical.
Mollweide Pseudocylindric, equal-area, elliptical meridians. Often shown interrupted.
Mollweide Oblique Alternative version of above projection allowing for oblique, transverse, and plagal aspects.
Natural Earth I Pseudocylindric, orthopahic, pole line.
Natural Earth II Pseudocylindric, pole line.
Nell Pseudocylindric, pole line.
Nell-Hammer Pseudocylindric, equal-area, pole line.
Nicolosi Globular Polyconic.
Nicolosi Globular (Two-Hemisphere) Alternative version of above projection that displays entire globe as two side-by-side hemispheres.
Nordic See Hammer Oblique and apply λ0=0°, ϕ0=45°, third rotation 0°.
Ordinary Polyconic See American Polyconic.
Ortelius Oval Pseudocylindric, equally spaced parallels, circular meridians, pole line.
Orthographic Azimuthal, perspective view.
Orthographic (Two-Hemisphere) Alternative version of above projection that displays entire globe as two side-by-side hemispheres.
Orthophanic See Robinson.
Oxford Atlas See Modified Gall.
Parabolic Pseudocylindric, equal-area, parabolic meridians.
Patterson Cylindrical Cylindrical.
Pavlov Cylindrical.
Peters See Gall Orthographic.
Peirce Quincuncial Quincuncial, conformal.
Petermann Star Pole-centered fusion: joins Azimuthal Equidistant in central hemisphere to eight lobes with straight edges at 0°N.
Philbrick Sinu-Mollweide Fusion; joins Mollweide and Sinusoidal at 30°S. Equal-area.
Plate Carrée See Equirectangular and apply ϕts=0°.
Polyconic See American Polyconic.
Putniņš P1 Pseudocylindric, equally spaced parallels, elliptical meridians.
Putniņš P1' See Wagner VI.
Putniņš P2 Pseudocylindric, elliptical meridians.
Putniņš P2' See Wagner IV.
Putniņš P3 Pseudocylindric, equally spaced parallels, parabolic meridians.
Putniņš P3' Pseudocylindric, equally spaced parallels, parabolic meridians, pole line.
Putniņš P4 See Parabolic.
Putniņš P4' Pseudocylindric, equal-area, parabolic meridians, pole line.
Putniņš P5 Pseudocylindric.
Putniņš P5' Pseudocylindric, pole line.
Putniņš P6 Pseudocylindric, hyperbolic meridians.
Putniņš P6' Pseudocylindric, hyperbolic meridians, pole line.
Quartic-Authalic Pseudocylindric, equal-area. May be shown interrupted.
Raisz Armadillo Orthoapsidal.
Raisz Half Ellipsoidal Orthoapsidal
Rectangular Polyconic Polyconic.
Robinson Pseudocylindric, orthophanic, pole line.
Sanson-Flamsteed See Sinusoidal.
Siemon I See Loximuthal.
Siemon II See Wagner I.
Siemon III See Quartic Authalic.
Siemon IV Pseudocylindric, equal-area. Variant of Quartic Authalic. May be shown interrupted.
Sinusoidal Pseudocylindric, equal-area, sinusoidal meridians. Often shown interrupted.
Sinu-Mollweide See Philbrick Sinu-Mollweide.
Snyder GS50 Minimum-error.
Spilhaus Oceanic See Hammer Oblique and apply λ0=15°, ϕ0=-70°, and third rotation 90°.
Stabius-Werner I Polyconic, equal-area.
Stabius-Werner (II) See Bonne and apply ϕ0=90°.
Stabius-Werner III Polyconic, equal-area.
Stereographic Azimuthal, conformal.
Stereographic (Two-Hemisphere) Alternative version of above projection that displays entire globe as two side-by-side hemispheres.
Strebe Equal-Area Polyconic, equal-area.
Times Atlas Pseudocylindric.
Tobler Cylindrical I Cylindrical.
Tobler Cylindrical II Cylindrical.
Tobler Foucaut See Foucaut Sinusoidal.
Tobler G1 Weighted geometric mean of the cylindrical equal area and sinusoidal projections. Pseudocylindric, equal-area.
Transverse Mercator (Sphere)
TsNIIGAiK 1959-1949 Modified Polyconic See Ginzburg IV.
TsNIIGAiK 1944 Pseudocylindrical See Ginzburg VIII.
TsNIIGAiK 1950 Modified Polyconic See Ginzburg V.
TsNIIGAiK BSE Modified Polyconic See Ginzburg VI.
Urmayev Cylindrical II Cylindrical.
Urmayev Cylindrical III Cylindrical.
Urmayev Sinusoidal Pseudocylindric, equal-area, sinusoidal meridians, pole line except for b=1 case. Note: identical to Wagner I if b=0.866; identical to Cylindrical Equal-Area for ϕts=28° if b=0; compressed horizontally from classic Sinusoidal if b=1.
Van der Grinten I Polyconic, circular meridians, parallels.
Van der Grinten II Polyconic, circular meridians, parallels.
Van der Grinten III Pdesudocylindric, circular meridians.
Vertical Perspective Azimuthal, perspective view. Note: identical to Orthographic if P=∞.
Wagner I Pseudocylindric, equal-area, sinusoidal meridians, pole line.
Wagner II Pseudocylindric, sinusoidal meridians, pole line.
Wagner III Pseudocylindric, equally spaced parallels, sinusoidal meridians, pole line.
Wagner IV Pseudocylindric, equal-area, elliptical meridians, pole line.
Wagner V Pseudocylindric, elliptical meridians, pole line.
Wagner VI Pseudocylindric, equally spaced parallels, elliptical meridians, pole line.
Wagner VII Polyconic, equal-area, pole line.
Wagner VIII Polyconic, pole line.
Wagner IX Polyconic, equally spaced parallels, pole line.
War Office See Rectangular Polyconic.
Werenskiold I See Putniņš P4'.
Werenskiold II See Wagner I.
Werenskiold III See Wagner IV.
Werner See Bonne and apply ϕ0=90°.
Wiechel Pseudoazimuthal.
William-Olsson Pole-centered fusion: joins Azimuthal Equal-Area in central circle to a modified Stabius-Werner II in four lobes at 20°N.
Winkel I Arithmetic average of the Equirectangular and Sinusoidal projections. Pseudocylindric, equally spaced parallels, sinusoidal meridians, pole line.
Winkel II Arithmetic average of the Equirectangular and Apian II projections. Pseudocylindric, equally spaced parallels, elliptical meridians, pole line.
Winkel-Snyder
Winkel Tripel Arithmetic average of the equirectangular and Aitoff projections. Polyconic, equally spaced parallels, pole line.

➤ Return to G.Projector homepage