G.Projector 3 — Map Projection Explorer
User's Guide: List of Map Projections
Following is a list of the map projections that may be viewed and saved by G.Projector as of version 3.4.2, along with alternative names and also some parameter-specific and other special cases. Sample images of an Earth topographical map are linked for each unique projection.
Projection Name | Notes |
---|---|
Adams Hemisphere in a Square | Conformal. |
Adams Orthembadic | See Quartic Authalic. |
Adams World in a Square I | Conformal. |
Adams World in a Square II | Conformal. |
Airy | Azimuthal, minimum-error. |
Airy (Two Hemisphere) | Alternative display of above projection that shows entire globe as two side-by-side hemispheres. |
Aitoff | Polyconic, equally spaced parallels. |
Aitoff Equal-Area | See Hammer. |
Aitoff (Oblique) | Alternative display of above projection allowing for oblique, transverse, and plagal aspects. |
Aitoff Stereographic | See Pseudo-Stereographic. |
Aitoff-Wagner | See Wagner IX. |
Albers Equal-Area Conic | Conic. |
American Polyconic | Polyconic, equal-area, elliptical meridians. |
American Polyconic (Global) | Alternative display of above projection showing the entire globe. |
Apian I | Pseudocylindric, equally spaced parallels, circular meridians, pole line. Central hemisphere is identical to that of the Ortelius Oval. |
Apian II | Pseudocylindric, equally spaced parallels, elliptical meridians. |
Apian II (Two-Hemisphere) | Alternative display of above projection that shows entire globe as two side-by-side hemispheres. |
Arden-Close | Cylindrical. |
Armadillo | See Raisz Armadillo. |
Atlantis | See Mollweide (Oblique) and set λ0 = -30°, ϕ0 = 45°, and third rotation 90°. Usually shown with vertical orientation. |
August Epicycloidal | Conformal. |
Azimuthal Equal-Area | Azimuthal, equal-area. |
Azimuthal Equal-Area (Two-Hemisphere) | Alternative display of above projection that shows entire globe as two side-by-side hemispheres. |
Azimuthal Equidistant | Azimuthal. |
Azimuthal Equidistant (Two-Hemisphere) | Alternative display of above projection that shows entire globe as two side-by-side hemispheres. |
Azimuthal Far-Side Perspective | Azimuthal. |
Baar Sine Series | Series of equal-area pseudocylindrical projections deriving from input parameters ϕts and a. |
Babinet | See Mollweide. |
Bacon Globular | Pseudocylindric. |
Bacon Globular (Two-Hemisphere) | Alternative display of above projection that shows entire globe as two side-by-side hemispheres. |
Baker Dinomic | Fusion; joins the Mercator and a specially derived projection at ±45°. Usually shown interrupted |
Balthasart | See Cylindrical Equal-Area and set ϕts = 50°. |
Baranyi I | Pseudocylindric, pole line. |
Baranyi II | Pseudocylindric, point pole. |
Baranyi III | Pseudocylindric, pole line. |
Baranyi IV | Pseudocylindric, point pole. |
Baranyi V | Pseudocylindric, point pole. |
Baranyi VI | Pseudocylindric, point pole. |
Baranyi VII | Pseudocylindric, point pole. |
Bartholomew | See Winkel Tripel and specify Bartholomew scaling. |
Bartholomew Nordic | See Nordic. |
Bartholomew Tetrahedral | Pole-centered fusion; joins the Azimuthal Equidistant in central circle to a modified Stabius-Werner II in three lobes at 23.5°N. |
Behrmann | See Cylindrical Equal-Area and set ϕts = 30°. |
Berghaus Star | Pole-centered fusion; joins the Azimuthal Equidistant in central hemisphere to five lobes with straight edges at 0°N. |
Bertin-Rivière | Approximation of the Bertin 1953. |
Boggs Eumorphic | Arithmetic average of the sinusoidal and Mollweide projections. Pseudocylindric, equal-area. Often shown interrupted. |
Bomford Modified Gall | See Gall-Bomford Pseudocylindrical. |
Bonne | Pseudoconic, equal-area. |
BonneBonne Regional | Non-global version of Bonne projection. |
Bottomley | Equal-area |
Braun Perspective | Cylindrical. |
Braun Stereographic | See Cylindrical Stereographic and set ϕts = 0°. |
Breusing Geometric | Azimuthal. |
Breusing Geometric (Two-Hemisphere) | Alternative display of above projection that shows entire globe as two side-by-side hemispheres. |
Breusing Harmonic | Azimuthal. |
Breusing Harmonic (Two-Hemisphere) | Alternative display of above projection that shows entire globe as two side-by-side hemispheres. |
Briesemeister | See Hammer (Oblique) and set λ0 = 10°, ϕ0 = 45°, and third rotation 0°, and enable Briesemeister scaling. |
Bromley | See Mollweide and enable Bromley scaling. |
Brooks-Roberts | See Van Der Grinten III. |
BSAM Cylindical | See Cylindrical Stereographic and set ϕts = 30°. |
BSE Modified Polyconic | See Ginzburg VI. |
Cabot | Pseudocylindric, equally spaced parallels, elliptical meridians. |
Canters | See Canters Polyconic W14. |
Canters Polyconic W07 | See Wagner VII and select Canters Optimization (W07) variant. |
Canters Polyconic W08 | See Wagner VIII and select Canters Optimization (W08) variant. |
Canters Polyconic W09 | See Wagner IX and select Canters Optimization (W09) variant. |
Canters Polyconic W12 | Polyconic, low-error, pole line. |
Canters Polyconic W13 | Polyconic, low-error, equally-spaced parallels, pole line. |
Canters Polyconic W14 | Polyconic, low-error, equally-spaced parallels, 2:1 ratio of axes, pole line. |
Canters Polyconic W20 | Polyconic, low-error, constant scale along the axes, oblique, pointed meta-pole. |
Canters Polyconic W21 | Polyconic, low-error, constant scale along the axes, oblique, pointed meta-pole. |
Canters Polyconic W31 | Polyconic, low-error, constant scale along the equator, pole line. |
Canters Polyconic W32 | Polyconic, low-error, constant scale along the equator, pointed pole. |
Canters Pseudocylindric W01 | See Wagner I and select Canters Optimization (W01) variant. |
Canters Pseudocylindric W02 | See Wagner II and select Canters Optimization (W02) variant. |
Canters Pseudocylindric W06 | See Wagner VI and select Canters Optimization (W06) variant. |
Canters Pseudocylindric W15 | Pseudocylindric, low-error, pole line. |
Canters Pseudocylindric W16 | Pseudocylindric, low-error, pole line. |
Canters Pseudocylindric W17 | Pseudocylindric, low-error, pole line. |
Canters Pseudocylindric W19 | Pseudocylindric, low-error, pointed pole. |
Canters Pseudocylindric W33 | Pseudocylindric, low-error, pointed pole, optimized for land areas excluding Antarctica. |
Canters Pseudocylindric W34 | Pseudocylindric, low-error, pointed pole, optimized for land areas. |
Cassini | Transverse cylindric. |
Cassini-Soldner | See Cassini. |
Central Cylindrical | Cylindrical. |
Clarke Twilight | Azimuthal far-side perspective. |
Compact Miller | Cylindrical. |
Cordiform | See Bonne and set ϕ0 = 90°. Same as Stabius-Werner II. |
Craster Cylindric | See Smyth Equal-Surface. |
Craster Parabolic | See Parabolic. |
Cylindrical Equal-Area | Cylindric, equal-area. |
Cylindrical Equal-Area (Oblique) | Alternative display of the Cylindrical Equal-Area projection allowing for oblique, transverse, and plagal aspects. |
Cylindrical Equidistant | See Equirectangular. |
Cylindrical Stereographic | Cylindric. |
Deakin Minimum-Error | Pseudocylindric, equal-area, pole line. |
Delisle Conic | See Equidistant Conic. |
Denoyer Semi-Elliptical | Pseudocylindric. |
Double Cordiform | Pseudoconic, equal-area. |
Eckert I | Pseudocylindric, equally spaced parallels, rectilinear meridians, pole line. |
Eckert II | Pseudocylindric, equal-area, rectilinear meridians, pole line. |
Eckert III | Pseudocylindric, equally spaced parallels, elliptical meridians, pole line. |
Eckert IV | Pseudocylindric, equal-area, elliptical meridians, pole line. |
Eckert V | Pseudocylindric, equally spaced parallels, sinusoidal meridians, pole line. |
Eckert VI | Pseudocylindric, equal-area, sinusoidal meridians, pole line. |
Eckert-Greifendorff | Polyconic, equal-area. |
Equal Earth | Pseudocylindric, equal-area, pole line. Similar to Robinson. |
Equidistant Conic | Conic, equally spaced parallels. |
Equirectangular | Cylindric, equidistant. |
Equirectangular Regional | Non-global version of Equirectangular projection. |
Equirectangular (Oblique) | Oblique version of Equirectangular Regional projection. |
Érdi-Krausz | Fusion; joins a flat-polar sinusoidal and Mollweide at ±60°. |
Euler | Conic, equally spaced parallels. |
Fahey | Pseudocylindric. |
Fairgrieve | See Mollweide (Oblique) and set λ0 = 45°, ϕ0 = 0°, and third rotation 45°. |
Fisher Icosahedron | See Gnomonic Icosahedron. |
Foucaut Sinusoidal | Weighted arithmetic mean of the cylindrical equal area and sinusoidal projections. Pseudocylindric, equal-area. |
Foucaut Stereographic | Pseudocylindric, equal-area. |
Fournier I Globular | Polyconic. |
Fournier I Globular (Two-Hemisphere) | Alternative display of above projection that shows entire globe as two side-by-side hemispheres. |
Fournier II | Pseudocylindric. |
Frančula II | See Wagner IX and select Frančula II variant. |
Frančula IV | See Wagner IX and select Frančula IV variant. |
Frančula V | See Wagner VII and select Frančula V variant. |
Frančula VII | See Wagner VI and select Frančula VII variant. |
Frančula XI | See Wagner VI and select Frančula XI variant. |
Frančula XIII | See Wagner IX and select Frančula XIII variant. |
Frančula XIV | See Wagner VII and select Frančula XIV variant. |
Gall Isographic | See Equirectangular and set ϕts = 45°. |
Gall Orthographic | See Cylindrical Equal-Area and set ϕts = 45°. |
Gall Stereographic | See Cylindrical Stereographic and set ϕts = 45°. |
Gall-Bomford Pseudocylindrical | Pseudocylindric. |
Gall-Peters | See Gall Orthographic. |
Gilbert Two-World | — |
Ginzburg I | Azimuthal, similar to Azimuthal Equal-Area. |
Ginzburg I (Two Hemisphere) | Alternative display of above projection that shows entire globe as two side-by-side hemispheres. |
Ginzburg II | Azimuthal, similar to Azimuthal Equal-Area. |
Ginzburg II (Two Hemisphere) | Alternative display of above projection that shows entire globe as two side-by-side hemispheres. |
Ginzburg IV | Polyconic. |
Ginzburg V | Polyconic. |
Ginzburg VI | Polyconic. |
Ginzburg VIII | Pseudocylindric. |
Ginzburg IX | Polyconic. |
Ginzburg 1966 | See Ginzburg IX. |
Gnomonic | Gnomonic, azimuthal. |
Gnomonic Cubed Sphere | Gnomomic, polyhedral. |
Gnomonic Icosahedron | Gnomomic, polyhedral. |
Goode Homolosine | Fusion; joins the Sinusoidal and Mollweide at ±40°44'. Usually shown interrupted. |
Gott Equal-Area Elliptical | Equal-Area. |
Gott-Mugnolo Azimuthal | Azimuthal. |
Gott-Mugnolo Azimuthal (Two-Hemisphere) | Alternative display of above projection that shows entire globe as two side-by-side hemispheres. |
Gott-Mugnolo Elliptical | See Gott Equal-Area Elliptical and enable Gott-Mugnolo scaling. |
Gott-Wagner | See Wagner IX and select Gott-Wagner variant. Polyconic, equally spaced parallels, pole line. |
Gringorten | Quincuncial, equal-area. |
GS50 | See Snyder GS50. |
Guyou | Conformal. |
Györffy A | Pseudocylindric, minimum-error, point pole. |
Györffy B | Pseudocylindric, minimum-error, point pole. |
Györffy D | Minimum-error, point pole. |
Györffy E | Minimum-error, point pole. |
Györffy F | Minimum-error, point pole. |
Hammer | Polyconic, equal-area. |
Hammer Azimuthal | Far-side perspective azimuthal. |
Hammer (Oblique) | Alternative display of Hammer projection allowing for oblique, transverse, and plagal aspects. |
Hammer-Aitoff | See Hammer. |
Hammer-Wagner | See Wagner VII. |
Hatano Asymmetric | Pseudocylindric, equal-area, elliptical meridians. |
Hatano Symmetric | Pseudocylindric, equal-area, elliptical meridians. |
HEALPix | Fusion; joins the Cylindrical Equal-Area and Collignon at ±41°71'. Interrupted for all but the H=1 case. |
Hexafoliate Equal-Area | Pole-centered fusion: joins the Azimuthal Equal-Area in central hemisphere to a modified Stabius-Werner II in six lobes at 0°N. |
Hexafoliate Equidistant | Pole-centered fusion: joins the Azimuthal Equidistant in central hemisphere to a modified Stabius-Werner II in six lobes at 0°N. |
Hill Eucyclic | Polyconic, equal-area. Note: identical to Eckert IV for K = ∞. |
Hobo-Dyer | See Cylindrical Equal-Area and set ϕts = 37.5°. |
Hölzel | Pseudocylindric. |
Homalographic | See Mollweide. |
Homolographic | See Mollweide. |
Hufnagel | Series of equal-area pseudocylindrical projections deriving from input parameters A, B, Ψmax and α. |
Hufnagel I | See Hufnagel and set A = 0.0, B = 0.0, Ψmax = 90°, α = 2. Identical to Mollweide. |
Hufnagel II | See Hufnagel and set A = 0.055556, B = -0.055556, Ψmax = 90°, α = 2. |
Hufnagel III | See Hufnagel and set A = 0.5, B = 0.055556, Ψmax = 90°, α = 2. |
Hufnagel IV | See Hufnagel and set A = 0.083333, B = -0.083333, Ψmax = 90°, α = 2. |
Hufnagel V | See Hufnagel and set A = 0.095238, B = -0.0.095238, Ψmax = 60°, α = 2. Similar to Eckert VI. |
Hufnagel VI | See Hufnagel and set A = 0.0, B = 0.0, Ψmax = 60°, α = 2. Identical to Wagner IV. |
Hufnagel VII | See Hufnagel and set A = 0.083333, B = -0.083333, Ψmax = 60°, α = 2. |
Hufnagel VIII | See Hufnagel and set A = 1.0, B = 0.0, Ψmax = 45°, α = 2. Identical to Eckert IV. |
Hufnagel IX | See Hufnagel and set A = 0.666667, B = 0.333333, Ψmax = 45°, α = 2. |
Hufnagel X | See Hufnagel and set A = -0.666667, B = 0.666667, Ψmax = 30°, α = 2. |
Hufnagel XI | See Hufnagel and set A = 0.0, B = -0.111111, Ψmax = 90°, α = 2. |
Hufnagel XII | See Hufnagel and set A = 0.0, B = -0.111111, Ψmax = 40°, α = 2..44. |
James Azimuthal | Azimuthal far-side perspective. |
James-Clarke | See James Azimuthal and select Clarke's projection point distance. |
Kamenetskiy I | See Cylindrical Stereographic and set ϕts = 55°. |
Kamenetskiy II | See BSAM Cylindrical. |
Kavraisky II | Conic, equally spaced parallels. |
Kavraisky V | Pseudocylindric, equal-area. |
Kavraisky VI | See Wagner I. |
Kavraisky VII | Pseudocylindric, equally spaced parallels, elliptical meridians, pole line. |
Kharchenko-Shabanova | Cylindrical. |
Lagrange | See Lambert-Lagrange. |
La Hire | See Azimuthal Far-Side Perspective and set D = 1.70711. |
Lambert Azimuthal Equal-Area | See Azimuthal Equal-Area. |
Lambert Conformal Conic | Conic, conformal. |
Lambert Cylindrical Equal-Area | See Cylindrical Equal-Area and set ϕts = 0°. |
Lambert-Lagrange | Conformal. |
Larrivée | — |
Littrow | Retroazimuthal. |
Logarithmic Azimuthal | Azimuthal. |
Lowry | See Azimuthal Far-Side Perspective and set D = 1.6858. |
Loximuthal | Pseudocylindric. |
Marinus | See Equirectangular and set ϕts = 36.5°. |
Maurer SNo. 73 | See Hill Eucyclic and set K=0. |
Maurer SNo. 159 Full Globular | Polyconic. |
Maurer SNo. 160 Apparent Globular | Polyconic. |
Maurer SNo. 187 All-Globular | — |
Maurer SNo. 231 | Pole-centered fusion: joins the Azimuthal Equal-Area in central hemisphere to six lobes with reflected scaling at 0°N. |
Mayr | Geometric mean of the cylindrical equal area and sinusoidal projections. Pseudocylindric, equal-area. |
McBryde P3 | Fusion; joins the Parabolic and M.T. Flat-Polar Parabolic at ±49°20'. Often shown interrupted. |
McBryde Q3 | Fusion; joins the Quartic Authalic and M.T. Flat-Polar Quartic at ±52°9'. Often shown interrupted. |
McBryde S2 | Fusion; joins the Sinusoidal and Eckert VI at ±49°16'. Often shown interrupted. |
McBryde S3 | Fusion; joins the Sinusoidal and McBryde-Thomas Flat-Polar Sinusoidal at ±55°51'. Often shown interrupted. |
McBryde-Thomas I | Pseudocylindric, equal-area, sinusoidal meridians. |
McBryde-Thomas II | Pseudocylindric, equal-area, sinusoidal meridians, pole line. |
McBryde-Thomas III | See McBryde-Thomas Flat-Polar Sinusoidal |
McBryde-Thomas IV | See McBryde-Thomas Flat-Polar Quartic |
McBryde-Thomas V | See McBryde-Thomas Flat-Polar Parabolic |
McBryde-Thomas Flat-Polar Parabolic | Pseudocylindric, equal-area, parabolic meridians, pole line. Often shown interrupted. |
McBryde-Thomas Flat-Polar Quartic | Pseudocylindric, equal-area, quartic meridians, pole line. Often shown interrupted. |
McBryde-Thomas Flat-Polar Sinusoidal | Pseudocylindric, equal-area, sinusoidal meridians, pole line. Often shown interrupted. |
Mercator | Cylindrical, conformal. |
Mercator Orbis Imago | See Double Cordiform and set Λc = 70°. |
Miller Cylindrical | See Miller Cylindrical I |
Miller Cylindrical I | Cylindrical. |
Miller Cylindrical II | Cylindrical. |
Miller Modified Mercator (a) | See Miller Cylindrical II |
Miller Modified Mercator (b) | See Miller Cylindrical I |
Miller Oblated Stereographic | Minimum-error. |
Miller Perspective Compromise | Cylindrical. |
Moir | See Times Atlas. |
Mollweide | Pseudocylindric, equal-area, elliptical meridians. Often shown interrupted. |
Mollweide Equidistant | See Apian II and select full-global option. |
Mollweide (Oblique) | Alternative display of above projection allowing for oblique, transverse, and plagal aspects. |
Murdoch I | Conic, equally spaced parallels. |
Murdoch III | Conic, equally spaced parallels. |
Natural Earth I | Pseudocylindric, orthophanic, pole line. |
Natural Earth II | Pseudocylindric, pole line. |
Nell | Pseudocylindric, equal-area, pole line. |
Nell-Hammer | Pseudocylindric, equal-area, pole line. |
Nicolosi Globular | Polyconic. |
Nicolosi Globular (Two-Hemisphere) | Alternative display of above projection that shows entire globe as two side-by-side hemispheres. |
Nordic | See Hammer (Oblique) and set λ0 = 0°, ϕ0 = 45°, and third rotation 0°. |
Ordinary Polyconic | See American Polyconic. |
Ortelius Oval | Pseudocylindric, equally spaced parallels, circular meridians, pole line. Central hemisphere is identical to that of the Apian I. |
Orthographic | Azimuthal, perspective view. |
Orthographic (Two-Hemisphere) | Alternative display of above projection that shows entire globe as two side-by-side hemispheres. |
Orthophanic | See Robinson. |
Oxford Atlas - Polyconic | See Winkel Tripel and specify Oxford Atlas scaling. |
Oxford Atlas - Pseudocylindrical | See Gall-Bomford Pseudocylindrical. |
Parabolic | Pseudocylindric, equal-area, parabolic meridians. |
Parent I | See Azimuthal Far-Side Perspective and set D = 1.59436. |
Parent II | See Azimuthal Far-Side Perspective and set D = 1.73205. |
Parent III | See Azimuthal Far-Side Perspective and set D = 2.105. |
Patterson Cylindrical | Cylindrical. |
Pavlov | Cylindrical. |
Peters | See Gall Orthographic. |
Peirce Quincuncial | Quincuncial, conformal. |
Petermann Star | Pole-centered fusion: joins the Azimuthal Equidistant in central hemisphere to eight lobes with straight edges at 0°N. |
Philbrick Sinu-Mollweide | Fusion; joins the Mollweide and Sinusoidal at 30°S. Equal-area. |
Plate Carrée | See Equirectangular and set ϕts = 0°. |
Polyconic | See American Polyconic. |
Postel | See Azimuthal Equidistant. |
Pseudo-Orthographic | Pseudocylindric. |
Pseudo-Stereographic | Polyconic. |
Putniņš P1 | Pseudocylindric, equally spaced parallels, elliptical meridians. |
Putniņš P1' | See Wagner VI. |
Putniņš P2 | Pseudocylindric, elliptical meridians. |
Putniņš P2' | See Wagner IV. |
Putniņš P3 | Pseudocylindric, equally spaced parallels, parabolic meridians. |
Putniņš P3' | Pseudocylindric, equally spaced parallels, parabolic meridians, pole line. |
Putniņš P4 | See Parabolic. |
Putniņš P4' | Pseudocylindric, equal-area, parabolic meridians, pole line. |
Putniņš P5 | Pseudocylindric. |
Putniņš P5' | Pseudocylindric, pole line. |
Putniņš P6 | Pseudocylindric, hyperbolic meridians. |
Putniņš P6' | Pseudocylindric, hyperbolic meridians, pole line. |
Quartic-Authalic | Pseudocylindric, equal-area. May be shown interrupted. |
Raisz Armadillo | Orthoapsidal. |
Raisz Half Ellipsoidal | Orthoapsidal |
Rectangular Polyconic | Polyconic. |
Renner-Apian | Pseudocylindric. Variant of Apian II global that shows Northern Hemisphere as two half-hemisphere lobes. |
Robinson | Pseudocylindric, orthophanic, pole line. |
Sanson-Flamsteed | See Sinusoidal. |
Siemon I | See Loximuthal. |
Siemon II | See Wagner I. |
Siemon III | See Quartic Authalic. |
Siemon IV | Pseudocylindric, equal-area. Variant of Quartic Authalic. May be shown interrupted. |
Sinucyli | Weighted blend of the Sinusoidal and Equal-Area Cylindrical projections. Pseudocylindric, equal-area. |
Sinusoidal | Pseudocylindric, equal-area, sinusoidal meridians. Often shown interrupted. |
Sinu-Mollweide | See Philbrick Sinu-Mollweide. |
Smyth Equal-Surface | See Cylindrical Equal-Area and set ϕts = 37.07144°. |
Snyder GS50 | Minimum-error. |
Snyder Minimum-Error Flat Pole | Pseudocylindric, minimum-error, pole line. |
Snyder Minimum-Error Pointed Pole | Pseudocylindric, minimum-error. |
Solov'ev Modified Bonne | Specific, non-global variant of the Bonne. Pseudoconic. |
Solov'ev Perspective Cylindrical | Oblique, cylindric. |
Spilhaus Oceanic | See Hammer (Oblique) and set λ0 = 15°, ϕ0 = -70°, and third rotation 90°. Usually shown with vertical orientation. |
Spilhaus Oceanic (Conformal) | Oblique, transverse case of the August Epicycloidal projection. Usually shown with vertical orientation. |
Stabius-Werner | See Stabius-Werner II |
Stabius-Werner I | Polyconic, equal-area. |
Stabius-Werner II | See Bonne and set ϕ0 = 90°. |
Stabius-Werner III | Polyconic, equal-area. |
Stereographic | Azimuthal, conformal. |
Stereographic (Two-Hemisphere) | Alternative display of above projection that shows entire globe as two side-by-side hemispheres. |
Strebe Equal-Area | Polyconic, equal-area. |
Tilted Perspective | Perspective view. Note: Identical to Orthographic if "tilt" = 0.. |
Times Atlas | Pseudocylindric. |
Tobler Cylindrical I | Cylindrical. |
Tobler Cylindrical II | Cylindrical. |
Tobler Foucaut | See Foucaut Sinusoidal. |
Tobler G1 | Weighted geometric mean of the cylindrical equal area and sinusoidal projections. Pseudocylindric, equal-area. |
Tobler Hyperelliptical | Pseudocylindrical, equal-area. |
Tobler World in a Square | See Cylindrical Equal-Area and set ϕts = 55.654°. |
Transverse Mercator (Sphere) | — |
Trystan Edwards (corrected) | See Cylindrical Equal-Area and set ϕts = 37.4°. |
TsNIIGAiK 1959-1949 Modified Polyconic | See Ginzburg IV. |
TsNIIGAiK 1944 Pseudocylindrical | See Ginzburg VIII. |
TsNIIGAiK 1950 Modified Polyconic | See Ginzburg V. |
TsNIIGAiK BSE Modified Polyconic | See Ginzburg VI. |
Urmayev Cylindrical II | Cylindrical. |
Urmayev Cylindrical III | Cylindrical. |
Urmayev Sinusoidal | Series of equal-area, pseudocylindric projections with sinusoidal meridians, all having a pole line except for the b = 1 case. Note: identical to Wagner I if b = 0.866; identical to Cylindrical Equal-Area for ϕts = 28° if b = 0; compressed horizontally from classic Sinusoidal if b = 1. |
USGS Daisy | Two-hemisphere pole-centered fusion; joins the Azimuthal Equal-Area in polar circle to a Transverse Mercator in twelve lobes at ±75°N. |
Van der Grinten I | Polyconic, circular meridians, parallels. |
Van der Grinten II | Polyconic, circular meridians, parallels. |
Van der Grinten III | Pseudocylindric, circular meridians. |
Van der Grinten IV | Polyconic, circular meridians and parallels. |
Vertical Perspective | Azimuthal, perspective view. Note: identical to Orthographic if D = ∞. |
Vitkovsky I | Conic, equally spaced parallels. |
Wagner I | Pseudocylindric, equal-area, sinusoidal meridians, pole line. |
Wagner II | Pseudocylindric, sinusoidal meridians, pole line. |
Wagner III | Pseudocylindric, equally spaced parallels, sinusoidal meridians, pole line. |
Wagner IV | Pseudocylindric, equal-area, elliptical meridians, pole line. |
Wagner V | Pseudocylindric, elliptical meridians, pole line. |
Wagner VI | Pseudocylindric, equally spaced parallels, elliptical meridians, pole line. |
Wagner VII | Polyconic, equal-area, pole line. |
Wagner VII RC | Polyconic, equal-area, pole line. Variant of Wagner VII with "rounded corners" (meeting points of outer meridians and pole line). |
Wagner VIII | Polyconic, pole line. |
Wagner IX | Polyconic, equally spaced parallels, pole line. |
War Office | See Rectangular Polyconic. |
Werenskiold I | See Putniņš P4'. |
Werenskiold II | See Wagner I. |
Werenskiold III | See Wagner IV. |
Werner | See Bonne and set ϕ0 = 90°. Same as Stabius-Werner II. |
Wiechel | Pseudoazimuthal. |
William-Olsson | Pole-centered fusion: joins the Azimuthal Equal-Area in central circle to a modified Stabius-Werner II in four lobes at 20°N. |
Winkel I | Arithmetic average of the Equirectangular and Sinusoidal projections. Pseudocylindric, equally spaced parallels, sinusoidal meridians, pole line. |
Winkel II | Arithmetic average of the Equirectangular and Apian II projections. Pseudocylindric, equally spaced parallels, elliptical meridians, pole line. |
Winkel Tripel | Arithmetic average of the Equirectangular and Aitoff projections. Polyconic, equally spaced parallels, pole line. |
Winkel-Snyder | Arithmetic average of the Equirectangular and Mollweide projections. |