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Abstract. Coherent backscattering of light by discrete random media,
otherwise known as weak photon localization, is a remarkable optical
phenomenon caused by constructive interference of waves propagating along
the same light-scattering paths but in opposite directions. A well-known
manifestation of coherent backscattering is an intensity peak centered at
exactly the backscattering direction. It also has been established that when the
incident beam is unpolarized then the coherent backscattering intensity peak
can be accompanied by a sharp asymmetric peak of negative polarization with
a minimum centered at a very small phase angle. It has been suggested that
coherent backscattering could be a contributor to some effects observed for
solar system bodies in visible light and at radiowave frequencies [1–4].
However, accurate theoretical computations of weak photon localization based
on first physical principles are difficult and have been used in analyses of
planetary observations in only a handful of publications. This chapter briefly
discusses manifestations of coherent backscattering and reviews the exact
theory of this phenomenon and its applications to analyses of laboratory data
and remote-sensing observations.

1. Introduction

It has been realized recently that diffuse, incoherent multiple scattering of
electromagnetic waves by media composed of randomly positioned, discrete
scattering particles is always accompanied by a phenomenon called coherent
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backscattering (or weak photon localization). This phenomenon has been
actively studied over the last two decades both experimentally and
theoretically [5–8]. Furthermore, by comparing observational data with
theoretical computations, it has been shown that coherent backscattering of
sunlight by regolithic grains can be responsible for two spectacular natural
phenomena exhibited by Saturn’s rings and some bright atmosphereless solar
system bodies, viz., the spike-like photometric and sharp, asymmetric
polarization opposition effects [9–11]. It also has been suggested that diffuse
and coherent backscattering of electromagnetic waves might explain unusual
radar returns for icy outer planet satellites, polar caps on Mars and Mercury,
and some terrestrial lava flows [3,12–16]. In this case, multiple scattering can
be caused by discrete scatterers in a relatively transparent matrix, e.g., by
particulate rock and/or ice surfaces in air or rocks and voids imbedded in ice.

Figure 1: Schematic explanation of coherent backscattering.

To understand the physical origin of weak photon localization, let us
consider a layer composed of discrete, randomly positioned scattering particles
and illuminated by a parallel beam of light incident in the direction illn̂ (Fig.
1). A distant observer measures the intensity of light reflected by the layer in
the direction obsn̂ . The reflected signal is a result of the contributions from
waves scattered along various paths inside the layer involving different
combinations of particles. Let us consider two conjugate scattering paths
shown in Fig. 1 by solid and dashed lines. These paths go through the same
group of N particles, denoted by their positions 1r , 2r ,…, Nr , but in opposite
directions. The waves scattered along the two conjugate paths interfere, the
interference being constructive or destructive depending on the phase
difference )ˆˆ)(( obsill1 nnk N +− rr , where λπ2=k is the wave number and λ
is the wavelength in the surrounding medium. If the observation direction is
far from the exact backscattering direction given by illn̂− , then the waves
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scattered along conjugate paths involving different groups of particles interfere
in different ways, and the average effect of the interference is zero due to the
randomness of particle positions. Consequently, the distant observer measures
some average, incoherent intensity well described by the classical radiative
transfer theory. However, at exactly the backscattering direction ( illobs ˆˆ nn −= ),
the phase difference between conjugate paths involving any group of particles
is identically equal to zero and the interference is always constructive, thereby
causing a coherent backscattering intensity peak.

Owing to its fundamental interference nature, coherent backscattering is a
universal physical phenomenon, accompanies any multiple-scattering process,
and occurs for particles of any size, shape, and refractive index. The angular
width of the backscattering intensity peak can be very small for particles much
smaller or much larger than the wavelength of the incident radiation [17], thereby
often making the peak unobservable in passive remote sensing measurements.
However, coherent backscattering almost always affects active observations with
monostatic lidars and radars, e.g., radar observations of terrestrial and planetary
surfaces.

Exact computations of the coherent backscattering effect based on solving
the Maxwell equations are feasible only for few-particle clusters and is
complicated by several factors. First, the scattering pattern for a monodisperse
cluster of spheres in a fixed orientation is always heavily burdened by multiple
interference maxima and minima and by an intricate resonance structure
typical of single monodisperse spheres [18]. Second, the scattering pattern is
further influenced by near-field effects, which result from component spheres
in a closely packed cluster not being in the far-field zones of each other and
can significantly suppress the coherent backscattering effect [19–21]. Third,
simple trigonometry shows that the angular width of the coherent
backscattering intensity peak is of the order of 〉〈dk1 , where 〉〈d is the
average distance between the cluster components. Therefore, this peak can be
too broad to be reliably identified unless the cluster components are separated
widely enough. However, increasing the distance between the cluster
components diminishes the contribution of multiple scattering and, thus, the
amplitude of the coherent backscattering peak, thereby making it difficult to
detect. To smooth out the effect of the first factor and make the backscattering
peak detectable, the scattering pattern must be averaged over particle sizes,
cluster orientations, and distances between the components. Furthermore, the
average distance between the cluster components must be much larger than the
size of the components and the wavelength, but yet small enough so that the
multiple-scattering contribution to the total signal remains significant.

The simplest case of two widely separated spheres with diameters much
smaller than the wavelength was studied analytically in [22], but it was found
that the amplitude of the coherent backscattering intensity peak was extremely
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small because of the weakness of the multiple-scattering contribution to the
total scattered signal. Mishchenko [23] applied the exact superposition T-
matrix method [18] to polydisperse, randomly oriented clusters composed of
two equal wavelength-sized spheres. He computed the ratio of intensities
scattered by the clusters and by two independent spheres of the same size
assuming that the incident light was unpolarized. Figure 2 shows this ratio
versus scattering angle (i.e., the angle between the incident and scattered
beams) calculated for .25=〉〈dk The average component sphere size
parameter is ,5=〉〈ak where a is the sphere radius, and the relative refractive
index is m = 1.2. The curve clearly shows an enhancement of intensity with an
angular width comparable to 〉〈dk1 and an amplitude of about 1.03. This
feature persisted with varying 〉〈dk , 〉〈ak , and refractive index, thereby
indicating that it was indeed caused by coherent backscattering.

Figure 2: Coherent backscattering by polydisperse, randomly oriented two-sphere
clusters.

The amplitude of the coherent backscattering peak can be significantly
greater for scattering media composed of very large collections of particles
(see Fig. 3 adapted from [24]). However, because of complicated multiple-
scattering processes involved, exact physically-based computations of weak
localization for such media are difficult and must often rely on one or more
simplifying assumptions or must be replaced by approximate computations.
The conventional theoretical tool for computing coherent backscattering has been
the diffusion approximation [25,26]. However, although this approximation rather
accurately predicts the angular profile of the backscattering intensity peak, it
ignores the first-order-scattering contribution to the reflected light and, thus,
cannot be used to compute the amplitude of the peak, i.e., the ratio of the intensity
at the center of the peak to the incoherent background intensity. Furthermore, in
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some cases the main physical characteristics of a particulate medium (e.g.,
particle size, shape, and refractive index) cease to be explicit model parameters
[27], thereby making difficult, if even possible, comparisons of model
computations with results of controlled laboratory experiments. An additional
complexifying factor is that accurate computations of the amplitude and
polarization state of the backscattering peak must explicitly take into account the
vector nature of light since polarization effects have been shown to be extremely
important in coherent backscattering [7,11,28–32]. Another theoretical approach
is based on Monte-Carlo computations of multiple scattering that keep track of
the phase relations between the scattered waves [33–35; see also the chapter by
Muinonen et al.]. However, such computations are time-consuming and must be
extensively tested versus exact theoretical results.

Figure 3: Angular profile of the coherent backscattering peak produced by a 1500-µm-
thick slab of 9.6 vol% of 0.215-µm-diameter polystyrene spheres suspended in water.
The slab was illuminated by a linearly polarized laser beam ( nm633=λ ) incident
perpendicularly to the slab surface. The scattering plane (i.e., the plane through the
vectors illn̂ and obsn̂ ) was fixed such that the electric vector of the incident beam
vibrated in this plane. The detector measured the component of the backscattered
intensity polarized parallel to the scattering plane. The curve shows the profile of the
backscattered intensity normalized by the intensity of the incoherent background as a
function of the phase angle α . The latter is defined as the angle between the vectors

obsn̂ and illn̂− .

In this chapter we review the exact theory of coherent backscattering for
sparse discrete random media in which every scatterer is in the far-field zone
of all other scatterers and the near-field effects can be neglected. The critical
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advantages of this theory are that polarization effects are fully taken into
account and that particle size distribution, shape, refractive index, and number
density are explicit model parameters, thereby facilitating comparisons of
theoretical and experimental results. In the following section we will discuss
the characteristics of weak photon localization at the exact backscattering
direction, in which case it is possible to derive a simple relationship between
the diffuse and coherent contributions to the total Stokes reflection matrix
applicable to particles of any size, shape, and refractive index. In sections 3
and 4 we will consider the angular dependence of coherent backscattering in
the case of normal incidence of light on a plane-parallel slab composed of
discrete scattering particles. We will also mention, where appropriate, the
relevance of theoretical calculations to specific manifestations of coherent
backscattering observed in laboratory and remote-sensing measurements.

2. Exact backscattering direction

Consider a plane-parallel layer composed of discrete, randomly and sparsely
positioned particles. Let the medium be illuminated by a parallel beam of quasi-
monochromatic radiation incident in the direction illn̂ and characterized by the
four-component Stokes column vector 0I so that 0I is the incident energy flux
per unit area perpendicular to the beam (we use the definition of the Stokes
parameters I, Q, U, and V adopted in [18,36]). The Stokes vector I of radiation
reflected by the medium in the direction obsn̂ is given by

0illobs0 )ˆ,ˆ(
1

ISI nnµ
π

= (1)

where 0µ is the cosine of the zenith angle of the incidence direction and
)ˆ,ˆ( illobs nnS is the 44× reflection matrix transforming the Stokes parameters of

the incident light into those of the reflected light. Note that 0I and I are defined
with respect to the meridional planes of the incidence and the scattering direction,
respectively.

The reflection matrix can be decomposed as [7]

)ˆ,ˆ()ˆ,ˆ()ˆ,ˆ()ˆ,ˆ( illobs
C

illobs
L

illobs
1

illobs nnnnnnnn SSSS ++= (2)

where 1 denotes the first-order-scattering component, L denotes the ladder
component, and C denotes the cyclical component. The first-order-scattering and
ladder components of the reflection matrix are rather slowly varying functions of
the reflection direction, and their sum describes the diffuse, incoherent
background of the reflected radiation. The cyclical component describes the effect
of coherent backscattering, which is superposed on the diffuse background.
Unlike S1 and SL, the cyclical component deviates from zero only in the nearest
vicinity of the backscattering direction given by illobs ˆˆ nn −= and vanishes outside
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the coherent backscattering peak.
Both S1 and SL can be found by solving numerically the vector radiative

transfer equation [16,37–39]. The computation of the cyclical component
)ˆ,ˆ( illobs

C nnS for any illn̂ and obsn̂ is a much more complicated problem which has

been solved rigorously only for the case of nonabsorbing Rayleigh scattering (see

the following section) and still awaits a general solution for particles of arbitrary
size, shape, and refractive index. However, the rigorous relationship derived in

[31,40] and based on Saxon’s reciprocity relation for the scattering dyad [41]

enables one to use the known ladder component of the reflection matrix for
calculating the cyclical component at exactly the backscattering direction, i.e., the

matrix )ˆ,ˆ( illill
C nn−S . Specifically, assuming for simplicity that the scattering

medium is macroscopically isotropic and mirror-symmetric [18,36], we have
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[the arguments )ˆ,ˆ( illill nn− are omitted for brevity]. Thus, the combined use of the
vector radiative transfer theory and Eqs. (2)–(7) provides the full specification of

the reflected radiation outside the peak [Eq. (2) with 0)ˆ,ˆ( illobs
C =nnS ] and at

exactly the center of the backscattering peak.
Equations (3)–(7) represent one of a very few rigorous results of the vector

theory of coherent backscattering by sparsely distributed, independently
scattering particles and are an important source of benchmark theoretical
results for arbitrary particles. Mishchenko [15,16,31] used this formulation to
perform a detailed study of the analytical properties of various photometric
and polarimetric characteristics of coherent backscattering and their qualitative
and quantitative dependence on the particle size, shape, and refractive index.
Extensive applications of this approach to model computations and analyses of
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laboratory and remote-sensing data are described in [9–11,16]. In particular,
numerical calculations for specific scattering systems [40] show excellent
quantitative agreement with the results of controlled laboratory experiments
reported in [42,43].

Figure 4: Linear depolarization ratio versus cosine of the incident zenith angle for
backscattering by a semi-infinite homogeneous layer composed of polydisperse
spherical particles with an effective size parameter of 10 and refractive indices 1.2 and
1.6.

As an example, Fig. 4 shows the linear depolarization ratio Lδ (also

known in the radar literature as the linear polarization ratio Lµ ) versus 0µ for

a semi-infinite layer composed of spherical particles [16]. Lδ is defined
assuming that the incident light is linearly polarized parallel to the meridional

plane of the incidence direction and is the ratio of the two orthogonal

components of the total backscattered intensity: one polarized in the direction
perpendicular to the meridional plane and the other polarized parallel to the

plane. A deviation of Lδ from zero means that the backscattered light is

partially depolarized. It is seen that Lδ is zero in the limit 00 →µ , i.e., when
only the light scattered once contributes to the total reflected signal. This first-

order-scattering contribution is not depolarized because the particles forming

the medium are spherical [18]. However, for normal incidence ( 10 =µ ) the
multiple-scattering contribution to the total backscattered signal is significant

and results in strong depolarization. Figure 5 shows analogous results for the

circular depolarization ratio Cδ (also known as the circular polarization ratio

Cµ ). The latter is introduced assuming that the incident light is circularly

polarized and is the ratio of two circular components of the total intensity of
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the backscattered light: one polarized in the same direction as the incident light
and the other polarized in the opposite direction. Since for single scattering by

a spherical particle 1C ≡δ [18], the large Cδ values shown in Fig. 5 for

00 ≠µ demonstrate a strong depolarizing effect of multiple scattering. The
numerical results reported in [15,16] suggest that 1L ≤δ and LC δδ ≥ . These

properties of the depolarization ratios produced by multiple scattering are

similar to those of the depolarization ratios caused by single scattering on
nonspherical particles [18,36]. This factor can make it difficult in practice to

distinguish between the two depolarization mechanisms.

Figure 5: As in Fig. 4, but for the circular depolarization ratio.

Radar observations of icy outer planet satellites at centimeter wavelengths
show that when illuminated and observed in linearly polarized radiation,

5.0L ≈δ , whereas when illuminated and observed in circularly polarized
radiation, 1C >δ [44,45]. The results of [15,16] show that the observed values
of the depolarization ratios can be adequately explained by multiple scattering
and localization of light in weakly absorbing discrete random media.

3. Conservative Rayleigh scattering

Another important exact result of the vector theory of coherent backscattering
is the complete analytical solution for the case of normal incidence of light on
a semi-infinite slab composed of nonabsorbing Rayleigh scatterers. This
solution was first obtained by Ozrin [32] and was then re-derived in a more
convenient form by Amik et al. [46].

Restricting the analysis to small phase angles α , where the first-order-
scattering and ladder components of the total reflection matrix are
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approximately constant, and introducing the so-called angular parameter q =
αkl , where l is the photon transport mean free path in the scattering medium,

one can rewrite the main formulas of [46] using the Stokes-vector
representation of polarization as follows [47]:
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Since the angular functions )(qijγ can be computed numerically as described

in detail in [46], Eqs. (2) and (8)–(15) can be used to calculate the full Stokes

reflection matrix for any q. If, furthermore, the transport mean free path l is

known, the reflection matrix can be expressed as a function of the phase angle

α rather than the dimensionless angular parameter q. Note that the matrices

SL and SC(0) given by Eqs. (9)–(15) fully comply with the general relationship

derived for arbitrary macroscopically isotropic and mirror-symmetric

scattering media and discussed in the previous section.
Assuming unpolarized incident light (Q0 = U0 = V0 = 0), we define the

intensity enhancement factor as the ratio of the total reflected intensity to the
incoherent background value:

L
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Equations (8)–(10) show that only the first two Stokes parameters of the
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reflected light can be nonzero. Therefore the degree of linear polarization can
be defined as minus the ratio of the total reflected second Stokes parameter to
the total reflected intensity:
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qSSS
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qI

qQ
qP

++
−=−= (17)

Figure 6: Angular profiles of the photometric enhancement factor and the degree of
linear polarization of the reflected light for a half-space of nonabsorbing Rayleigh
particles.

Figure 6 shows both the intensity enhancement factor and the degree of
linear polarization as functions of the dimensionless angular parameter q [47].
The upper panel demonstrates the renowned intensity peak centered at exactly
the opposition. The amplitude of the peak is 5368.1)0( ≈ζ and its half-width
at half-maximum is 597.0≈ζq . Thus the relationship between the half-width
at half-maximum of the backscattering intensity peak and the photon transport
mean free path is given by kl597.0≈ζα . The lower panel of Fig. 6 shows
that the reflected polarization is zero at opposition, which is a consequence of
azimuthal symmetry in the case of normal illumination and unpolarized
incident light. However, with increasing q, polarization becomes negative,
rapidly grows in absolute value, and reaches its minimal value
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%765.2min −≈P at a reflection direction very close to opposition ( 68.1≈Pq ).
The peak of negative polarization is highly asymmetric so that the half-
minimal polarization value –1.383% is first reached at 498.01, ≈Pq , which is
even smaller than the value 597.0≈ζq corresponding to the half-width at
half-maximum of the backscattering intensity peak, and then at a much larger

10.72, ≈Pq . This unusual behavior of polarization at near-backscattering
angles was called in [11] the (asymmetric) polarization opposition effect
(POE).

Figure 7: Polarization measurements for a particulate surface composed of microscopic
magnesia particles (squares) and best-fit theoretical computations (solid curve).

Because lasers are the most frequently used source of illumination and
usually generate linearly or circularly polarized light, explicit laboratory
demonstrations of the sharp and asymmetric POE have been extremely rare.
Apparently the first laboratory observation of the asymmetric POE was made
by Lyot as long ago as in the 1920s [48], even though the physical explanation
of this phenomenon was, of course, unknown at that time. Figure 7 shows
Lyot’s polarization measurements for a particulate surface obtained by burning
a tape of magnesium under a glass plate until the deposit on the plate was
completely opaque. Lyot described the observed polarization phase curve as
“puzzling” and attributed it to the very small size of magnesia grains.
Unfortunately, he did not measure the actual size of the grains and their
packing density and thus did not provide the information necessary to compute
the photon mean free path l. Furthermore, the minimal measured polarization
value is only –1.11%, compared to the theoretical value %765.2min −≈P
computed for Rayleigh particles. However, assuming that the latter difference
is explained by the finite particle size in Lyot’s experiment and multiplying the
theoretical polarization by a factor of 0.4, and also assuming that the actual kl
was close to a realistic value of 132, it is possible to reproduce almost
perfectly the angular profile of the measured polarization up to phase angles of
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about 15° (solid curve in Fig. 7) [47]. At larger phase angles the assumption
of phase-angle-independent single-scattering and ladder contributions to the
total reflection matrix is no longer valid and causes a significant deviation of
the theoretical curve from the measurements.

The sharp asymmetric POE also may have been observed in more recent
laboratory measurements by Geake and Geake [49] for fine alumina powders,
although the smallest phase angle in their experiments was 2° and may be too
large for deriving definitive conclusions. These measurements may suggest
that the narrow asymmetric POE weakens and ultimately disappears with
increasing particle size, which would be consistent with the similar
disappearance of the spatial anisotropy of the backscattering intensity peak in
the case of a linearly polarized incident beam observed by van Albada et al.
[28].

Sharp asymmetric peaks of negative polarization at phase angles
considerably smaller than °1 have been observed for Saturn’s rings and the
Galilean satellites of Jupiter [11,50; see also the chapter by Rosenbush et al.].
Because these peaks are distinctly different from the symmetric, nearly
parabolic negative polarization branch commonly observed for many solar
system bodies [51], they have been interpreted in terms of the asymmetric
POE produced by coherent backscattering of sunlight by a surface layer
composed primarily of microscopic ice particles [11,50]. The fact that the
same objects exhibit comparably narrow intensity peaks centered at exactly the
opposition [52] provides strong support for this interpretation.

4. Scattering by a plane-parallel layer composed of arbitrary particles in
random orientation

In this section we consider multiple scattering by a plane-parallel layer
consisting of discrete, randomly positioned scatterers in random orientation.
As in the preceding section, the incident wave is assumed to propagate
normally to the boundary of the medium. A comprehensive derivation of the
equations describing the coherent and incoherent (diffuse) parts of radiation
reflected by such a medium at the backscattering direction was given in [53]. It
is based on the exact theory of electromagnetic scattering by systems (clusters)
of particles. The equations derived allow a detailed study of the dependence of
the photometric and polarization opposition effect characteristics on the
microphysical properties of the scatterers (size parameter, real and imaginary
parts of the refractive index, shape, number density, etc.). Here we present a
brief summary of these results.

The reflection matrix is decomposed according to Eq. (2). The sum of the
first-order-scattering and ladder components of the reflection matrix is given
by
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incidence and scattering directions), 0Z is the geometrical thickness of the
layer, and ε is the complex effective refractive index of the medium. The
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where ,ρ ω are polar coordinates of the integration point with respect to the

point z, the angle ω is measured off the backscattering direction, 2 Im( )x xτ ε= ,

1N q q= − ( 1, 1q q = ± ), and cosy z ρ ω= − . The ( )( )pn
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µνχ are the coefficients
in the expansion of the individual-particle scattering matrix in the Wigner d

functions, and the first term on the right-hand side corresponds to the first-order-

scattering contribution.
Equation (19) specifies the coefficients ( )( )( )z pn

L
µνα as functions of the optical

depth in the layer. The exponential factor in Eq. (18) describes the extinction of

radiation while it propagates from a point z to the exit point in the direction ϑ .
Note that Eqs. (18) and (19) are one of many alternative representations of the

vector radiative transfer equation.
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in the Wigner d functions,
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( )0 0( , , ) (2 1) 2 cos
2 2

l l l
m l m m

l

F i l j d d
ϑ ϑρ ϑ ω ρ ω−    = +    

   
∑

( sin sin ) exp( cos (1 cos ))m
mi J iρ ϑ ω ρ ω ϑ−= − + (22)

1 1
Im( ) 2 cos 1 cos [Re( ) 1] 1

cos cos
iρτ ρ ε ω ρ ω ε

ϑ ϑ
    = − − + − +    

    
% (23)

( )lj x are spherical Bessel functions, and ( )mJ x are Bessel functions. The

coefficients ( )( )( )z pn
LM

µνβ are determined from the system of equations

1 1

1

( )( ) ( )( )( )( )( )( ) ( )( ) 0
3

2 pq q y qn qz pn pn
LM LM L lm

qq lm

n

k
µ νµν µν πβ ζ χ β= + ∑ ∑∫

( ) ( ) exp( ) ( , , ) sinL l
MN mN m Md d F d dρω ω τ ρ ϑ ω ρ ω ω−× −% (24)

The matrix C
pnS νµ describes the interference of the conjugate pairs of waves

propagating along the same trajectories (Fig.1) including looped paths [53,56].
The above equations are rigorous provided that any scatterer is located in the

far-field zone of all other scatterers. They are valid for arbitrary particles in
random orientation. Unlike the formula for the incoherent part, Eq. (19), the
kernel of the formula for the coherent part, Eq. (24), is a rapidly oscillating
function. The numerical solution of such equations is a very complex problem.
Therefore, below we consider several particular cases of the general equations.

4.1 Exact backscattering direction (ϑ π= )

In this case 0( , , )m mF ρ π ω δ= and
0

( )( ) ( )( )
,( 1)np p pn

LM L M N
νµ µνζ χ δ∗

−= − . Therefore,

Eqs. (18), (19), and (20)–(24) yield [53]

L C
pn pnS Sµν νµ= (25)

Rewriting Eq.(25) in terms of the standard Stokes representation of polarization
gives Eqs. (4)–(7) [56].

It should be noted that the relations between the coherent and incoherent parts
of the reflected radiation similar to Eqs. (4)–(7) and (25) can be derived for an
arbitrary system of scatterers provided that they are in the far-field zones of each
other. It can be done using Eqs. (19), (20), (35), and (36) of [53].

4.2 Double-scattering approximation for a semi-infinite layer

The results of the double-scattering approximation are useful for semi-
quantitative or qualitative analyses of the effect of particle microphysical
properties on the characteristics of the opposition effects. Instead of Eqs. (18) and
(19), we now have the following [56]:
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0 0

1 L ( )( )0
3

( )
4 Im( )(1 cos )

l pn
pn pn M N l

l

n
S S d A

k
µν

µν µν ϑ
ε ϑ

+ =
− ∑ (26)

where

1 1

1

( )( ) ( )( )( )( ) ( )( ) 0
3 ( )

pq q qn qpn pn
L L L l

qq l

n
A

k Im
µ νµν µν πχ χ χ

ε
= + ∑ ∑

0 0

/ 2

0

cos sin
( ) ( )

cos cos
L l
M N M N

d
d d

π ϑ ω ωω ω
ϑ ω

× −∫

0 0

/ 2

0

sin
( ) ( )

1 cos
L l
M N M N

d
d d

π ω ωπ ω π ω
ω

+ − − + ∫ (27)

The first term on the right-hand side of Eq. (27) gives the first-order-scattering
contribution, whereas the second one describes the second-order-scattering
contribution. The coherent part for a semi-infinite layer is given by [56]

1 1 1

1

2
( )( ) ( )( ) ( )C | |0

6
( 1)

2 Im( )(1 cos )
q qp qn q qqL m M

pn LM lm LMlm
LMlmqq

n
S i B

k
µ ν

νµ
π ζ ζ
ε ϑ

∗ − −= −
− ∑ (28)

where

1

| |/ 2
( )

2 2 2 2 | |0

sin
( ) ( )

( )

m M
qq L l

LMlm MN mN m M

c d
B d d

c f f c f

π ω ωω ω
−

−
=

+ + +∫
| |/ 2

2 2 2 2 | |0

sin
( ) ( )

( )

m M
L l
MN mN m M

c d
d d

c f f c f

π ω ωπ ω π ω
−

∗ ∗ ∗ −
+ − −

+ + +∫ (29)

sin sinc ϑ ω= (30)

1 1
2 Im( ) cos Im( ) 1 [Re( ) 1] 1 (1 cos )

cos cos
f i iε ω ε ε ϑ

ϑ ϑ
    = + − + − + + +    

    

(31)

The expansion coefficients ( )( )pn
L

µνχ and ( )( )pn
LM

µνζ are determined by the

microphysical properties of the scatterers. In the case of spherical particles,

1 0 1 0

1

( )( ) ( ) ( )1
(2 1)(2 1)

4
L M L Npn pn

L L l L nl L pl
Ll

L l a a C Cµν µν
ν µχ ∗

− −= + + 〈 〉∑ (32)

1 01 1

1 1 1 1

( )( ) ( ) ( )1
(2 1)(2 1) ( 1) ( )

4
L NL Mpn pn l l

L M L l L nlm L pl m
Ll

L l a a C C dµν µν
µ νζ ϑ∗

− − −= + + 〈 〉 −∑ (33)

where 1 1m M n= + , ( )pn
L L La a pnb= + , La and Lb are the Lorenz–Mie

coefficients [18], the angle brackets denote averaging over particle microphysical
characteristics, and the Cs are Clebsh-Gordan coefficients [55].



Exact Results of the Vector Theory of Coherent Backscattering 255

180 179 178 177 176 175

ϑ(deg)

-2

-1

0

1

P
(%

) 1

2

180 120 60 0

ϑ(deg)

-80

-40

0

40

80

P
0(

%
)

180 179 178 177 176 175

ϑ(deg)

0.6

0.7

0.8

0.9

1

I(
ϑ)

/I
(π

)
1

2

3

3

180 179 178 177 176 175

ϑ (deg)

-3

-2

-1

0

1

2

P
(%

)

1

2

180 179 178 177 176 175

ϑ(deg)

0.7

0.8

0.9

1

I(
ϑ)

/I
(π

)

1

2

180 120 60 0

ϑ(deg)

-80

0

80

P
0(

%
)

3

3

Figure 8: The coherent component (1, 2) and the sum of the diffuse and first-order-
scattering components (3) of the scattered radiation for ka = 3, m = 1.35 (left-hand
column) and ka = 4.5, m = 1.33 (right-hand column). Curves 1 correspond to ξ =0.001;

curves 2 correspond to ξ =0.01. 0P is the linear polarization for an individual isolated

particle.

Figure 8 depicts the degree of linear polarization, P, and the normalized
intensity, ( ) / ( )I Iϑ π , for a semi-infinite layer composed of identical spherical
particles. The results are shown for different values of the filling factor

,0
3

3
4 naπξ = where a is the particle radius. The effective refractive index of the

medium is given by kCin 21 ext0+=ε , where extC is the extinction cross

section per particle.
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One can see that the polarization opposition effect is more sensitive to particle
properties than the photometric one (the latter always manifests itself as a sharp
peak of intensity centered at the exact backscattering direction). The polarization
behavior can be explained as follows. It has been demonstrated that in the case of
positive polarization for an isolated scatterer, the interference of second-order
waves results in negative polarization at the backscattering direction [4]. However
uniformly positive polarization is a specific property of Rayleigh scatterers. The
angular dependence of polarization for wavelength-sized particles becomes much
more complicated [18]. Therefore, the interference of the second-order waves can
result in positive backscattering polarization as well as in negative polarization.

The left-hand column of Fig. 8 corresponds to spherical particles with a size
parameter 3== kax and a refractive index m = 1.35. The phase function for
these particles is asymmetric, most of radiation being scattered at angles 60ϑ < ° .
Therefore, the polarization of the coherent part of the reflected radiation is
determined by the behavior of 0P in the scattering-angle ranges 60ϑ < ° and

120ϑ > ° , where the average value of 0P is positive (see the bottom panel of the
left-hand column of Fig. 8). Hence, the interference of second-order scattering
paths yields negative polarization near the opposition direction.

The right-hand column of Fig. 8 corresponds to particles with a size parameter
5.4=x and a refractive index m = 1.33. The phase function for these particles is

even more asymmetric. The average value of 0P in the scattering-angle ranges
60ϑ < ° and 120ϑ > ° is negative. In this case the interference of the second-

order scattering paths results in positive polarization at backscattering angles.
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Figure 9: Degree of linear polarization for a semi-infinite particulate layer with ξ = 0.002
and different parameters of the particle size distribution. Curve 1: xeff = 2, veff = 0.1; curve
2: xeff = 2, veff = 0.25; curve 3: xeff = 3, veff = 0.25.

Figures 9 and 10 show the polarization profiles for a gamma-distribution of

particle size parameters ])(exp[)( effeff
)31( effeff vvv xxxxf −∝ − , where xeff is the
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effective size parameter and veff is the effective variance, and refractive indices
1.5 and 1.33 + 0.05i, respectively. One can see that varying polarization behavior
is possible depending on particle parameters. In particular, the degree of linear
polarization at small phase angles can be negative as well as positive, and it is
possible to obtain a bimodal angular dependence. The bimodal polarization
behavior in Fig. 10 (curve 1) is formed by a superposition of the sharp
polarization peak formed by constructive interference of waves scattered by
different scatterers and the smooth polarization minimum caused by single
scattering.
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Figure 10: Degree of linear polarization for a semi-infinite layer composed of
polydisperse spherical particles with xeff = 2 and veff = 0.1. Curves 1 and 2 show the
coherent component; curve 3 shows the sum of the first-order-scattering and diffuse
components. Curve 1 corresponds to 0.002ξ = , curve 2 – to 0.01ξ = .

4.3 Optically thin layers

Figures 8–10 show a strong influence of particle microphysics and filling factor
on polarization, in particular on the angular position of the polarization extremum

mα . The angular position of the extremum can be an important characteristic in

analyses of experimental data. In the case of an optically thin layer, the integral
over ρ in Eq. (21) is a sharp function, which has a maximum at / 2ω π= and

tends to zero for other values of ω . For such a layer composed of moderately

sized particles, the scattering-angle dependence of the coefficients ( )( )np
LM

νµζ at

ϑ π→ is weak. Moreover, we can now neglect all orders of scattering higher

then the second. This allows us to derive an analytical expression for mα :

sin
sin 2(2 2) 2

2 Im( )
m

mkl
α α

ε
= = + ≈ (34)
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where l is the photon transport mean free path. This expression agrees well with
that for a semi-infinite layer composed of nonabsorbing point-like scatterers
(Section 3). In both cases mα is defined only by the value of l.

Equation (34) can be used in analyses of remote-sensing observations, for
example, for estimating surface properties of particles forming Saturn’s rings.
The majority of the ring particles are believed to have sizes ranging from a few
centimeters to a few meters and surface morphology similar to that of snow or
frost [57]. A recent analysis of numerous earth-based observations shows a
bimodal phase-angle dependence of linear polarization of light reflected by
Saturn’s rings and Galilean satellites of Jupiter [50]. The value of mα for the first
(sharp) polarization minimum is about 0.5° , whereas the one for the second
(smooth) minimum is about 3 4° − ° . One potential explanation of this bimodal
behavior is that the smooth polarization minimum is produced by cooperative
scattering within wavelength-sized aggregates consisting of a modest number of
small components, whereas the sharp polarization peak is the result of
constructive interference of waves scattered by different aggregates. The filling
factors of aggregates then follows from

)cos1(3

2

sca
2

3

〉〈−
〉〈

=
ϑ

απξ
Ck

x m (35)

where scaC is the scattering cross section per aggregate, 〉〈 ϑcos is the

asymmetry parameter, and 〉〈x is the average size parameter of the aggregates.

Numerical calculations using Eqs. (35) for refractive indices 1.2 1.33÷ and
205 ≤〉〈≤ x give 3.002.0 ÷≅ξ . The smooth negative polarization minimum

can be produced by aggregates consisting of 102 to 103 monomers with size
parameters ,1.0≅ which implies 10≅〉〈x and 1.0≅ξ . These estimates assume

that the size of the aggregates relative to the wavelength and their packing density
are small enough so that the effects of shadowing can be ignored. Of course,
another possible explanation is that the surfaces of these objects are highly
heterogeneous and that the sharp negative polarization minimum is produced by
the areas covered with an optically thick layer of microscopic (Rayleigh) grains
(Section 3), whereas the smooth polarization minimum is produced by the areas
covered by particles of a different type.
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