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a b s t r a c t 

In this semi-tutorial paper, we revisit the interference phenomena caused by pairs of co-propagating or 

counter-propagating transverse electromagnetic waves by letting the host medium be absorbing. We first 

consider plane waves in an unbounded medium, summarize the standing-wave solution of the Maxwell 

equations, and discuss specific effects caused by nonvanishing absorption. We then consider the superpo- 

sition of plane and spherical waves in the context of far-field electromagnetic scattering by a particle. To 

this end we modify the classical Jones lemma by allowing nonzero absorption in the host medium and 

consider its most obvious consequences such as forward- and backscattering interference. The physical 

similarity of the two scenarios (superpositions of plane waves and superpositions of plane and spherical 

waves) is discussed. 

Published by Elsevier Ltd. 

1

 

p  

m  

w  

p  

w  

a  

n

 

i  

c  

c  

[  

l  

s  

f  

p  

c

w  

t  

m  

t  

w

i  

t  

n

 

c  

m  

s  

c  

t  

p  

fi  

[  

i  

b  

o  

b  

o  

a

2

 

h

0

. Introduction 

The existence of remarkable interference phenomena caused by

airs of co-propagating or counter-propagating transverse electro-

agnetic waves is well known. A classical example is the standing

ave resulting from the interference of two counter-propagating

lane waves [1–5] . Similarly, the interference of the incident plane

ave and the co-propagating far-field spherical wave scattered by

 particle in near-forward directions causes the celebrated phe-

omenon of extinction [6 , 7] . 

Traditionally such optical effects have been studied by assum-

ng that the host medium is nonabsorbing [1–19] . Analyzing the

ase of an absorbing host makes mathematics more involved and

an lead to perplexing conclusions which, in the words of Grzesik

20] , “any… reasonable person would wish to avoid.” Yet we be-

ieve that the frequent occurrence of absorbing host media makes

uch an analysis intellectually instructive as well as practically use-

ul (e.g., [21–24] ). Hence the objective of this semi-tutorial pa-

er is to revisit the interference phenomena caused by pairs of

o-propagating or counter-propagating transverse electromagnetic 

aves by letting the host medium be absorbing. Part of our mo-

ivation comes from the fact that absorption in the host medium

akes nonzero the result of a “standing-wave-like” interaction of

he incident plane wave and the counter-propagating spherical
ave backscattered by the particle. The latter phenomenon was 
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dentified in Refs. [25 , 26] , yet the level of mathematical rigor in

hose publications was somewhat insufficient and, in our opinion,

eeds to be refined. 

We start by considering the simple cases of co- and

ounter-propagating plane waves in an unbounded absorbing

edium, summarize the standing-wave solution of the macro-

copic Maxwell equations, and analyze the most obvious physical

onsequences of nonzero absorption. We then consider combina-

ions of co- and counter-propagating plane and spherical waves ap-

earing in the context of far-field electromagnetic scattering by a

nite object. To this end, we generalize the classical Jones lemma

27 , 28] to the case of an absorbing host medium and consider its

mplications such as the forward-scattering (aka extinction) and

ackscattering interference. In particular, specific consequences of

ur analysis for the computation of the electromagnetic energy

udget of a finite volume of space as well as for the use of lab-

ratory measurements of electromagnetic scattering by a particle

re discussed. 

. Maxwell curl equations 

Consistent with Refs. [9–18 , 29–32] , in this paper we assume

nd suppress the exp( − i ωt ) time-harmonic dependence of all elec-

romagnetic fields, where i = (−1) 1 / 2 , ω is the angular frequency,

nd t is time. In the absence of impressed currents, the time-

ndependent part of the electromagnetic field everywhere in the
hree-dimensional linear, isotropic, and nonmagnetic space satis- 
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Fig. 1. Plane surface normal to a real vector K . 
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fies the macroscopic Maxwell curl equations 

∇ × E (r ) = i ω μ0 H (r ) 
∇ × H (r ) = −i ωε(r ) E (r ) 

}
r ∈ R 

3 , (1)

where the position vector r connects the origin O of the refer-

ence frame and the observation point, E ( r ) is the electric and

H ( r ) the magnetic field; μ0 is the magnetic permeability of a vac-

uum; and ε( r ) is the electric permittivity. We will always assume

that all materials involved are passive [29 , 32] , which implies that

ε ′′ �= Im [ ε(r )] ≥ 0 , where “Im” stands for “imaginary part of”. 

3. Co-propagating and counter-propagating homogeneous 

plane waves in a homogeneous unbounded medium 

3.1. Homogeneous plane wave 

Consider the case of a homogeneous and, in general, absorbing

medium. A well-known fundamental solution of Eqs. (1) is a plane

electromagnetic wave given by [33] 

E (r ) = exp (i k · r ) E 0 , (2)

H (r ) = exp (i k · r ) H 0 , (3)

where the amplitudes E 0 and H 0 and the wave vector k are con-

stant complex vectors such that 

k · E 0 = 0 , (4)

k · H 0 = 0 , (5)

k × E 0 = ω μ0 H 0 , (6)

k × H 0 = −ωε E 0 . (7)

The wave vector is usually written as 

k = k 

′ + i k 

′′ , (8)

where k 

′ and k 

′′ are real vectors and it is assumed that k 

′ � = 0 . It

is easily shown that 

k · k = ω 

2 ε μ0 . (9)

A plane surface normal to a real vector K satisfies r · K = const,

where r is the position vector of a point in the plane ( Fig. 1 ).
Therefore, the vector k 

′ is perpendicular to the surfaces of constant e
hase, whereas k 

′′ is perpendicular to the surfaces of constant am-

litude. 

In what follows, we will simplify the problem by considering

nly homogeneous (or uniform) plane electromagnetic waves de-

ned such that k 

′ and k 

′′ are parallel (including the case k 

′′ = 0 ).

hen the complex wave vector can be expressed as 

 = k ̂  k = (k ′ + i k ′′ ) ̂  k , (10)

here ˆ k is a real unit vector in the direction of propagation and 

 = ω 

√ 

ε μ0 (11)

s the complex wave number with real and imaginary parts k ′ > 0

nd k ′′ ≥ 0, respectively. 

.2. Co-propagating plane waves 

The sum of two homogeneous-space solutions of the Maxwell

quations is also a homogeneous-space solution. Let us first con-

ider two homogeneous plane waves propagating in the same di-

ection 

ˆ k , having the same angular frequencies, and represented

y the electric field amplitudes E 01 and E 02 (see Eq. (2) ). Obviously,

he resulting electromagnetic field is given by 

 (r ) = E 1 (r ) + E 2 (r ) = exp (i k ̂  k · r )( E 01 + E 02 ) , (12)

 (r ) = H 1 (r ) + H 2 (r ) = 

k 

ω μ0 

exp (i k ̂  k · r ) ̂  k × ( E 01 + E 02 ) (13)

nd is also a homogeneous plane wave. Thus superposing two

o-propagating homogeneous plane waves with the same angular

requencies yields a homogeneous plane wave propagating in the

ame direction and having the same angular frequency. 

The time-averaged Poynting vector of the resulting wave is

iven by 

 

S (r , t) 〉 t = 

1 

2 

Re [ E (r ) × H 

∗(r ) ] , (14)

here “Re” stands for “real part of” and the asterisk denotes

omplex conjugation. It can be represented as the sum of three

erms: 

 

S (r , t) 〉 t = S 1 (r ) + S 2 (r ) + S int (r ) , (15)

here 

 1 (r ) = 

1 

2 

Re { E 1 (r ) × [ H 1 (r ) ] 
∗} 

= 

k ′ 
2 ω μ0 

exp ( −2 k ′′ ˆ k · r ) | E 01 | 2 ˆ k (16)

nd 

 2 (r ) = 

1 

2 

Re { E 2 (r ) × [ H 2 (r ) ] 
∗} = 

k ′ 
2 ω μ0 

exp( −2 k ′′ ˆ k · r ) | E 02 | 2 ˆ k 

(17)

re the Poynting vector components associated with the first and

econd wave taken in isolation from each other, while S int (r ) is

he interference term describing the “interaction” between the two

aves and given by 

 

int (r ) = 

1 

2 

Re { E 1 (r ) × [ H 2 (r ) ] 
∗ + E 2 (r ) × [ H 1 (r ) ] 

∗} 

= 

k ′ 
ω μ0 

exp( −2 k ′′ ˆ k · r )Re( E 01 · E 

∗
02 ) ̂

 k . (18)

Eqs. (16) –(18) obviously imply that all three components of the

oynting vector 

• have the same direction 

ˆ k ;
• are equally attenuated by the exponential factor exp( −2 k ′′ ˆ k ·

r ) ; and 

• survive the limit of zero absorption k ′′ → 0. 

uite predictably, if E 01 = E 02 then the total Poynting vector is
qual to four times that of an individual wave. 
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Fig. 2. Two counter-propagating homogeneous plane waves. 
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.3. Counter-propagating plane waves 

The situation changes substantially if one superposes two

ounter-propagating plane waves having the same angular frequen-

ies. Assuming that ˆ k defines the positive direction of the z -axis,
ˆ 
 = ̂

 z (see Fig. 2 ), the two counter-propagating homogeneous plane

aves, 1 and 2, are given by the following electric and magnetic

elds: 

 1 (r ) = exp (i kz) E 01 , (19) 

 1 (r ) = 

k 

ω μ0 

exp (i kz) ̂ z × E 01 , (20) 

 2 (r ) = exp (−i kz) E 02 , (21) 

 2 (r ) = − k 

ω μ0 

exp (−i kz) ̂ z × E 02 . (22) 

ote that the amplitudes E 01 and E 02 define the corresponding

lectric field values at the origin z = 0. The resulting total field is

iven by 

 (r ) = E 1 (r ) + E 2 (r ) , (23) 

 (r ) = H 1 (r ) + H 2 (r ) , (24) 

hile the corresponding time-avegared Poynting vector reads 

 

S (r , t) 〉 t = 

1 

2 

Re [ E (r ) × H 

∗(r ) ] = S 1 (r ) + S 2 (r ) + S int (r ) , (25) 

here 

 1 (r ) = 

k ′ 
2 ω μ0 

exp (−2 k ′′ z) | E 01 | 2 ˆ z (26) 

nd 

 2 (r ) = − k ′ 
2 ω μ0 

exp (2 k ′′ z) | E 02 | 2 ˆ z (27) 

re the Poynting vectors of either wave 1 or wave 2 as if the other

ave did not exist, and 

 

int (r ) = 

k ′′ 
ω μ0 

Im 

[
exp (−2i k ′ z) E 02 · E 

∗
01 

]
ˆ z (28) 

s the interference term. 

The divergence of 〈 S (r , t) 〉 t is given by 

 · 〈 S (r , t) 〉 t = − k ′ k ′′ 
ω μ0 

exp (−2 k ′′ z) | E 01 | 2 − k ′ k ′′ 
ω μ0 

exp (2 k ′′ z) | E 02 | 2 

− 2 k ′ k ′′ 
ω μ0 

Re 
[
exp (−2i k ′ z) E 02 · E 

∗
01 

]
= −ω 

2 

ε ′′ | E (r ) | 2 . (29) 

he last equality is a general fact for a non-magnetic medium, see,

.g., [34] . Since we are dealing with a passive medium, it is easily

erified that the localized absorption is always non-negative: 
∇ · 〈 S (r , t) 〉 t ≥ 0 . (30) S
Unlike the relatively simple situation in Section 3.2 , the above

quations are rich with new physics. To begin with, the first two

erms on the right-hand side (RHS) of Eq. (25) describe long-

ange transport of electromagnetic energy in the form of counter-

ropagating components. If the host medium is nonabsorbing

 k ′′ = 0) then the interference term on the RHS of Eq. (25) vanishes,

nd we simply have 

 S (r , t) 〉 t = S 1 (r ) | k ′′ =0 + S 2 (r ) | k ′′ =0 . (31) 

urthermore, in the case | E 01 | 
2 = | E 02 | 

2 we have the classical case

f a standing wave transporting no electromagnetic energy what-

oever [3] . 

The interference term (28) does not describe long-range trans-

ort of electromagnetic energy since it oscillates with a period Z

qual to half the wavelength, 

 = 

λ

2 

, (32) 

ith 

= 

2 π

k ′ , (33) 

nd the amplitude of these oscillations is completely indepen-

ent of z . According to Eq. (29) , the corresponding oscillations in

 · 〈 S (r , t) 〉 t redistribute (modulate) absorption within each Z -long

egment of the z -axis. However, the total amount of energy ab-

orbed within each such segment remains unchanged since 
 z+ Z 

z 

d z exp (−2i k ′ z) ≡ 0 . (34) 

An instructive example of Eq. (29) is the case E 01 = E 02 = E 0 .

hen the interference term (28) has maxima at z = Nλ/ 2 ( N = 0,

±1, ±2, ... ) called the antinodes of the total electric field 

 (r ) = 2 cos (kz) E 0 , (35) 

hat is at z values corresponding to maximal values of | E ( r )| 2 . Inter-

stingly (and perhaps not surprisingly), the same situation occurs

n the classical demonstration of a standing wave [1] wherein the

edium is nonabsorbing, yet the electric field stimulates a photo-

hemical reaction in the otherwise transparent photographic emul-

ion. 

Given the actual physical existence of the interference term in

he case k ′′ � = 0, there are three ways to assess its importance. They

an be called local, volumetric, and stochastic. To simplify the anal-

sis, we again assume that E 01 = E 02 = E 0 . First, the independence

f the amplitude of the interference term (28) of z suggests that

his term can be neglected locally whenever 

xp (2 k ′′ | z| ) 
 1 . (36) 

epending on the smallness of k ′′ , this condition may or may not

e demanding in terms of the requisite z . The same condition im-

lies that | E 2 ( r )| 
 | E 1 ( r )| or vice versa, so the interference can be

eglected along with one of the incoming waves. 

To pursue the volumetric approach, let us consider the amount

f electromagnetic energy W absorbed per unit time by a cylindri-

al volume having its rotational axis along the z -axis and its flat

ases at z = −Z 0 / 2 and z = Z 0 / 2 ( Fig. 3 ). Obviously, 

 = S 
[ 〈 S (r , t) 〉 t | z= −Z 0 / 2 

− 〈 S (r , t) 〉 t | z= Z 0 / 2 
]

· ˆ z , (37) 

here S is the area of the flat bases of the cylindrical volume. It

s easily seen that the contribution to W of the first two terms on

he RHS of Eq. (25) is given by 

 1 , 2 = S | E 0 | 2 k ′ 
2 ω μ0 

[
exp (k ′′ Z 0 ) − exp (−k ′′ Z 0 ) 

]
≥ 0 . (38) 

t is also clear that the interference term (28) is now equal to 

 

int (r ) = − k ′′ 
sin (2 k ′ z) | E | 2 ˆ z , (39) 
ω μ0 
0 
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Fig. 3. Electromagnetic energy budget of a cylindrical volume. 
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and so its contribution to W always satisfies the inequality ∣∣W 

int 
∣∣ ≤ S | E 0 | 2 2 k ′′ 

ω μ0 

. (40)

Comparison of Eqs. (38) and (40) shows that 

k ′ Z 0 
 1 ⇒ 

∣∣W 

int 
∣∣ � W 1 , 2 , (41)

irrespective of k ′′ Z 0 . 
Finally, the gist of the stochastic approach is to assume that the

boundaries −Z 0 / 2 and Z 0 / 2 of the cylindrical volume in Fig. 3 are

not well defined and fixed but rather fluctuate over time ran-

domly with an amplitude of the order of λ. This makes the

product k ′′ ( ωμ0 ) 
−1 | E 0 | 

2 sin (2 k ′ z ) at either base of the cylindrical

volume a random variable fluctuating between − k ′′ ( ωμ0 ) 
−1 | E 0 | 

2 

and + k ′′ ( ωμ0 ) 
−1 | E 0 | 

2 , with a long-term average of zero. Obviously,

the contribution (38) is virtually immune to this kind of averaging

unless absorption in the host medium is extremely strong. Thus

the stochastic approach allows one to ignore the interference term

on the RHS of Eq. (25) in radiation budget applications involving

typical experimental uncertainties. 

4. Superposition of plane and spherical waves 

Another fundamental solution of the macroscopic Maxwell

equations in free space is an incoming or outgoing spherical wave.

As was the case with co-propagating plane waves, superposing two

incoming or two outgoing spherical waves would result in an-

other incoming or outgoing wave with little new physics. Super-

posing incoming and outgoing spherical waves is more instructive

and can be analyzed along the lines of the preceding section. A

more consequential scenario is a superposition of a plane and a

spherical wave. A practically important example is the interference

of a plane incident wave and the outgoing spherical wave gener-

ated in the far field of a finite scattering object. Far-field scattering

has been studied extensively in the case of a nonabsorbing host

medium [6–20] . However, allowing for nonzero absorption in the

host medium results in added mathematical complexity as well as

added physics and will therefore be analyzed in this section. 

4.1. Far-field scattering by a finite object 

Let us consider an impressed [35] homogeneous plane wave

given by 

E 

inc (r ) = exp (i k ̂  k · r ) E 0 , (42)

H 

inc (r ) = 

k 

ω μ0 

exp (i k ̂  k · r ) ̂  k × E 0 , (43)

where k is in general complex and “inc” stands for “incident”. The

presence of a foreign object (a “particle”) in the otherwise ho-

mogeneous host medium modifies the total electromagnetic field

which can now be represented as a superposition of the impressed

incident and object-caused scattered (“sca”) fields [35] : 
E (r ) = E 

inc (r ) + E 

sca (r ) , (44) f
 (r ) = H 

inc (r ) + H 

sca (r ) . (45)

et us assume that the particle is centered at the origin O of the

eference frame. A fundamental consequence of the so-called radi-

tion condition at infinity [ 30 , 36 , 37 ] is that at a large distance from

he object in its far zone, the scattered field becomes an outgoing

ransverse spherical wave given by [ 26 , 35 ] 

 

sca (r ) = 

exp (i kr) 

r 
E 1 ( ̂ r ) , (46)

 

sca (r ) = 

k 

ω μ0 

exp (i kr) 

r 
ˆ r × E 1 ( ̂ r ) , (47)

here ˆ r = r /r is the unit vector defining the scattering direction

nd 

ˆ 
 · E 1 ( ̂ r ) = 0 . (48)

hus the total field becomes the superposition of a plane and a

pherical wave: 

 (r ) = exp (i k ̂  k · r ) E 0 + 

exp (i kr) 

r 
E 1 ( ̂ r ) , (49)

 (r ) = 

k 

ω μ0 

exp (i k ̂  k · r ) ̂  k × E 0 + 

k 

ω μ0 

exp (i kr) 

r 
ˆ r × E 1 ( ̂ r ) . (50)

ote that the scattered spherical wavefront and the incident

lane wave are co-propagating in forward-scattering directions, i.e.,

hen 

ˆ r is equal or very close to ˆ k , and counter-propagating at

ackscattering directions, i.e., when 

ˆ r is equal or very close to − ˆ k . 

If the amplitude E 1 ( ̂ r ) can be found as a computer solution of

he macroscopic Maxwell equations (e.g., Ref. [38–40] ) then the

ormulas (49) and (50) are self-sufficient in that they enable the

umerical calculation of any far-field optical observable in the form

f a second moment in the field. Yet it is instructive to do as much

ork analytically as possible. This is especially true of the forward-

cattering and backscattering directions in the far zone since then

e have pairs of plane and quasi-plane wavefronts causing extinc-

ion and quasi-standing wave effects, respectively. To analyze these

ffects we will need a generalization of the Jones lemma (other-

ise known as the Saxon decomposition) [ 27 , 28 ] to the case of an

bsorbing host medium. We will discuss this generalization in the

ollowing subsection. 

.2. Generalized Jones lemma 

The classical Jones lemma is typically formulated as follows

3] : 
 

4 π
d ̂

 r f ( ̂ r ) exp (i a ̂ r · ˆ k ) → 

a →∞ 

2 π

i a 
[f ( ̂  k ) exp (i a ) − f (− ˆ k ) exp (−i a )] , 

(51)

here f ( ̂ r ) is a sufficiently smooth function (at least, has a con-

inuous second derivative), the integration is performed over the

nit sphere of outgoing directions ˆ r , and a is real and positive. In

he far-field scattering problem formulated in the preceding sub-

ection, a = kr . The proof of the Jones lemma in Ref. [3] is rather

lementary but employs a two-dimensional form of the method of

tationary phase. That approach was probably inherited from the

riginal discussion by Jones [27] wherein the lemma is formulated

n a more general setting by allowing the integration domain to

over only part of the unit sphere. This makes certain spherical co-

rdinate systems for ˆ r preferable over the others. However, such a

roof is needlessly complicated in application to the integral (51) . 

Let us define the spherical coordinate system ( r , θ , ϕ) such that

he direction θ = 0 is along ˆ k . This is a critical simplification af-
orded by the symmetry of the integration domain. Then 
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4 π
d ̂

 r f ( ̂ r ) exp (i a ̂ r · ˆ k ) = 

∫ π

0 

d θ sin θ exp (i a cos θ ) 

∫ 2 π

0 

d ϕ f (θ, ϕ )

= 

∫ 1 

−1 

d ηg(η) exp (i aη) , (52) 

here η
�= cos θ and 

(η) 
�= h ( arccos η) , h (θ ) 

�= 

∫ 2 π

0 

d ϕ f (θ, ϕ) . (53) 

Evidently, the smoothness of h ( θ ) is not worse than that of f ( θ ,

), and so is the smoothness of g ( η) for | η| < 1 since 

 

′ (η) = −h 

′ ( arccos η) √ 

1 − η2 
. (54) 

he points η = ±1 need special consideration. Let us extend the

ange of θ to negative values according to f (−θ, ϕ) 
�= f (θ, 2 π − ϕ)

nd further periodically with a period of 2 π . This extension does

ot affect the smoothness of f , i.e., f is smooth for any real θ . Then

q. (53) implies that h ( −θ ) ≡ h ( θ ) and h ( π − θ ) ≡ h ( π + θ ), i.e., h

s symmetric with respect to both θ = 0 and θ = π . Hence, all ex-

sting odd-order derivatives of h vanish at these special points. In

articular, using the L’Hôpital’s rule we obtain 

 

′ (1) = −h 

′′ (0) , g ′ (−1) = h 

′′ (π ) . (55) 

We can extend this analysis to higher derivatives, but we

kip immediately to the most practically relevant application,

hat is, infinitely smooth functions f ( ̂ r ) and h ( θ ) having contin-

ous derivatives of any order. Then h ( θ ) can be expanded into

 Fourier series that, owing to the symmetry properties, includes

nly cosines: 

 (θ ) = 

∞ ∑ 

n =0 

h n cos (nθ ) = 

∞ ∑ 

n =0 

h n T n ( cos θ ) , (56) 

here T n are Chebyshev polynomials [41] . Moreover, Eq. (56) uni-

ormly approximates h ( θ ) and its derivatives of any order. Hence,

he values of g ( η) and its derivatives of any order at η = ±1 can

e obtained from this series and are finite. The same result can be

btained by expanding f ( θ , ϕ) into spherical harmonics (see, e.g.,

ef. [9] ) which are expressed in Legendre polynomials of cos θ . In

ther words, η is overall a more natural variable than θ for the de-

cription of smooth functions on the unit sphere. Instead of special

oints (poles) for θ we have simple interval endpoints for η. 

Going back to Eq. (52) , the asymptotic expansion can be ob-

ained via integration by parts, which is a powerful approach to

btain such expansions [9 , 20 , 25] : 

 1 

−1 

d ηg(η) exp (i aη) = 

g(η) exp (i aη) 

i a 

∣∣∣∣
1 

−1 

− g ′ (η) exp (i aη) 

(i a ) 
2 

∣∣∣∣
1 

−1 

+ 

1 

(i a ) 
2 

∫ 1 

−1 

d ηg ′′ (η) exp (i aη) 

= 

1 

i a 
[ g(1) exp (i a ) − g(−1) exp (−i a ) ] 

+ O ( a −2 ) , (57) 

here the remaining integral is bounded (independently of a )

ince ∫ 1 

−1 

d ηg ′′ (η) exp (i aη) 

∣∣∣∣ ≤
∫ 1 

−1 

d η
∣∣g ′′ (η) 

∣∣, (58) 

hile the continuity of h ′′ ( θ ) ensures integrability of | g ′′ ( η)| even if

he latter diverges at η = ±1. Recalling that g(±1) = 2 π f (± ˆ k ) , one

an see that Eq. (57) is exactly the Jones lemma (51) , but with an
xplicit remainder. m
For infinitely smooth g ( η) we can easily obtain an asymptotic

eries of arbitrary order N via further integration by parts: 

 1 

−1 

d ηg(η) exp (i aη) = 

1 

i a 

N ∑ 

n =0 

1 

(i a ) 
n [ g 

(n ) (1) exp (i a ) 

− g (n ) (−1) exp (−i a )] + O ( a −N−2 ) , (59) 

here g ( n ) denotes the n -th derivative of g . This result would be

ard to obtain without the transformation (52) . 

Let us now extend the Jones lemma to a complex a 
�= a ′ + i a ′′ .

ll the above formalism remains valid with the exception of the

stimate of Eq. (58) which should be modified into ∫ 1 

−1 

d ηg ′′ (η) exp (i aη) 

∣∣∣∣ ≤ exp 

∣∣a ′′ ∣∣ ∫ 1 

−1 

d η
∣∣g ′′ (η) 

∣∣. (60) 

he generalized Jones lemma is then 

 

4 π
d ̂

 r f ( ̂ r ) exp (i a ̂ r · ˆ k ) = 

∫ 1 

−1 

d ηg(η) exp (i aη) 

= 

exp (i a ) 

i a 

[
g(1) + O ( a −1 ) 

]
− exp (−i a ) 

i a 

[
g(−1) + O ( a −1 ) 

]
, (61) 

r, including the higher orders, 

 1 

−1 

d ηg(η) exp (i aη) = 

exp (i a ) 

i a 

[ 

N ∑ 

n =0 

g (n ) (1) 

(i a ) 
n + O ( a −N−1 ) 

] 

− exp (−i a ) 

i a 

[ 

N ∑ 

n =0 

g (n ) (−1) 

(i a ) 
n + O ( a −N−1 ) 

] 

. 

(62) 

While this result looks very similar to that for a real a , it has

n important new feature. Strictly speaking, we have obtained a

ompound asymptotic expansion [42] . The major problem then is

hat the remainder from one part on the RHS of Eq. (61) can be

arger than the main term of the other part, the factors exp ( ±i a )

erving as the principal disruptor. For example, even if g ( −1) = 0,

ne still cannot conclude that the term with g (1) in Eq. (61) will

rovide the largest contribution in the case of a large positive a ′′ .
hus, while being rigorous and applicable to any complex a , this

symptotic expansion is of limited use. 

Fortunately, not all values of a are relevant to practical appli-

ations. Going back to the scattering problem, a complex a corre-

ponds to a complex k , and k ′′ is responsible for absorption in the

ost medium. If absorption is relatively strong then one does not

eceive any measurable signal at a very distant point in the first

lace. To have any chance of defining meaningful far-field optical

bservables, we must assume a small k ′′ (to be specified below).

oreover, taking the far-field limit entails ignoring the terms that

re O ( a −1 ) relative to the main terms. Thus, we are restricting our-

elves to the first-order expansion, Eq. (61) , and hence want to en-

ure the smallness of both remainders. 

If a ′′ ≥ 0 (corresponding to the passive medium) then the sec-

nd remainder in Eq. (61) is the larger one, yet we want it to be

uch smaller than the first part of the expansion. The specific ex-

ression for the remainder can be obtained from Eq. (62) leading

o the condition 

exp (2 a ′′ ) 
| a | �

∣∣∣∣ g(1) 

g ′ (−1) 

∣∣∣∣ = 

∣∣∣∣ h (0) 

h 

′′ (π ) 

∣∣∣∣ �= 

1 

ξπ
, (63) 

here we used Eq. (55) . The most important consequence is that

his condition always fails for a large enough | a | if arg (a ) � = 0 . This
akes it impossible to perform a simple analysis based on a “large 
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enough” argument. However, Eq. (63) may still be valid in the nu-

merical sense for a wide range of | a |. Using the fact that x = ln β is

an approximate solution (within a factor of 1.6) to exp x = βx for β
> e and assuming that 0 ≤ arg (a ) � 1 , we can rewrite Eq. (63) as

follows: 

| a | � − ln [ 2 ξπ arg (a ) ] 

2 arg (a ) 
. (64)

Actually, Eq. (64) is a more stringent condition due to the sharp

increase of the left-hand side of Eq. (63) near this boundary value.

More accurate bounds can be obtained by using x = ln ( βln β) in-

stead of x = ln β . 

On the lower side of the range of | a |, we need | a | 
 ξπ , but

considering the smallness of the remainder at θ = 0 we addition-

ally require | a | 
 ξ 0 , where 

ξ0 
�= 

∣∣∣∣h 

′′ (0) 

h (0) 

∣∣∣∣. (65)

For scattering problems with f ( ̂ r ) being a scattering amplitude,

typically ξ 0 ≥ ξπ and ξ0 ∼ [ max (| k | D, 1)] 2 , where D is the largest

particle dimension. Thus, the condition | a | 
 ξ 0 describes the

well-known far-field limit: | k | r 
 1 and r 
 | k | D 

2 [26] . 

Still, not to restrict our discussion, we define ξ
�= max ( ξ0 , ξπ )

and obtain the final condition for the validity of the generalized

Jones lemma: 

ξ � | a | � − ln [ 2 ξπ arg (a ) ] 

2 arg (a ) 
, (66)

where the latter asymptotic relation is due to the fact that

|ln (2 ξπ )| is much smaller than the typical | a | considered in the

context of the far-field limit (at least > ∼100) . In this range of | a | we

can employ Eq. (51) as is, with the only caveat that instead of the

asymptotic condition with arbitrary accuracy for a large enough

real a we have an approximation with “good” numerical accuracy

in the specified range of | a |. The specific estimates for the remain-

der are discussed above. 

Finally, let us discuss the required smallness of absorption.

Eq. (66) implies that 

2 ξ arg (a ) � ln 

(
ξ

ξπ

)
, (67)

where “�” should mean at least several orders of magnitude to

make a reasonably useful range of | a | in Eq. (66) . The RHS can be

significant for large scatterers, but that is necessarily accompanied

by a large ξ . Hence, in all cases we have arg (a ) � 1 , in agreement

with the previous assumptions. 

Under these conditions we can replace a by a ′ in the denomina-

tor of the RHS of Eq. (51) . Thus, we have rigorously substantiated

the approximate formula that was “naively” derived in Ref. [26] by

applying the original Jones lemma to a function which “weakly”

depends on a through the factor exp (−a ′′ ˆ r · ˆ k ) : ∮ 
4 π

d ̂

 r f ( ̂ r ) exp (i a ̂ r · ˆ k ) = 

∮ 
4 π

d ̂

 r f ( ̂ r ) exp (−a ′′ ˆ r · ˆ k ) exp (i a ′ ˆ r · ˆ k ) 

≈ 2 π

i a ′ [ f ( ̂
 k ) exp (−a ′′ ) exp (i a ′ ) 

− f (− ˆ k ) exp (a ′′ ) exp (−i a ′ )] 

= 

2 π

i a ′ [ f ( ̂
 k ) exp (i a ) − f (− ˆ k ) exp (−i a )] , 

(68)

where “≈” denotes that the result is no longer asymptotically cor-

rect in the limit | a | → ∞ . Formally Eq. (68) is equivalent to the gen-

eralized Saxon’s decomposition of a plane wave into an incoming

and outgoing spherical waves [26] : 

ˆ i2 π ˆ ˆ 
exp (i a k · ˆ r ) ≈
a ′ [ δ( k + ̂

 r ) exp( −i a ) −δ( k − ˆ r ) exp(i a ) ] , (69) t
here δ( ̂ r ) is the solid-angle delta function. 

.3. Energy budget of a spherical volume centered at the scattering 

bject 

To discuss analytical implications of Sections 4.1 and 4.2 , let us

valuate the electromagnetic energy budget of a spherical volume

 centered at the scattering object. We assume that the radius r

f this volume is in the far zone of the scatterer yet satisfies the

riteria of applicability of the approximate Jones lemma (68) , i.e. 

xp (2 k ′′ r) � k ′ r, (70)

hich is a simplification of Eq. (63) assuming ξπ ∼ 1 . The time-

veraged Poynting vector at the boundary S of V can be repre-

ented as the sum of three terms: 

 S (r , t) 〉 t = S inc (r ) + S sca (r ) + S int (r ) , r ∈ S, (71)

here 

 

inc (r ) = 

1 

2 

Re { E 

inc (r ) × [ H 

inc (r )] ∗} 

= 

k ′ 
2 ω μ0 

exp( −2 k ′′ ˆ k · r ) | E 0 | 2 ˆ k (72)

nd 

 

sca (r ) = 

1 

2 

Re { E 

sca (r ) × [ H 

sca (r )] ∗} 

= 

k ′ 
2 ω μ0 

exp( −2 k ′′ r) 
r 2 

∣∣E 1 ( ̂ r ) 
∣∣2 

ˆ r (73)

re the Poynting vector components associated with the incident

nd the scattered field, respectively, while the interference term 

 

int (r ) = 

1 

2 

Re { E 

inc (r ) × [ H 

sca (r ) ] 
∗ + E 

sca (r ) × [ H 

inc (r )] ∗} (74)

escribes the “interaction” between the incident and scattered

elds. 

The net time-averaged flow of electromagnetic power entering

 (i.e., being absorbed inside V ) is given by 

 

abs = −
∫ ∫ 
� 

S 

d 

2 r 〈 S (r , t) 〉 t · ˆ r = −r 2 
∮ 

4 π
d ̂

 r 〈 S (r ̂ r , t) 〉 t · ˆ r . (75)

ccording to Eq. (71) , W 

abs can be written as a combination of

hree terms [43] : 

 

abs = W 

inc − W 

sca + W 

int , (76)

here 

 

inc = −r 2 
∮ 

4 π
d ̂

 r S inc (r ̂ r ) · ˆ r , (77)

 

sca = r 2 
∮ 

4 π
d ̂

 r S sca (r ̂ r ) · ˆ r = 

k ′ exp( −2 k ′′ r) 
2 ω μ0 

∮ 
4 π

d ̂

 r | E 1 ( ̂ r ) | 2 , (78)

nd 

 

int = −r 2 
∮ 

4 π
d ̂

 r S int (r ̂ r ) · ˆ r . (79)

To compute W 

inc and W 

int , we again direct the z -axis of a

pherical coordinate system along ˆ k . Then 

 

inc = −πk ′ r 2 
ω μ0 

| E 0 | 2 
∫ 1 

−1 

d ηηexp( −2 k ′′ rη) 

= 

πk ′ r 
ω μ0 k ′′ 

[
cosh (2 k ′′ r) − sinh (2 k ′′ r) 

2 k ′′ r 

]
| E 0 | 2 , (80)

here, as before, η = cos θ . Also, tedious algebra and application of
he generalized Jones lemma [Eq. (61)] yields 
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int = − 1 

2 ω μ0 

∮ 
4 π

d ̂

 r Re 

[ 
k ∗

(
E 0 · E 

∗
1 ( ̂ r ) exp [i r(kη − k ∗)] 

+ exp [i r(k − k ∗η)] { η[ E 

∗
0 · E 1 ( ̂ r )] − ( ̂ r · E 

∗
0 )[ ̂  k · E 1 ( ̂ r )] } 

)] 
≈ − π

ω μ0 

Im 

{
exp (−2 k ′′ r) 

[
E 0 · E 

∗
1 ( ̂

 k ) 
k ∗

k 
− E 

∗
0 · E 1 ( ̂  k ) 

]

−exp (−2i k ′ r) E 0 · E 

∗
1 (− ˆ k ) 

k ∗

k 
− exp( 2i k ′ r) E 

∗
0 · E 1 (− ˆ k ) 

}
= W 

ext + W 

bi , (81) 

here 

 

ext ≈ 2 π

ω μ0 

exp( −2 k ′′ r) 
{

Im [ E 1 ( ̂  k ) · E 

∗
0 ] + 

k ′′ 
k ′ Re [ E 1 ( ̂  k ) · E 

∗
0 ] 

}

≈ 2 π

ω μ0 

exp( −2 k ′′ r) Im [ E 1 ( ̂  k ) · E 

∗
0 ] (82) 

s the “extinction” term (forward-scattering interference) and 

 

bi ≈ 2 π

ω μ0 

k ′′ 
k ′ 

{
k ′′ 
k ′ Im [ exp (2i k ′ r) E 1 (−ˆ k ) · E 

∗
0 ] 

− Re [ exp (2i k ′ r) E 1 (− ˆ k ) · E 

∗
0 ] 

}

≈ − 2 π

ω μ0 

k ′′ 
k ′ Re [ exp (2i k ′ r) E 1 (− ˆ k ) · E 

∗
0 ] (83) 

s the “backscattering interference” term. In Eqs. (82) and

83) the first ≈ uses only the smallness of k ′′ implying k ∗/ k ≈
 − 2i k ′′ / k ′ − 2( k ′′ / k ′ ) 2 [cf. Eq. (68) ], while the second ≈ assumes

omparable magnitude of the corresponding real and imaginary

arts. The latter assumption is actually questionable. For W 

bi the

hase of the corresponding complex value depends on r , thus ei-

her imaginary or real parts may vanish – then the assumption is

alid only in the stochastic sense discussed below. For W 

ext the

hase of the corresponding complex value is large for significantly

bsorbing or large scatterers. As a counterexample, let us consider

he simplest case of a Rayleigh sphere of radius ρ such that k ′ ρ �
, for which [6] 

 1 ( ̂  k ) = k 2 ρ3 m 

2 − 1 

m 

2 + 2 

E 0 , (84) 

here m is the relative refractive index. Here the radiative correc-

ion of O ( k 5 ρ6 ) is neglected, although it may become significant

or very weak absorption (then W 

sca is comparable to W 

abs ). If we

ake a purely real m , the second summand in curly brackets in

q. (82) is exactly half of the first term and cannot be neglected.

o finish the introduction of W 

inc and W 

bi , we stress once again

hat the whole separation of W 

int into two parts is possible only

hen Eq. (70) is valid. 

It is easily verified that in the limit k ′′ → 0, W 

inc and W 

bi van-

sh, and we thereby recover the classical results of the scattering

heory valid for a nonabsorbing host medium [6 , 12 , 17] . Further-

ore, the energy budget of a large (“far-field”) volume containing

he particle becomes independent of the size and shape of the vol-

me, which allows one to define the classical scattering, extinction,

nd absorption cross sections. 

If k ′′ > 0 then both W 

inc and W 

bi provide nonzero contributions

o W 

abs . If k ′′ / k ′ � exp( −2 k ′′ r ) then W 

bi can be neglected in com-

arison with W 

ext . This condition is commonly satisfied whenever

q. (70) holds, since 

xp (2 k ′′ r) � k ′ r ⇒ exp [2 k ′′ (r/ 2)] � k ′ r 
exp (k ′′ r) ≤

k ′ 
k ′′ . (85) 

n other words, the suitable range of r satisfying both far-field con-
itions and Eq. (70) , which may span a few orders of magnitude, a
s reduced by not more than a factor of two. Still, for r at the

ight boundary of applicability of Eq. (70) W 

bi can become com-

arable to and even exceed W 

ext . But then, by analogy with the

tochastic approach outlined in Section 3.3 , we can exploit the fact

hat W 

bi depends on r only via the complex exponential factor

xp(i2 k ′ r ). Then assuming that r fluctuates randomly with an un-

ertainty range of about λ makes W 

bi a random variable with a

ero average. Of course, the same outcome would result from the

ssumption that the scattering particle wobbles randomly around

 . Again, all other contributions to W 

abs are virtually immune to

his “stochastization” procedure. 

As to the contribution associated with the incident wave, we

ave in the case k ′′ r � 1 

 

inc = 

4 π

3 

r 3 
k ′ k ′′ 
ω μ0 

| E 0 | 2 { 1 + O [ (k ′′ r) 2 ] } , (86) 

hich can potentially be much smaller than W 

ext . In the opposite

imit k ′′ r 
 1, 

 

inc ≈ πk ′ r 
2 ω μ0 k ′′ 

exp (2 k ′′ r) | E 0 | 2 (87) 

nd inevitably dwarfs W 

sca and W 

int in Eq. (76) , thereby making all

onsequences of electromagnetic scattering essentially unobserv- 

ble. More specifically, already at k ′′ r = 1 / 2 

W 

ext 

W 

inc 
= 

1 

4 r 2 
C (0) 

ext = O 

(
max (kD , 1) 

kr 

)2 

, (88) 

.e., the ratio is limited by a square of the value that is assumed �
 according to the far-field limit. Here we used the standard defi-

ition of the extinction cross section for a non-absorbing medium

12 , 17] 

 

(0) 
ext = 

4 π

k ′ 
Im [ E 1 ( ̂  k ) · E 

∗
0 ] 

| E 0 | 2 
(89) 

nd the fact that it is proportional to the geometrical cross sec-

ion for particles with the largest dimension D > λ or is limited by

 ( λ2 ) otherwise (the particle absorption only weakly affects C (0) 
ext 

ince k ′′ D � 1 [44] ). 

Potential non-negligibility of W 

bi implies more fundamental

imitations on the measurability of the radiation budget of the vol-

me V . Indeed, placing a detector of light such that it faces the

ackscattered wavefront can effectively block the incident wave-

ront and thereby destroy the backscattering interference contri-

ution altogether. While measuring | E 1 (− ˆ k ) | 2 is possible (at least,

lose to the exact backscattering direction), it is not sufficient to

nfer W 

bi due to the unknown phase. However, even if the above-

entioned stochastic approach is not invoked, W 

bi is only signifi-

ant for large k ′′ r , when the whole measurement is dominated by

 

inc [Eq. (87)] making it impossible to discriminate other contri-

utions in view of realistic experimental errors. 

. Discussion 

There are obvious analogies between the results of

ections 3 and 4 . Indeed, at a large distance from the particle, the

cattered field becomes an outgoing spherical wave with a locally

uasi-plane wavefront. As a consequence, W 

ext can be viewed as

escribing the interference of the incident and co-propagating

cattered waves, whereas W 

bi can be interpreted as quantifying

he interference of the incident and counter-propagating scattered

aves. It is then not surprising that Eqs. (18) and (82) are similar

nd describe contributions that decrease exponentially with r and

urvive the limit k ′′ → 0. Eqs. (28) and (83) are similar as well

nd describe contributions that vanish in a nonabsorbing host

edium, are oscillating functions of r , and can be eliminated by
pplying the stochastization procedure. 
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Despite these similarities, it is imperative to remember that the

results of Section 4 are based on the generalization of the Jones

lemma that is not asymptotically valid in the limit | k | r → ∞ . There-

fore, it is the substitution of Eqs. (49) and (50) in the primordial

definition (14) coupled with Eq. (75) that needs to be used in or-

der to evaluate numerically the energy budget of the volume V

bounded by the far-field surface S . Even if the generalized Jones

lemma were asymptotically valid, Eq. (75) could not be used to de-

fine the scattering and absorption cross sections in any meaningful

way as quantities independent of the size and shape of the en-

closing volume V . Even the incident-field contribution to the total

energy budget must be explicitly computed for the given volume

geometry. The case of a far-field volume not encompassing the par-

ticle is even more revealing. Indeed, in the case of a nonabsorbing

host medium its electromagnetic energy budget must be indepen-

dent of the presence of the scattering object and trivial (i.e., identi-

cally equal to zero). Yet if k ′′ > 0, it becomes explicitly dependent

on the volume’s geometry, on the scattering object, and on their

relative configuration with respect to the incident wave. There is

still hope that under some conditions the scatterer and volume

properties can be partially decoupled, as is seen in Eqs. (78) and

(82) . We leave such an analysis in application to realistic measure-

ment configurations for further research. 

Finally, we note that W 

ext defined by Eq. (82) is a directly mea-

surable quantity using the experimental configuration discussed in

Section 13.1 of Ref. [17] . However, it requires the radiometer to be

large enough and not perfectly circular to average out the oscil-

lations of the extinction field over its entrance area [45] . More-

over, the rigorous mathematical analysis of such measurements in

an absorbing medium has not yet been performed, although we do

not foresee any principal differences if the absorption is sufficiently

small (as is assumed in the derivation of W 

ext itself). 
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