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We use the volume integral equation formulation of
frequency-domain electromagnetic scattering to settle the
issue of additivity of the extinction, scattering, and absorp-
tion cross sections of a fixed tenuous group of particles. We
show that all the integral optical cross sections of the
group can be obtained by summing up the corresponding
individual-particle cross sections, provided that the single-
scattering approximation applies.

https://doi.org/10.1364/OL.44.000419

Ever since the publication of the monumental text by van de
Hulst [1], additivity of the integral optical cross sections of
particles forming a small group has typically been taken for
granted. However, the arguments in Ref. [1] as well as in
Refs. [2–4] are fragmentary as well as qualitative. Importantly,
they invoke statistical randomness of particle positions in the
group as a necessary condition of additivity. More recently, it
was shown that randomness is not required for additivity of the
individual extinction cross sections [5,6], yet it was still invoked
in Refs. [5–7] to demonstrate the additivity of the scattering
cross sections. Most recently [8], this issue was analyzed on
the basis of the superposition T -matrix formulation of acoustic
scattering by a multi-particle cluster [9], and it was concluded
that randomness was not needed for the individual scattering
cross sections to be additive.

Given these somewhat diverging accounts and the great
practical importance of this subject, the objective of this
Letter is to settle the issue of computing the optical cross
sections for an N -particle group in the framework of fre-
quency-domain electromagnetic scattering theory. Our analysis
is explicitly based on the single-scattering approximation (SSA)
of the volume integral equation (VIE) formulation. We discuss
under what specific conditions the integral optical cross sec-
tions of the N particles are additive and how our conclusions
compare with the results of the previous studies.

Throughout the Letter, we assume (and suppress) the
monochromatic exp�−iωt� time dependence of all fields, where
i � ffiffiffiffiffi

−1
p

, ω is the angular frequency, and t is time. Consider a
fixed N -particle group embedded in an unbounded host

medium that is assumed to be homogeneous, linear, isotropic,
non-magnetic, and perfectly nonabsorbing (Fig. 1). The
particles are made of nonmagnetic isotropic materials and,
in general, can have edges, corners, and intersecting internal
interfaces [10]. The total field everywhere in the three-dimen-
sional space R3 is represented as the sum of the impressed
incident (“inc”) field and the scattered (“sca”) field [11]:

E�r� � Einc�r� � Esca�r�, r ∈ R3, (1)

where the position vector r connects the common origin O and
the observation point.

The total field satisfies the following VIE [10]:

E�r� � Einc�r� � ω2μ0

Z
R3

d3r 0G
↔
�r, r 0� · P�r 0� r ∈ R3,

(2)

where P�r�≜�ε�r� − ε1�E�r� is the polarization density; ε�r� is
the electric permittivity everywhere in space and ε1 is its (con-
stant and real) value in the host medium; μ0 is the magnetic

permeability of a vacuum; and G
↔
�r, r 0� is the free-space dyadic

Green’s function. It is clear that P�r� vanishes unless r ∈ ∪iV i,
where V i is the volume occupied by particle i (Fig. 1). In writ-
ing Eq. (2), we assume an exclusion volume (or principal value)

to rigorously handle the strong singularity of G
↔
�r, r 0� at r � r 0

[10]. This is not essential for the following, since we will discuss
only the influence of one particle on another.

For the purpose of introducing integral optical cross sections,
the incident field will often be a homogeneous plane electromag-
netic wave propagating in the direction of the unit vector n̂inc:

Einc�r� � exp�ik1n̂inc · r�Einc
0 Einc

0 · n̂inc � 0, (3)

where k1 � ω
ffiffiffiffiffiffiffiffiffi
ε1μ0

p
is the real-valued wave number in the host

medium. Defining the wave impedance in the host medium as
η �

ffiffiffiffiffiffiffiffiffiffiffi
μ0∕ε1

p
, we have for the corresponding magnetic field

Hinc�r� � η−1 exp�ik1n̂inc · r�n̂inc × Einc
0 : (4)

However, several results below are valid for an arbitrary incident
field as long as it is a solution of the free-space macroscopic
Maxwell equations.
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In what follows, we always assume that N is sufficiently
small and interparticle separations are sufficiently large, so that
the field inside each particle is the same as it would be in the
absence of all the other particles, i.e.,

∀i: E�r��Einc�r��ω2μ0

Z
V i

d3r 0G
↔
�r,r 0� ·P�r 0� r∈V i: (5)

This is the very gist of the SSA [6,7]. The use of Eq. (5) as a
rigorous definition serves to avoid other (often vague and/or
ambiguous) notions of the SSA employed in the literature.
The neglected cross influence of particles on each other is
described by the integrals over V j�j ≠ i� in Eq. (2).

Let us also assume that the observation point is located in
the far zones of all the N particles. Then the cumulative field
scattered by the N -particle group at the observation point is
given by [6]

Esca�r� �
XN
i�1

g�ri�A
↔

i�r̂i, n̂inc� · Einc�Ri�, (6)

where the plane-wave incident field is given by Eq. (3). The
vector notation used in this formula is explained in Fig. 2,
ri � jrij, and r̂i � ri∕ri defines the corresponding scattering

direction. Furthermore, g�r� � exp�ik1r�∕r, and A
↔

i�r̂i, n̂inc�
is the far-field scattering dyadic of particle i centered at its
individual origin Oi. The SSA implies that this dyadic is
not affected by the presence of all the other particles.

The integral optical cross sections of the entire group are com-
puted by integrating the Poynting vector over a closed surface
enclosing the group [12]. Since the host medium is nonabsorb-
ing, the result must be independent of the choice of the integra-
tion surface. Therefore, we simplify the problem by considering
a spherical surface S centered at the common origin O and such
that its radius tends to infinity: r → ∞ (Fig. 2). Then the scat-
tered field is an outgoing spherical wave centered at O [6]:

Esca�r� �
r→∞

g�r�Esca
1 �r̂�, Esca

1 �r̂� · r̂ � 0: (7)

Note that the dimension of Esca
1 differs from that of the electric

field by a factor of length (the dimension of A
↔
). The correspond-

ing magnetic field is given by

Hsca�r� � η−1g�r�r̂ × Esca
1 �r̂�: (8)

In the case of plane-wave illumination,

Esca
1 �r̂� � A

↔
�r̂, n̂inc� · Einc

0 , (9)

where

A
↔
�r̂, n̂inc� �

XN
i�1

exp�iΔi�A
↔

i�r̂, n̂inc� (10)

is the scattering dyadic of the entire N -particle object,
and Δi � k1�n̂inc − r̂� · Ri.

The time-averaged Poynting vector S�r� can be represented
as the sum of three terms [12]:

S�r� � 1

2
RefE�r� × �H�r���g � Sinc�r� � Ssca�r� � Sext�r�,

(11)

where “Re” stands for “the real part of”; the asterisk stands for
“the complex-conjugate value of”;

Sinc�r�≜ 1

2
RefEinc�r� × �Hinc�r���g (12)

and
Ssca�r�≜ 1

2
RefEsca�r� × �Hsca�r���g (13)

are the Poynting vector components associated with the
incident and scattered fields, respectively; and

Sext�r�≜ 1

2
RefEinc�r� × �Hsca�r��� � Esca�r� × �Hinc�r���g

(14)

is the extinction term. At infinity,

Ssca�r� �
r→∞

1

2ηr2
jEsca

1 �r̂�j2r̂: (15)

In the case of plane-wave illumination,

Sinc�r� � I incn̂inc, I inc � 1

2η
jEinc

0 j2, (16)

where I inc is the intensity of the incident plane wave.
According to the Poynting theorem, the net time-averaged

flow of electromagnetic power entering the volume bounded by
the spherical surface S (i.e., being absorbed inside this volume)
is given by [13]

.

O r

V1

V2

Vi Vj

VN

.
VN − 1

Incident plane wave

Fig. 1. Electromagnetic scattering by an arbitrary fixed N -particle
group centered at the common origin O and subjected to the im-
pressed incident field in the form of a plane electromagnetic wave.

.O

Oi

.

ri

R i

Sr

.Observation point

Fig. 2. Vector notation used in Eq. (6).
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W abs � −∯ Sd
2rS�r� · r̂ ≥ 0: (17)

According to Eq. (11),W abs can be written as a combination of
three terms:

W abs � W inc −W sca �W ext, (18)

where

W inc � −∯ Sd
2rSinc�r� · r̂, (19)

W sca � ∯ Sd
2rSsca�r� · r̂, (20)

W ext � −∯ Sd
2rSext�r� · r̂: (21)

It is quite obvious that since the host medium is nonabsorb-
ing, W inc vanishes exactly for any free-space solution of the
macroscopic Maxwell equations. The other two contributions
are nonzero and, in the case of plane-wave illumination, can be
used to define the scattering and extinction cross sections as
follows:

C sca≜W sca∕I inc, C ext≜W ext∕I inc: (22)

The absorption cross section is then given by

C abs≜W abs∕I inc � C ext − C sca ≥ 0: (23)
In the case of plane-wave illumination, theW ext of an object

is directly expressed in terms of the object’s forward-scattering

dyadic A
↔
�n̂inc, n̂inc� [5–7]. Since all the Δi vanish identically in

the exact forward-scattering direction, we have from Eq. (10)

A
↔
�n̂inc, n̂inc� � P

iA
↔

i�n̂inc, n̂inc�. Hence,W ext � P
iW

ext
i , and

C ext �
XN
i�1

C ext
i : (24)

In other words, the extinction cross section of the fixed
N -particle object is equal to the sum of the individual-particle
extinction cross sections computed as if all the other particles
were absent [5,6,14]. Note that each C ext

i is independent of the
particle position Ri with respect to the common origin O.

Still considering the case of plane-wave illumination, let us
rewrite Eq. (20) as

W sca �
XN
i�1

W sca
ii �

XN
i�1

XN
j�≠i��1

W sca
ij , (25)

where

W sca
ij �

r→∞

1

2ηr2
∯ Sd

2rr̂ exp�i�Δi − Δj��

× f�A
↔

i�r̂, n̂inc� · Einc
0 � · �A

↔

j�r̂, n̂inc� · Einc
0 ��g: (26)

Recalling that

C sca
i � 1

I inc
1

2η

Z
4π
dr̂jA

↔

i�r̂, n̂inc� · Einc
0 j2 (27)

is the Ri-independent scattering cross section of particle i
in the absence of all the other particles [5–7], we have
W sca

ii � C sca
i I inc. The computation of the double sum in

Eq. (25) is not as straightforward. It can be shown, however,
that this double sum vanishes exactly. Indeed, let us rewrite
Eq. (20) in the volume-integral form:

W sca � ω

2

Z
R3

d3r Im�Esca�r� · P��r��, (28)

where “Im” stands for “the imaginary part of.” This represen-
tation is a direct consequence of the divergence theorem and
the Maxwell curl equations [15]. Obviously,

W sca �
XN
i�1

W sca
i , (29)

where

W sca
i � ω

2

Z
V i

d3r Im�Esca�r� · P��r��: (30)

In the framework of the SSA defined by Eq. (5), Esca�r� and
P�r� inside V i are the same for an isolated particle and for the
whole system. Hence, each W sca

i is an individual-particle con-
tribution computed in the absence of all the other particles.
Therefore, Eq. (29) expressly states the general additivity of
these contributions for any type of incident field.

In the case of plane-wave illumination, Eqs. (25) and (29)
must give identical results. We can therefore conclude that
W sca

i � W sca
ii for all i and that the double sum on the

right-hand side of Eq. (25) is exactly equal to zero. We thus
finally have

C sca �
XN
i�1

C sca
i : (31)

This outcome is consistent with the conclusion reached in
Ref. [8] for the case of acoustic scattering. Of course, the same
additivity property applies to the total absorption cross section:

C abs �
XN
i�1

C abs
i : (32)

Again, the individual-particle scattering and absorption cross
sections are independent of particles’ positions and of the
presence of all the other particles.

Note that by analogy with Eq. (28), we can re-write
Eqs. (17) and (21) as

W abs � −
ω

2

Z
R3

d3r Im�E�r� · P��r��, (33)

W ext � −
ω

2

Z
R3

d3r Im�Einc�r� · P��r��: (34)

Then the additivity of the individual-particle contributions
W ext

i to W ext for any incident field immediately follows from
Eq. (34), since in the framework of the SSA, all functions under
the integral are the same for an isolated particle and for the
whole N -particle group. We thus have for any incident field

W ext �
XN
i�1

W ext
i , (35)

where each W ext
i is computed as if all the other particles were

absent. In the case of plane-wave illumination, the ratio
W ext

i ∕I inc must give the position-independent extinction cross
section of particle i, and we thus recover Eq. (24). Proving the
general additivity of W abs

i ,
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W abs �
XN
i�1

W abs
i , (36)

and recovering Eq. (32) in the case of plane-wave illumination
are completely analogous using Eq. (33).

In summary, all our results are based on only two fundamen-
tal premises. First, the host medium has been assumed to be
perfectly nonabsorbing, since otherwise it would be impossible
to give meaningful definitions of the scattering and absorption
cross sections [13]. Second, we have relied explicitly on the SSA
of the VIE formulation according to which the internal field
inside each particle is the same as it would be in the absence
of all the other particles [Eq. (5)]. These two assumptions have
been sufficient to prove the general additivity of W ext

i , W sca
i ,

and W abs
i for a fixed multi-particle group and additivity of

C ext
i , C sca

i , and C abc
i in the case of plane-wave illumination.

Importantly, both types of additivity exactly reproduce energy
conservation in the case of a group of nonabsorbing particles.
Thus, fundamentally, the assumption of random particle posi-
tions is unnecessary (cf. Refs. [1–7]). The same conclusion was
reached in Ref. [8] for the case of acoustic scattering.

Legitimate as it may be mathematically, the ad hoc
assumption (5) may not be easy to interpret in terms of accept-
able cluster morphologies and compositions. Of course, among
the likely qualitative criteria of applicability of the SSA are the
following: (i) the number N of particles in the group is suffi-
ciently small, and (ii) interparticle distances are sufficiently
large. However, for practical purposes, it is highly desirable
to perform a thorough quantitative analysis of this issue,
e.g., by using the numerically exact superposition T -matrix
method [16,17]. Doing that can still be problematic, although
initial results have already been published [18,19]. Apart from
choosing a proper functional norm to evaluate the internal
fields, such systematic analysis should address the influence
of the magnitude of �ε�r� − ε1�, which is evident from
Eq. (5) but is not explicit in requirements (i) and (ii) above.

Requirement (i) is key regardless of which additional
assumptions are made. Indeed, even if particles are widely sep-
arated, as they are in a typical liquid-water cloud in the terres-
trial atmosphere, taking the limit N → ∞ invariably
invalidates the SSA and breaks the additivity of the individ-
ual-particle optical cross sections [7].

Although randomness of particle positions is not needed for
additivity of the integral optical cross sections of a tenuous
cluster of particles, it is an essential requirement in modeling
“differential” optical observables [6,7], as it serves to extinguish
the notorious speckle that is typical of fixed scattering objects
[20,21] but is rarely observed in practice. This can also be

achieved by averaging over a range of frequencies [22].
Moreover, both types of averaging can facilitate achieving
practical validity of the SSA in the first place.
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