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a b s t r a c t 

A recently developed FORTRAN program computing far-field optical observables for spherical particles in 

an absorbing medium has exhibited numerical instability arising when the product of the particle vacuum 

size parameter and the imaginary part of the refractive index of the host becomes sufficiently large. We 

offer a sim ple analytical explanation of this instability and propose a compact numerical algorithm for 

the stable computation of Lorenz–Mie coefficients based on an upward recursion formula for spherical 

Hankel functions of a complex argument. Extensive tests confirm an excellent accuracy of this algorithm 

approaching machine precision. The improved public-domain FORTRAN program is available at https:// 

www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html . 
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1. Introduction 

Part I of this work [1] detailed the Lorenz–Mie theory of far-

field electromagnetic scattering by a homogeneous spherical par-

ticle embedded in an unbounded absorbing host medium and de-

scribed a public-domain FORTRAN program for the numerical com-

putation of relevant optical observables. Subsequent massive com-

putations for particle polydispersions have revealed that the pro-

gram can fail when the product of the particle vacuum size pa-

rameter and the imaginary part of the refractive index of the sur-

rounding medium becomes sufficiently large [2] . In this Part II we

analyze the origin of this numerical instability and provide a sim-

ple remedy which makes the computer program stable over a wide

range of scenarios relevant to actual practical applications. 

2. Lorenz–Mie coefficients 

Consistent with Ref. [1] , we assume the exp ( − i ωt ) time-

harmonic dependence of all electromagnetic fields, where i =
(−1) 1 / 2 , ω is the angular frequency, and t is time. The dimension-
less Lorenz–Mie coefficients a n and b n for a homogeneous spherical 
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article having a radius R are given by [1,3] 

 n = 

m 

2 j n (m x 1 ) [ x 1 j n ( x 1 ) ] 
′ − j n ( x 1 ) [ m x 1 j n (m x 1 ) ] 

′ 

m 

2 j n (m x 1 ) 
[
x 1 h 

(1) 
n ( x 1 ) 

]′ − h 

(1) 
n ( x 1 ) [ m x 1 j n (m x 1 ) ] 

′ (1)

nd 

 n = 

j n (m x 1 ) [ x 1 j n ( x 1 ) ] 
′ − j n ( x 1 ) [ m x 1 j n (m x 1 ) ] 

′ 

j n (m x 1 ) 
[
x 1 h 

(1) 
n ( x 1 ) 

]′ − h 

(1) 
n ( x 1 ) [ m x 1 j n (m x 1 ) ] 

′ , (2)

here a prime indicates differentiation with respect to the corre-

ponding argument in parentheses. Furthermore, 

 = 

m 2 

m 1 

= 

m 

′ 
2 + i m 

′′ 
2 

m 

′ 
1 + i m 

′′ 
1 

(3)

s the refractive index of the spherical particle (subscript “2”) rela-

ive to that of the host medium (subscript “1”); 

 1 = k 1 R (4)

s the (generally complex-valued) size parameter of the particle;

 n ( z ) are spherical Bessel functions of the first kind; and 

 

(1) 
n (z) = j n (z) + i y n (z) (5)

re spherical Hankel functions of the first kind, y n ( z ) being spher-

cal Bessel functions of the second kind. The wave number of the

ost medium is given by 

2 πm 1 

 1 = k ′ 1 + i k ′′ 1 = 

λ
, (6) 

https://doi.org/10.1016/j.jqsrt.2018.05.034
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here λ is a vacuum wavelength. Note that 

 = 

2 πc 

λ
, (7) 

here c is the speed of light in a vacuum. 

The numerical computation of the radial special functions en-

ering Eqs. (1) and (2) can be highly non-trivial (see, e.g., Refs.

4,5] and numerous references therein). In Ref. [1] it is based on

he following algorithm. The spherical Bessel functions of the first

ind, j n ( z ) with z = x 1 or z = mx 1 , obey the well-known recurrence

elation [6,7] 

j n +1 (z) = 

2 n + 1 

z 
j n ( z) − j n −1 (z) . (8)

ince the upward recurrence is unstable, the standard practice is

o define 

 n (z) = 

j n (z) 

j n −1 (z) 
, (9) 

hich results in a stable downward recurrence formula 

 n (z) = 

[ 
2 n + 1 

z 
− r n +1 (z) 

] −1 

. (10) 

f n max is the largest order of the Lorenz–Mie coefficients, the

ownward recursion of Eq. (10) is initiated at n = n max + n ′ � | z |,

here n ′ is an appropriately large number, using the starting value

 n max + n ′ (z) ≈ z 

2 ( n max + n 

′ ) + 1 

. (11) 

he j n ( z ) are then computed using the straightforward upward re-

ursion 

j n (z) = r n (z) j n −1 (z) , n = 1 , ..., n max (12)

nd the initial value 

j 0 (z) = 

sin z 

z 
. (13) 

he corresponding derivatives are computed using the recurrence

elation 

d 

d z 
[ z j n (z)] = z j n −1 (z) − n j n (z) . (14)

The computation of the Hankel functions (5) and their deriva-

ives starts with the computation of the spherical Bessel functions

f the first kind, as described above, followed by the computation

f the spherical Bessel functions of the second kind using the up-

ard recursion 

 n +1 (z) = 

2 n + 1 

z 
y n ( z) − y n −1 (z) (15)

long with the initial values 

 0 (z) = −cos z 

z 
and y 1 (z) = −cos z 

z 2 
− sin z 

z 
. (16)

he corresponding derivatives follow from the recurrence formula

d 

d z 
[ z y n (z)] = z y n −1 (z) − n y n (z) . (17)

. Numerical instability 

Extensive double-precision FORTRAN computations have shown

hat when the product k ′ ′ 1 R becomes sufficiently large, the cal-

ulation of the spherical Hankel functions and their derivatives

ecomes unstable and eventually leads to zeros causing over-

ows in the Lorenz–Mie coefficients (1) and (2) . Running the

ame FORTRAN program in extended precision (e.g., using the
freal-8-real-16 compilation option in GFortran) serves to h
ncrease the “stable” range of k ′ ′ 1 R values, but eventually the in-

tability reoccurs. Although this happens for m 

′ ′ 
1 values that are

ikely too large to consider in the context of far-field scattering

i.e., when strong absorption in the host medium is expected to

irtually eradicate any optical observable), it is still important to

nderstand the origin of this problem and find a stable practical

olution. This is done in the following two sections. 

. Origin of numerical instability 

A simple analysis helps attribute the identified numerical in-

tability to the use of the representation (5) in combination with

he separate computation of the spherical Bessel functions j n ( k 1 R )

nd y n ( k 1 R ). Indeed, in the limit | k 1 R | → ∞ , we have the following

symptotic expressions [6,7] : 

j n ( k 1 R ) = 

1 

2i k 1 R 

exp 

[
i 
(
k 1 R − 1 

2 
nπ

)]

− 1 

2i k 1 R 

exp 

[
−i 

(
k 1 R − 1 

2 
nπ

)]

+ exp 

(
k ′′ 1 R 

)
O 

[
( k 1 R ) 

−2 
]
, (18) 

 y n ( k 1 R ) = 

1 

2i k 1 R 

exp 

[
i 
(
k 1 R − 1 

2 
nπ

)]

+ 

1 

2i k 1 R 

exp 

[
−i 

(
k 1 R − 1 

2 
nπ

)]

+ exp 

(
k ′′ 1 R 

)
O 

[
( k 1 R ) 

−2 
]
, (19) 

nd 

 

(1) 
n ( k 1 R ) ∼ 1 

i k 1 R 

exp 

[
i 
(
k 1 R − 1 

2 
nπ

)]
. (20)

hese expressions imply that computing h (1) 
n ( k 1 R ) according to

q. (5) can become highly problematic if k ′ ′ 1 R is sufficiently large.

ndeed, then the second and third terms in either Eq. (18) or

19) can dwarf the first term to such an extent that adding the lat-

er does not change the sum of the second and third terms to ma-

hine precision (i.e., 15–17 decimal digits in the double-precision

ORTRAN representation). Yet it is the first terms in Eqs. (18) and

19) that define the value of h (1) 
n ( k 1 R ) . As a consequence, adding

 n ( k 1 R ) and i y n ( k 1 R ) can lead to large round-off errors. Further-

ore, if i y n ( k 1 R ) = −j n ( k 1 R ) to machine precision then h (1) 
n ( k 1 R )

anishes. The use of 

d 

d( k 1 R ) 

[
k 1 Rh 

(1) 
n ( k 1 R ) 

]
= 

d 

d( k 1 R ) 
[ k 1 R j n ( k 1 R ) ] 

+ i 
d 

d( k 1 R ) 
[ k 1 R y n ( k 1 R ) ] (21) 

long with Eqs. (14) and (17) can cause the same numerical prob-

em. As a result, the entire denominator in either Eq. (1) or (2) can

anish, thereby causing overflows. 

It should be noted that this instability is not exclusive to the

lgorithm described in Ref. [1] but is relevant to other commonly

sed Lorenz–Mie algorithms, including that by Bohren and Huff-

an (see Appendix B of Ref. [8] ). 

. Stable numerical scheme 

Massive computer calculations have demonstrated that a re-

arkably simple and straightforward resolution of the above nu-

erical instability problem is to abandon Eqs. (5) and (21) and

ompute the spherical Hankel functions using the upward recur-

ion 

2 n + 1 
 

(1) 
n +1 

(z) = 

z 
h 

(1) 
n ( z) − h 

(1) 
n −1 

(z) (22) 
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Table 1 

Extinction efficiency factor as a function of m 

′ ′ 
1 and x . 

x Q ext ( m 

′ ′ 
1 = 10 − 5 ) Q ext ( m 

′ ′ 
1 = 0.01) Q ext ( m 

′ ′ 
1 = 0.06) 

0.5 –0.133333D–04 –0.1334 4 4D–01 –0.804769D–01 

5 –0.133338D–03 –0.138159D + 00 –0.10 0 0 02D + 01 

50 –0.133383D–02 –0.199948D + 01 –0.222396D + 03 

500 –0.133835D–01 –0.792769D + 04 –0.749013D + 25 

50 0 0 –0.138469D + 00 –0.106451D + 43 –0.251250D + 259 
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(see Refs. [6,7] ) in combination with the initial values 

h 

(1) 
0 

(z) = − i exp (i z) 

z 
(23)

and 

h 

(1) 
1 

(z) = −exp (i z)(z + i) 

z 2 
. (24)

The corresponding derivative is then computed according to 

d 

d z 

[
zh 

(1) 
n (z) 

]
= zh 

(1) 
n −1 

(z) − nh 

(1) 
n (z) . (25)

The Bessel functions of the first kind j n ( x 1 ) and j n ( mx 1 ) as well

as their derivatives entering Eqs. (1) and (2) are still computed us-

ing the stable downward recursion (10) , while the computation of

the Bessel functions of the second kind y n ( x 1 ) is avoided altogether.

Note that the upward recursion (22) for h (1) 
n (z) is known to

cause minor issues for a real-valued z (or that with a very small

imaginary part) [9] . In particular, the real part of h (1) 
n (z) , i.e., j n ( z ),

can be calculated with very poor relative accuracy if n > z . How-

ever, the error in the real part is still much smaller than the ab-

solute value of h (1) 
n (z) ; more specifically, the ratio of the former to

the latter does not significantly exceed machine epsilon. Since the

imaginary part of h (1) 
n (z) , i.e., y n ( z ), never vanishes in this range

of z , a high accuracy of computing the overall value of h (1) 
n (z) (i.e.,

without separation into the real and imaginary parts) is guaranteed

by this algorithm for an arbitrary n and any z with a non-negative

imaginary part. 

Extensive numerical checks of the new program have revealed

no instability in double-precision FORTRAN computations even for

k ′ ′ 1 R values as large as 350. A compelling test has been to run

the same program using the extended-precision compilation op-

tion, which has demonstrated excellent agreement with the origi-

nal double-precision output. This is illustrated by the Lorenz–Mie

coefficients computed for the following model: the vacuum wave-

length is λ= 2 πμm; the radius of the particle is R = 2500 μm;

and the refractive indices of the host medium and of the particle

material are m 1 = 1.33 + i0.1 and m 2 = 1, respectively. For n = 1, the

double-precision result is 

a 1 = ( 4 . 3914709187499176 D + 216 , 

−6 . 1540139314269924 D + 216 ) , (26)

b 1 = ( 6 . 0677381984696521 D + 216 , 

−2 . 4794566280970265 D + 216 ) , (27)

while the corresponding extended-precision output is 

a 1 = ( 4 . 39147091875142179154793239196369353 Q + 216 , 

−6 . 15401393142594436537724270327601454 Q + 216 ) , 

(28)

b 1 = (6 . 0 677381984702483911710220 60940 63860 Q + 216 , 

−2 . 47945662809569972117407451123909842 Q + 216) . 

(29)

For n = 3402, the respective double-precision and extended-

precision results are 

a 3402 = ( 6 . 5263656298271867 D + 20 , 

−1 . 0743959632382240 D + 21 ) (30)

b 3402 = ( 6 . 2207616536588911 D + 20 , 
−5 . 3211289141292931 D + 20 ) (31) m
nd 

 3402 = (6 . 526365629827234 8588623574 9292792207 Q + 20 , 

−1 . 07439596323818309578283103293424028 Q + 21) , 

(32)

 3402 = (6 . 220761653658838336 46 492766711989134 Q + 20 , 

−5 . 32112891412902766202272222721594176 Q + 20) . 

(33)

Both the double-precision and the extended-

recision runs yielded the same extinction cross sec-

ion C ext = 0.388777 × 10 222 μm 

2 . However, the extended-

recision value of the effective scattering cross section,

 

eff 
sca = 0 . 777958 × 10 439 μm 

2 , was outside the range of double-

recision floating-point FORTRAN representation of real numbers

from 10 − 308 to 10 308 ). The double-precision computation of the

orresponding scattering matrix was also impossible for the same

eason. 

Our computations have shown that extremely large k ′ ′ 1 R val-

es can eventually cause the real and/or imaginary parts of the

orenz–Mie coefficients a n and b n to exceed, in absolute value, the

ouble-precision floating-point FORTRAN limit of 10 308 . This is a

eparate problem that must be addressed specifically, including the

ractical aspect of the subsequent computation of relevant opti-

al observables from such large Lorenz–Mie coefficients. The com-

only used logarithmic derivatives of the Riccati–Bessel functions

8,9] would not resolve this issue because it is not the intermedi-

te function values but the final coefficients and subsequent optical

bservables that become too large. The only ultimate fix would be

o isolate the main order of this magnitude analytically. Perhaps

he simplest, albeit not necessarily cost-effective, practical solution

s to run the FORTRAN program in the extended-precision mode

ith its 10 4932 floating-point limit. Fortunately, such excessively

arge k ′ ′ 1 R values are very unlikely to be encountered in actual

ar-field scattering applications. 

. Numerical example 

To illustrate the performance of the resulting FORTRAN pro-

ram, Table 1 lists the values of the extinction efficiency factor

 ext = C ext / ( πR 2 ) computed with double precision for several dis-

rete values of m 

′ ′ 
1 and the vacuum size parameter x = 2 πR /λ as-

uming that m 

′ 
1 = m 2 = 1.3. One can see that all the tabulated Q ext 

alues are negative, which may seem to be inconsistent with the

ndings previously reported in Refs. [2,10] . Yet this remarkable re-

ult is perfectly in line with (i) the notion of the extinction cross

ection as quantifying the difference between the readings of a

orward-scattering detector of light in the absence of the particle

nd with the particle present, and (ii) the explanation of extinc-

ion as being the result of interference of the incident and forward-

cattered fields [11] . Indeed, since m 

′ 
1 = m 2 , the field directly trans-

itted by the particle accumulates no path-length phase shift and

rrives at the forward-scattering detector in phase with the inci-

ent field. Furthermore, unlike the incident field, the directly trans-
itted field does not experience exponential attenuation over the 



M.I. Mishchenko et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 217 (2018) 274–277 277 

c  

t  

g  

g  

m  

“  

c  

o  

n

7

 

c  

m  

s  

d  

c  

A  

i  

a  

a  

p

M  

m  

c  

i  

m

 

l  

m  

i  

a  

s  

t  

s  

r

A

 

s  

m  

m  

s

R

 

 

 

 

 

 

 

 

 

 

 

[  

[12] Markel VA . Introduction to the Maxwell Garnett approximation: tutorial. J Opt 
Soc Am A 2016;33:1244–56 . 
orresponding path lengths inside the particle. As a consequence,

he signal recorded by the detector can be expected to rapidly

row with particle size, implying negative extinction with rapidly

rowing magnitude. The growth in Q ext is approximately linear for

 

′ ′ 
1 = 10 − 5 , implying that the negative differential absorption (i.e.,

lost absorption”) inside the particle is proportional to the parti-

le volume. For the larger values of m 

′ ′ 
1 , the exponential character

f the negative differential attenuation becomes much more pro-

ounced. 

. Concluding remarks 

In summary, we have described a simple and accurate way to

ompute the Lorenz–Mie coefficients for spherical particles im-

ersed in an unbounded absorbing host. Unlike the previous ver-

ion of the algorithm, the new numerical scheme is based on a

irect calculation of the spherical Hankel functions h (1) 
n (z) of a

omplex-valued argument using the upward recursion of Eq. (22) .

 convenient ingredient of this recursion scheme is the possibil-

ty to explicitly factor out exp (i z ) in the starting values of h (1) 
0 

(z)

nd h (1) 
1 

(z) (Eqs. (23) and (24) ). Extensive tests have demonstrated

n excellent stability of this scheme and numerical accuracy ap-

roaching machine precision. 

These results may also be useful in the context of the Lorenz–

ie theory for concentric layered spheres in which some layers are

ade of absorbing materials [5,8] . This is not surprising since a

ore–mantle sphere with a very large size of the absorbing mantle

s a physically appropriate model for the infinite absorbing host

edium [12] . 

The new double-precision FORTRAN program is in the pub-

ic domain and can be accessed at https://www.giss.nasa.gov/staff/

mishchenko/Lorenz-Mie.html . Based on the test runs described

n Sections 5 and 6 , we expect it to be applicable and highly

ccurate as long as the Lorenz–Mie coefficients and the corre-
ponding optical observables do not cause overflows by exceeding

he double-precision floating-point FORTRAN limit of 10 308 . Should

uch overflows occur, the simplest workable solution would be to

un the same program in the extended-precision mode. 
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