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a b s t r a c t 

Although free space cannot generate electromagnetic waves, the majority of existing accounts of 

frequency-domain electromagnetic scattering by particles and particle groups are based on the postu- 

late of existence of an impressed incident field, usually in the form of a plane wave. In this tutorial we 

discuss how to account for the actual existence of impressed source currents rather than impressed in- 

cident fields. Specifically, we outline a self-consistent theoretical formalism describing electromagnetic 

scattering by an arbitrary finite object in the presence of arbitrarily distributed impressed currents, some 

of which can be far removed from the object and some can reside in its vicinity, including inside the 

object. To make the resulting formalism applicable to a wide range of scattering-object morphologies, 

we use the framework of the volume integral equation formulation of electromagnetic scattering, cou- 

ple it with the notion of the transition operator, and exploit the fundamental symmetry property of this 

operator. Among novel results, this tutorial includes a streamlined proof of fundamental symmetry (reci- 

procity) relations, a simplified derivation of the Foldy equations, and an explicit analytical expression for 

the transition operator of a multi-component scattering object. 

Published by Elsevier Ltd. 
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1. Introduction 

Standard theoretical accounts of the frequency-domain scat-

tering of electromagnetic waves by particles and particle groups

in the framework of macroscopic Maxwell’s electrodynamics have

commonly been based on assuming the existence of an impressed

incident field (see, e.g., Refs. [1–19] ). The designation “impressed”

(or “enforced”) implies that the incident field is independent of the

total electromagnetic field existing in the presence of a scattering

object. The standard line of thought has been that the scattering

problem can be formulated assuming that the entire space is de-

void of source currents and can be reduced to considering an in-

homogeneous differential equation whose solution consists of two

parts. The first one is a solution of the corresponding homoge-

neous equation, while the second one is a physically appropriate

solution of the inhomogeneous equation. The former implies the

absence of the scattering object and thus represents the impressed

incident field in the form of an ad hoc free-space solution of the
macroscopic Maxwell equations. More often than not, the incident 
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eld has been postulated to be a plane electromagnetic wave, al-

hough other types of wave have increasingly been considered [20] .

Such treatments obscure the inescapable fact that electromag-

etic waves cannot be generated by a free space, and so there

ust be an actual source of the incident field. An advanced de-

cription of the emission of electromagnetic waves by elementary

harges is supplied by quantum electrodynamics (QED) [21–27] .

owever, neither the QED treatment nor even the classical mi-

roscopic Maxwell–Lorentz electrodynamics [28–33] can realisti-

ally be applied to the analysis of electromagnetic scattering by

xceedingly complex macroscopic objects consisting of an enor-

ous number of elementary charges. Hence the widespread use

f macroscopic Maxwell’s electromagnetics [34–38] based on the

remise that electromagnetic waves are created by macroscopic

harge currents. It would therefore be highly desirable to have

 self-consistent scattering formalism explicitly built on the exis-

ence of impressed (or enforced) source currents rather than im-

ressed incident fields. The designation “impressed” again serves

o indicate that unlike the secondary conducting currents, the pri-

ary source currents are independent of the total electromagnetic

eld existing in the presence of a scattering object. 

The standard treatment based on the assumption of the exis-
ence of an impressed incident field in the form of a plane electro- 

https://doi.org/10.1016/j.jqsrt.2018.04.023
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Fig. 1. Schematic representation of the scattering problem. 
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agnetic wave is sometimes rationalized by referring to a situation

herein a point-like source current is located at an exceedingly

arge distance from a finite scattering object (e.g., Ref. [37] ). It can

ndeed be shown that in this case the free-space field generated

y the current in the vicinity of the object is an outgoing spher-

cal electromagnetic wave that can be considered a locally plane

ave owing to the smallness of the solid angle subtended by the

bject as viewed from the remote source region. There are situa-

ions, however, when it is appropriate to assume the simultaneous

xistence of both remote and local impressed source currents, in-

luding those residing inside the scattering object. Such situations

rise, e.g., in the context of the semi-classical fluctuational electro-

ynamics which treats thermal emission of electromagnetic waves

s being the result of impressed fluctuating currents inside an ob-

ect having a positive absolute temperature [39–58] . If the object

s also subjected to external illumination then one must explicitly

olve the scattering problem featuring both remote time-harmonic

nd local fluctuating impressed currents. A typical geophysical ex-

mple is a cloud of particles in a planetary atmosphere which can

oth be illuminated by the incident stellar light at near-infrared

avelengths and emit its own near-infrared radiation [59–63] . 

Consistent with the above discussion, the main objective of this

utorial is to outline a maximally general and self-consistent the-

retical formalism describing electromagnetic scattering by an ar-

itrary finite object in the presence of arbitrarily distributed im-

ressed currents, some of which can be far removed from the ob-

ect and some can reside in its vicinity, including inside the ob-

ect. To explicitly allow for internal inhomogeneity of the scatter-

ng object, we use the framework of the volume integral equa-

ion (VIE) formulation of electromagnetic scattering, couple it with

he notion of the transition operator, and exploit the fundamental

ymmetry property of this operator. Some aspects of the result-

ng formalism are scattered over the existing literature and some

epresent a relatively straightforward extension of previously pub-

ished results (see, e.g., Refs. [11,42,44,54,57,64–68] ). Yet given the

ompactness, uniformity, and generality of this formalism, it ap-

ears worthwhile to summarize it in the form of a self-contained

tand-alone tutorial. Moreover, we also discuss some novel results,

ncluding an elegant proof of fundamental symmetry (reciprocity)

elations, a streamlined derivation of the Foldy equations, and an

xplicit expression of the transition operator of a multi-component

bject in terms of the corresponding individual-component transi-

ion operators. 

. Scattering problem 

The derivation of the macroscopic Maxwell equations from ei-

her the QED or the microscopic Maxwell–Lorentz equations is

till incomplete [69] . Therefore, we will invoke the former essen-

ially as a set of phenomenological axioms [34–38] . In what fol-

ows, we imply the monochromatic exp ( − i ωt ) dependence of all

elds and sources, where t is time, ω is the angular frequency,

nd i = ( − 1) 1/2 . Consider a fixed finite object embedded in an infi-

ite medium that is assumed to be homogeneous, linear, isotropic,

nd potentially absorbing. Accordingly, the complex permittivity

f the host medium ε1 can have a non-zero imaginary part: 0 ≤
rg ( ε 1 ) < π. The object can be either a single connected body or

 cluster consisting of a finite number N of non-overlapping con-

ected components; it occupies collectively an “interior” region

 INT defined by 

 INT 
�= 

N ∪ 

i =1 
V 

i 
INT , (1) 

here V i 
INT 

is the volume occupied by the i th component (see

ig. 1 ). The object is surrounded by the infinite exterior domain
3 3 
 EXT such that V INT ∪ V EXT = R , where R is the entire three- t
imensional space. The interior region is filled with isotropic, lin-

ar, and possibly inhomogeneous materials. Point O serves as the

ommon origin of all position vectors. 

We assume that in addition to the object, there are 0 ≤ M

 ∞ impressed source currents occupying finite connected non-

verlapping volumes V i 
S 
. As explained above, the term “impressed”

eans that these source currents are unaffected by the resulting

lectromagnetic field existing in the presence of the scattering ob-

ect. 

Finally, we assume that both the infinite host medium and

he finite scattering object are non-magnetic. Then the frequency-

omain Maxwell curl equations for the monochromatic electro-

agnetic field can be written in SI units as follows: 

∇ × E (r ) = i ω μ0 H (r ) 
∇ × H (r ) = −i ω ε 1 E (r ) + J S (r ) 

}
r ∈ V EXT , (2) 

∇ × E (r ) = i ω μ0 H (r ) 
∇ × H (r ) = −i ω ε 2 (r ) E (r ) + J S (r ) 

}
r ∈ V INT , (3) 

here E ( r ) is the electric and H ( r ) the magnetic field; μ0 is the

agnetic permeability of a vacuum; ε2 ( r ) is the complex permit-

ivity of the object; and J S ( r ) is the impressed source current. We

ssume for simplicity that ε2 ( r ) is a sufficiently smooth function

f r inside each V i 
INT 

so that the interior of V i 
INT 

contains no sharp

ptical interfaces. It is also clear that 

 

S (r ) = 0 if r / ∈ V S , (4)

here 0 is a zero vector and V S is the total volume occupied by

he impressed sources: 

 S 
�= 

M ∪ 

i =1 
V 

i 
S . (5) 

The corresponding boundary conditions read: 

ˆ n × [ E 1 (r ) − E 2 (r )] = 0 

ˆ n × [ H 1 (r ) − H 2 (r )] = 0 

}
r ∈ S INT , (6) 

here the subscripts 1 and 2 correspond to the exterior and inte-

ior sides of the boundary S INT of the object, respectively, and ˆ n is
he local outward normal to S INT . According to Eq. (1) , S INT is the 
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union of the closed surfaces of the N connected components of the

object: 

S INT = 

N ∪ 

i = 1 
S i INT . (7)

For simplicity, we assume S INT to be sufficiently smooth (e.g., lack-

ing sharp edges and corners). 

To guarantee the uniqueness of solution of the general scat-

tering problem [70–73] , we postulate that besides satisfying the

boundary conditions (6) , the total electromagnetic field satisfies

the following condition at infinity: 

lim 

r → ∞ 

[√ 

μ0 r × H (r ) + r 
√ 

ε 1 E (r ) 
]

= 0 , (8)

where r = | r | is the distance from the origin to the observation

point ( Fig. 1 ). The limit (8) holds uniformly over all outgoing direc-

tions ˆ r = r /r and is traditionally called the Sommerfeld [74,75] or

Silver–Müller [2,76] radiation condition. 

The above-formulated scattering problem is well defined math-

ematically and, as stated, encompasses a broad range of scenarios

in terms of the morphology of the source regions and that of the

scattering object. Yet it could be criticized for not specifying explic-

itly what physical mechanisms are responsible for the impressed

sources. This criticism may be especially relevant in the case of

impressed source currents residing inside the object (see, e.g., the

discussion in Ref. [77] ). Microphysically this implies that the same

elementary charges contribute to the impressed currents as well

as to the secondary conducting currents. As we have mentioned

in the Introduction, this assumption is at the very heart of fluc-

tuational electrodynamics. Nevertheless, it should be recognized

that in some cases the model of internal impressed source currents

may be pushing the classical macroscopic electromagnetics beyond

its conceptual realm and may require an explicit derivation from

quantum physics. A relevant mathematical issue can be the inter-

change of the order of averaging over a microscopic volume in the

definition of both macroscopic fields and impressed currents. 

3. Modified volume integral equation 

Eqs. (2) and (3) demonstrate that if E ( r ) is known everywhere

in space then H ( r ) can also be determined everywhere in space.

We will therefore focus on the derivation of the modified VIE for

the electric field only. 

Eqs. (2) and (3) imply the following vector wave equations for

E ( r ): 

∇ × ∇ × E (r ) − k 2 1 E (r ) = i ω μ0 J 
S (r ) , r ∈ V EXT , (9)

∇ × ∇ × E (r ) − ω 

2 ε 2 (r ) μ0 E (r ) = i ω μ0 J 
S (r ) , r ∈ V INT . (10)

These two equations can be rewritten as a single inhomogeneous

differential equation 

∇ × ∇ × E (r ) − k 2 1 E (r ) = j (r ) + i ω μ0 J 
S (r ) , r ∈ R 

3 , (11)

where 

j (r ) 
�= U(r ) E (r ) (12)

is the forcing function , 

(r ) 
�= 

{
0 , r ∈ V EXT , 

ω 

2 ε 2 ( r ) μ0 − k 2 1 , r ∈ V INT 
(13)

is the potential function, and 

k 1 
�= ω 

√ 

ε 1 μ0 (14)

is the wave number in the host medium. A key property of the

forcing function is that it vanishes everywhere outside the finite
interior region V INT . s
We can now exploit the fact that any solution of the inhomoge-

eous linear differential equation (11) can be expressed as a sum of

hree parts: (i) a solution of the respective homogeneous equation

ith the right-hand side identically equal to zero; (ii) a particular

olution of the inhomogeneous equation 

 × ∇ × E 

S (r ) − k 2 1 E 

S (r ) = i ω μ0 J 
S (r ) , r ∈ R 

3 ; (15)

nd (iii) a particular solution of the inhomogeneous equation 

 × ∇ × E 

sca (r ) − k 2 1 E 

sca (r ) = j (r ) , r ∈ R 

3 . (16)

The first part defines the field that would exist in free space

n the absence of the object and of the impressed sources. Based

n physical grounds, it is postulated to be equal to zero. In other

ords, we do not consider artificial impressed incident fields prop-

gating from infinity (see also the discussion below). 

The second part corresponds to the situation with no scatter-

ng object present. The physically appropriate particular solution of

q. (15) satisfying the radiation condition at infinity is well known

37,78,79] : 

 

S (r ) = i ω μ0 

∫ 
V S 

d 

3 r ′ 
↔ 
G (r , r ′ ) ·J S ( r ′ ) , (17)

here 

↔ 
 (r , r ′ ) = 

(
↔ 
I + 

1 

k 2 
1 

∇ � ∇ 

)
g(r , r ′ ) (18)

s the free-space dyadic Green’s function, 
↔ 

I is the identity (or unit)

yadic, � denotes the dyadic product of two vectors, and 

(r , r ′ ) = 

exp 

(
i k 1 | r − r ′ | )

4 π | r − r ′ | (19)

s the scalar Green’s function. E 

S ( r ) can be referred to as the free-

pace source-generated field. 

The third part is the scattered field E 

sca ( r ) corresponding to the

orcing function j ( r ) and satisfying the boundary conditions (6) as

ell as the radiation condition (8) . 

We can now precisely follow the line of the derivation detailed

n Section 4.3 of Ref. [19] and deduce: 

 

sca (r ) = 

∫ 
V INT 

d 

3 r ′ 
↔ 
G (r , r ′ ) ·j ( r ′ ) , r ∈ R 

3 . (20)

It is important to note that strictly speaking, Eqs. (17) and

20) imply a non-integrable singularity when r ∈ V INT and/or r

 V S . The standard implicit remedy [37,80,81] is to assume that

he integration is carried in the following specific principal-value

ense: ∫ 
V 

d 

3 r ′ 
↔ 
G (r , r ′ ) ·F ( r ′ ) 

= lim 

V 0 → 0 

∫ 
V \ V 0 

d 

3 r ′ 
↔ 
G (r , r ′ ) ·F ( r ′ ) − 1 

3 k 2 
1 

F (r ) , (21)

here V 0 is a spherical exclusion volume around r . This aspect of

he VIE formalism will be further discussed in the concluding sec-

ion. 

The final step is to substitute Eq. (12) in Eq. (20) , which yields

 (r ) = E 

S (r ) + E 

sca (r ) , (22)

here the scattered field is given by 

 

sca (r ) = 

∫ 
V INT 

d 

3 r ′ U( r ′ ) 
↔ 
G (r , r ′ ) ·E ( r ′ ) . (23)

Eqs. (17) , (22) , and (23) yield collectively the sought modifica-

ion of the conventional VIE explicitly accounting for the impressed
ource currents rather than impressed incident fields: 
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 (r ) = i ω μ0 

∫ 
V S 

d 

3 r ′ 
↔ 
G (r , r ′ ) ·J S ( r ′ ) 

+ 

∫ 
V INT 

d 

3 r ′ U( r ′ ) 
↔ 
G (r , r ′ ) ·E ( r ′ ) , r ∈ R 

3 . (24) 

The only formal difference of the modified VIE from its conven-

ional counterpart [19] is that the impressed incident field E 

inc ( r )

n the latter has been replaced by the free-space source-generated

eld E 

S ( r ) in the former. This result serves to provide justification

o the common practice of “hiding” impressed sources by assuming

hat the impressed “incident” field they could generate is known a

riori . 

Finally we note that owing to Eqs. (4) and (13) , the integration

omains in Eqs. (17) , (23) , and (24) can formally be extended to

over the entire space R 

3 . 

. Transition dyadic 

As usual, we assume that the linearity of and the specific inte-

ration domain in Eq. (23) imply the possibility of expressing the

cattered electric field linearly in terms of the source-generated

eld inside V INT . In other words, we assume that for any E 

S ( r ),

 ( r ) E ( r ) can be expressed in terms of E 

S ( r ) via a linear integral

perator (called the transition operator) 

(r ) E (r ) = 

∫ 
V INT 

d 

3 r ′ 
↔ 
T (r , r ′ ) ·E 

S ( r ′ ) , r ∈ V INT (25)

hose kernel 
↔ 

T (r , r ′ ) is called the transition dyadic. This quan-

ity was first introduced in the framework of electromagnetic scat-

ering by Tsang and Kong [65] . Substituting this expression in

q. (23) yields 

 

sca (r ) = 

∫ 
V INT 

d 

3 r ′ 
↔ 
G (r , r ′ ) ·

∫ 
V INT 

d 

3 r ′′ 
↔ 
T ( r ′ , r ′′ ) ·E 

S ( r ′′ ) . (26) 

Eqs. (22) , (23) , and (26) then imply that 
↔ 

T (r , r ′ ) satisfies the

ollowing Lippmann–Schwinger integral equation: 

↔ 
 (r , r ′ ) = U(r ) δ(r − r ′ ) 

↔ 
I 

+ U(r ) 

∫ 
V INT 

d 

3 r ′′ 
↔ 
G (r , r ′′ ) ·

↔ 
T ( r ′′ , r ′ ) . (27) 

A fundamental property of the transition dyadic explicit in

q. (27) is that it is fully defined by the scattering object alone (i.e.,

y the spatial distribution of the electric permittivity throughout

 INT ) and is completely independent of the impressed sources. In

ther words, 
↔ 

T (r , r ′ ) serves as a unique and complete “scattering

dentifier” of the object. 

Eq. (27) defines the transition dyadic only inside the scattering

bject. It is convenient to complete the definition by assuming that

↔ 
 (r , r ′ ) = 

↔ 
0 unless r ∈ V INT and r ′ ∈ V INT , (28)

here 
↔ 

0 is a zero dyad. This implies that the integration domain

n Eqs. (26) and (27) can formally be extended to the entire space

 

3 . 

. Additivity 

Based on the fundamental principle of superposition (i.e., the

inearity of the electromagnetic scattering problem), we can expect

he additivity of the total fields generated individually by different

mpressed sources. Indeed, the individual total field generated by

he i th source region V i 
S 

in the absence of all the other sources is
he solution of the VIE U
 

i (r ) = i ω μ0 

∫ 
V i 

S 

d 

3 r ′ 
↔ 
G (r , r ′ ) ·J S ( r ′ ) 

+ 

∫ 
V INT 

d 

3 r ′ U( r ′ ) 
↔ 
G (r , r ′ ) ·E 

i ( r ′ ) . (29) 

umming up these M fields yields Eq. (24) in which 

 (r ) = 

M ∑ 

i =1 

E 

i (r ) . (30)

It is easily seen that the additivity of the total fields generated

y different source regions is also implicit in Eq. (26) . 

. Source Green’s dyadic 

Eqs. (17) , (22) , and (26) imply that the total field can be ex-

ressed in terms of the impressed sources J S ( r ) according to 

 (r ) = i ω μ0 

∫ 
V S 

d 

3 r ′ 
↔ 
G S (r , r ′ ) ·J S ( r ′ ) , (31)

here 
↔ 
 S (r , r ′ ) �= 

↔ 
G (r , r ′ ) 

+ 

∫ 
V INT 

d 

3 r ′′ 
↔ 
G (r , r ′′ ) 

·
∫ 

V INT 

d 

3 r ′′′ 
↔ 
T ( r ′′ , r ′′′ ) ·

↔ 
G ( r ′′′ , r ′ ) (32) 

s the source Green’s dyadic. 

It is seen that like the transition dyadic, 
↔ 

G S (r , r ′ ) is completely

ndependent of the impressed sources. Furthermore, Eq. (32) shows

hat 
↔ 

G S (r , r ′ ) is defined everywhere in R 

3 , which eliminates the

eed to define separate source Green’s dyadics by considering

oints r and r ′ in pairs of specific domains. 

It is easy to verify that Eqs. (24) and (31) yield the following

losed-form integral equation for the source Green’s dyadic [65] : 

↔ 
 S (r , r ′ ) = 

↔ 
G (r , r ′ ) + 

∫ 
V INT 

d 

3 r ′′ U( r ′′ ) 
↔ 
G (r , r ′′ ) ·

↔ 
G S ( r 

′′ , r ′ ) . (33)

As before, the integration domains in Eqs. (32) and (33) can for-

ally be extended to encompass the entire space. 

. Short-hand integral-operator notation 

Let us define the potential dyadic 

↔ 
 (r , r ′ ) �= U(r ) δ(r − r ′ ) 

↔ 
I , (34)

here δ( r ) is the three-dimensional delta function, and introduce

hort-hand integral-operator notation according to 

ˆ 
 E 

�= 

∫ 
R 3 

d 

3 r ′ 
↔ 
B (r , r ′ ) ·E ( r ′ ) (35) 

nd 

ˆ B ̂

 C 
)
E 

�= 

ˆ B 

(
ˆ C E 

)
(36) 

note that this use of a caret above an Italic character to denote

n integral operator should not be confused with a caret above a

old-face upright character denoting a unit vector). Then the main

ormulas of the preceding section can be re-written as follows: 

 

S = i ω μ0 ̂
 G J S ( cf . Eq . ( 17 ) ) (37) 

 = i ω μ0 ̂
 G J S + 

ˆ G ̂

 U E = E S + 

ˆ G ̂

 U E ( cf . Eq . ( 24 ) ) , (38)

S 
ˆ 
 E = 

ˆ T E ( cf . Eq . ( 25 ) ) , (39) 
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l  

e

J  

T

G  
E = E S + 

ˆ G ̂

 T E S ( cf . Eqs . ( 22 ) and ( 26 ) ) , (40)

ˆ T = 

ˆ U + 

ˆ U 

ˆ G ̂

 T ( cf . Eq . ( 27 ) ) , (41)

E = i ω μ0 ̂
 G S J 

S ( cf . Eq . ( 31 ) ) , (42)

ˆ G S = 

ˆ G + 

ˆ G ̂

 T ˆ G ( cf . Eq . ( 32 ) ) , (43)

and 

ˆ G S = 

ˆ G + 

ˆ G ̂

 U 

ˆ G S ( cf . Eq . ( 33 ) ) , (44)

where the order of the operators is essential and cannot be

changed arbitrarily. 

Let us now define the pseudo-adjoint (transposed) integral op-

erator ˆ B t according to Ref. [68] : 

ˆ B 

t E 
�= 

∫ 
R 3 

d 

3 r ′ 
[ ↔ 

B ( r ′ , r ) 
] T 

·E ( r ′ ) , (45)

where T denotes the conventional transpose of a dyadic. It is anal-

ogous to the (Hermitian) adjoint operator ˆ B ∗ but is based on the

pseudo inner product instead of the standard inner product of the

vector space L 2 ( R 

3 ) 3 [68] . Alternatively, ˆ B t can be defined as 

ˆ B 

t �= 

ˆ Z ̂  B 

∗ ˆ Z , (46)

where ˆ Z is the antilinear operator performing pointwise complex

conjugation [82] . In particular ˆ Z ̂  Z = ̂

 I , where the unit integral op-

erator ˆ I has the dyadic δ(r − r ′ ) 
↔ 

I as its kernel. 

Taking pseudo adjoint of an operator has many properties anal-

ogous to those of matrix or dyadic transposition as well as those

of the Hermitian adjoint. In particular, the dyadic identity (↔ 
B 

↔ 
C 

)T 

= 

↔ 
C T 

↔ 
B 

T (47)

(see, e.g., Appendix A in Ref. [19] ) and Eq. (45) yield (
ˆ B ̂

 C 
)t = 

ˆ C t ˆ B 

t , (48)

which in turn implies (
ˆ B 

t 
)−1 = 

(
ˆ B 

−1 
)t 

, (49)

where one inverse exists and is bounded if and only if the other

one exists and is bounded. Eq. (49) is derived by a direct multipli-

cation of ˆ B t by ( ̂  B −1 ) t in both possible orders (see also Ref. [68] ). 

We call an integral operator pseudo self-adjoint if it is equal to

its own pseudo adjoint, ˆ B = 

ˆ B t , which is equivalent to its dyadic

kernel being ( complex ) symmetric , i.e., satisfying 

↔ 
B (r , r ′ ) = 

[ ↔ 
B ( r ′ , r ) 

] T 
, (50)

which includes the interchange of the arguments as well as dyadic

transposition. Note that pseudo self-adjoint is the simplest case of

a “complex symmetric” linear operator defined in Ref. [82] for a

specific choice of ˆ Z ; hence we use the former term to avoid ambi-

guity. 

Importantly, the free-space dyadic Green’s operator ˆ G is pseudo

self-adjoint, and the same is obviously true of ˆ U for isotropic (as

considered in this tutorial) or, more generally, for any reciprocal

media [83] . 

As discussed in Section 3 , we assume that the VIE (38) has a

solution, and this solution is unique. This implies that the oper-

ator ˆ I − ˆ G ̂

 U is (uniquely) invertible. The invertibility of the opera-

tor ˆ I − ˆ G ̂

 U ensures, in turn, the existence of a unique solution of

Eq. (44) . The operator ˆ I − ˆ U ̂

 G is the pseudo adjoint of ˆ I − ˆ G ̂

 U (as

a consequence of the pseudo self-adjointness of the multiplicative

factors and Eq. (48) ) and, according to Eq. (49) , is also invertible,
thereby ensuring the existence of a unique solution of Eq. (41) . 
. Symmetry of the transition dyadic and of the source Green’s 

yadic 

A fundamental and useful property of the transition dyadic

s the symmetry relation which follows from the pseudo self-

djointness of the corresponding integral operator [57] : 

↔ 
 (r , r ′ ) = 

[ ↔ 
T ( r ′ , r ) 

] T 
, r , r ′ ∈ R 

3 . (51)

 somewhat informal way to infer Eq. (51) is to iterate Eq. (41) : 

ˆ 
 = 

ˆ U + 

ˆ U 

ˆ G ̂

 U + 

ˆ U 

ˆ G ̂

 U 

ˆ G ̂

 U + · · · . (52)

ince each term in this expansion is pseudo self-adjoint, their sum

ust also be a pseudo self-adjoint operator. However, there is no

uarantee that the series (52) always converges, which calls for a

ore formal proof of the symmetry relation (51) . 

Taking pseudo adjoint of both sides of Eq. (41) , recalling

q. (48) , and accounting for the pseudo self-adjointness of ˆ U and
ˆ 
 yields 

ˆ 
 

t = 

ˆ U + 

ˆ T t ˆ G ̂

 U . (53)

pon left-multiplying this formula by ˆ I − ˆ U ̂

 G we have 

ˆ 
 

t − ˆ U 

ˆ G ̂

 T t = 

ˆ U − ˆ U 

ˆ G ̂

 U + 

ˆ T t ˆ G ̂

 U − ˆ U 

ˆ G ̂

 T t ˆ G ̂

 U (54)

r 

ˆ T t − ˆ U − ˆ U 

ˆ G ̂

 T t 
)(

ˆ I − ˆ G ̂

 U 

)
= 

ˆ 0 , (55)

here ˆ 0 is a zero operator. The invertibility of the operator ˆ I − ˆ G ̂

 U 

iscussed in the preceding section implies 

ˆ 
 

t = 

ˆ U + 

ˆ U 

ˆ G ̂

 T t . (56)

Thus ˆ T t satisfies the same Eq. (41) as ˆ T . Since this equation has

 unique solution, we arrive at the symmetry relation 

ˆ 
 = 

ˆ T t , (57)

hat is, Eq. (51) . 

It is also easily shown that Eq. (43) coupled with the symmetry

elation (57) , the pseudo self-adjointness of the free-space Green’s

perator, and Eq. (48) implies the pseudo self-adjointness of the

ource Green’s operator: 

ˆ 
 S = 

ˆ G 

t 
S , (58)

r, in terms of the source Green’s dyadic, 

↔ 
 S (r , r ′ ) = 

[ ↔ 
G S ( r 

′ , r ) 
] T 

, r , r ′ ∈ R 

3 . (59)

It is in fact remarkable how the straightforward use of the

seudo self-adjointness of the transition operator allows one to

ompletely bypass the cumbersome use of the Lorentz reciprocity

n the derivation of the symmetry of the source Green’s dyadic

cf. Ref. [44] ). The relation between reciprocity and pseudo self-

djointness of integral operators was discussed in Ref. [68] , but

ithout an explicit derivation for an arbitrary scattering object. 

. Far-field point-like source 

To give an instructive example of applying Eqs. (17) and (26) ,

et us consider a point-like source located in the far zone of the

ntire volume V INT and centered at r S (see Fig. 2 ): 

 

S ( r ′′ ) = δ( r ′′ − r S ) J 
S 
0 . (60)

o this end, we use the asymptotic formula 

↔ 
 ( r ′′ , r S ) → 

(↔ 
I − ˆ r S � ˆ r S 

)
exp(i k 1 r S ) 

exp 

(
−i k 1 ̂  r S ·r ′′ 

)
(61)
4 π r S 



M.I. Mishchenko, M.A. Yurkin / Journal of Quantitative Spectroscopy & Radiative Transfer 214 (2018) 158–167 163 

.

rS

O

.

incˆ ˆ= −n rS

Point-like source

Fig. 2. Impressed point-like source located in the far zone of the scattering object. 

v  

(  

t  

t  

c  

V

E

O  

t

E

p

n

(

E  

s

E

 

(

E

T  

e  

g  

c  

p  

i  

e

1

 

n

b  

f  

t  

i  

d

G  

w  

a  

o

E  

w

A

i  

v  

i

E  

 

s  

c  

c

A

I  

p  

E

 

d  

r  

w  

o  

[  

l  

t  

r  

e

 

d
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E

↔
S

N  

n  

c

↔
inc inc 
alid in the limit | k 1 | r S → ∞ , r S / R INT → ∞ , and r S / ( | k 1 | R 2 INT 
) → ∞

see Appendix B of Ref. [19] ), where r S = | r S | is the distance from

he origin to the source; ˆ r S = r S / r S is the unit vector pointing from

he origin to the source; and R INT is the radius of the smallest

ircumscribing sphere of the object centered at O . Then for r ′ ′ ∈
 INT , 

 

S ( r ′′ ) = i ω μ0 exp 

(
−i k 1 ̂  r S ·r ′′ 

)
× exp(i k 1 r S ) 

4 π r S 

(↔ 
I − ˆ r S � ˆ r S 

)
·J S 0 . (62) 

bviously, E 

S ( r ′ ′ ) is a transverse, homogeneous, locally plane elec-

romagnetic wave 

 

S ( r ′′ ) = E 

inc 
0 exp 

(
i k 1 ̂  n 

inc ·r ′′ ) (63) 

ropagating in the direction 

ˆ  inc = − ˆ r S (64) 

see Fig. 2 ) and having the vector amplitude 

 

inc 
0 = i ω μ0 

exp(i k 1 r S ) 

4 π r S 

(↔ 
I − ˆ r S � ˆ r S 

)
·J S 0 (65)

uch that 

 

inc 
0 ·ˆ n 

inc = 0 . (66) 

Then the result of evaluating Eq. (26) for the impressed source

60) is 

 

sca (r ) = 

∫ 
V INT 

d 

3 r ′ 
↔ 
G (r , r ′ ) 

·
∫ 

V INT 

d 

3 r ′′ 
↔ 
T ( r ′ , r ′′ ) ·E 

inc 
0 exp 

(
i k 1 ̂  n 

inc ·r ′′ ). (67) 

his formula reproduces the result of the traditional approach to

lectromagnetic scattering based on the postulate that the homo-

eneous plane wave E 

inc ( r ) = E 

inc 
0 

exp ( i k 1 ̂  n 

inc ·r ) is the impressed in-

ident field [1,5,10,19] . This demonstrates how a sufficiently distant

oint-like impressed source can effectively be “hidden” by replac-

ng it with an impressed field in the form of a homogeneous plane

lectromagnetic wave propagating in a source-free space. 

0. Far-field and general scattering dyadics 

A well-known result of the conventional theory of electromag-
etic scattering is the calculation of the scattered field generated 

S

y an impressed homogeneous plane electromagnetic wave in the

ar zone of the entire object (see, e.g., Refs. [1,5,10,19] ). To recover

his result, we use the assumptions and formulas of the preced-

ng section and invoke the following asymptotic form of the first

yadic Green’s function on the right-hand side of Eq. (67) : 

↔ 
 (r , r ′ ) → 

(↔ 
I − ˆ r � ˆ r 

)
exp(i k 1 r) 

4 π r 
exp 

(
−i k 1 ̂  r ·r ′ ), (68)

here r = | r |, ˆ r = r / r, and it is assumed that | k 1 | r → ∞ , r / R INT → ∞ ,

nd r/ ( | k 1 | R 2 INT 
) → ∞ . The result is the scattered field in the form

f a transverse outgoing spherical wave given by 

 

sca (r ) → 

exp(i k 1 r) 

r 

↔ 
A 

(
ˆ r , ̂  n 

inc 
)·E 

inc 
0 , (69)

here 

↔ 
 ( ̂ r , ̂  n 

inc ) = 

1 

4 π

(↔ 
I − ˆ r � ˆ r 

)
·
∫ 

V INT 

d 

3 r ′ exp 

(
−i k 1 ̂  r ·r ′ )

×
∫ 

V INT 

d 

3 r ′′ 
↔ 
T ( r ′ , r ′′ ) ·

(↔ 
I − ˆ n 

inc 
� ˆ n 

inc 
)

× exp 

(
i k 1 ̂  n 

inc ·r ′′ ) (70) 

s the so-called far-field scattering dyadic, while the radial unit

ector ˆ r plays the role of the scattering direction. It is easily seen

ndeed that 

 

sca (r ) ·ˆ r = 0 . (71)

Note that the dyadic factor 
↔ 

I − ˆ n 

inc 
� ˆ n 

inc on the right-hand

ide of Eq. (70) does not follow directly from Eq. (67) and is in-

luded to make the far-field scattering dyadic reciprocal as a direct

onsequence of the symmetry relation (51) and Eq. (47) : 

↔ 
 

(
−ˆ n 

inc , −ˆ r 
)

= 

[ ↔ 
A 

(
ˆ r , ̂  n 

inc 
)] T 

. (72) 

t is easily seen, however, that since the field (63) is a transverse

lane electromagnetic wave, including this factor does not change

q. (69) owing to Eq. (66) : ( 
↔ 

I − ˆ n 

inc 
� ˆ n 

inc ) ·E 

inc 
0 

≡ E 

inc 
0 

. 

Note that in contrast to Eq. (51) , the reciprocity relation (72) ad-

itionally includes the reversal of the incidence and scattering di-

ections. The reciprocity of the far-field scattering dyadic has been

ell known in the discipline of electromagnetic scattering since its

riginal (and somewhat less straightforward) derivation by Saxon

84] . In fact, it serves as the very origin of many reciprocity re-

ations in the theory of radiative transfer and coherent backscat-

ering [13] . Furthermore, it has routinely been used for testing the

esults of numerical simulations of electromagnetic scattering (see,

.g., Ref. [85] ). 

It is useful to generalize Eq. (69) by introducing the scattering

yadic 
↔ 

S ( r , ̂  n 

inc ) operating throughout the entire space: 

 

sca (r ) = 

↔ 
S 
(
r , ̂  n 

inc 
)·E 

inc 
0 , r ∈ R 

3 . (73)

q. (67) then implies 

 

 

(
r , ̂  n 

inc 
)

= 

∫ 
V INT 

d 

3 r ′ 
↔ 
G (r , r ′ ) ·

∫ 
V INT 

d 

3 r ′′ 
↔ 
T ( r ′ , r ′′ ) 

·
(↔ 

I − ˆ n 

inc 
� ˆ n 

inc 
)

exp 

(
i k 1 ̂  n 

inc ·r ′′ ). (74) 

ote again that the inclusion of the dyadic factor 
↔ 

I − ˆ n 

inc 
� ˆ n 

inc is

ot strictly necessary, but serves to make Eq. (74) asymptotically

onsistent with Eq. (69) , as follows: 

 ( ) exp(i k 1 r) ↔ ( )

 r ̂ r , ̂  n 

→ 

r→∞ r 
A ˆ r , ̂  n . (75) 



164 M.I. Mishchenko, M.A. Yurkin / Journal of Quantitative Spectroscopy & Radiative Transfer 214 (2018) 158–167 

.O

.

ˆrr

r0
.

ˆ−r

Fig. 3. Interpretation of Eq. (80) . 
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11. Far-zone source Green’s dyadic 

Eq. (32) and the symmetry relation (59) imply a fundamental

relationship between the general scattering dyadic 
↔ 

S ( r , ̂  n 

inc ) intro-

duced in the preceding section and the far-zone limit of the source

Green’s dyadic. Indeed, we first note that [ ↔ 
G S (r , r 0 ) 

] T 
= 

↔ 
G S ( r 0 , r ) 

= 

↔ 
G ( r 0 , r ) + 

∫ 
V INT 

d 

3 r ′ 
↔ 
G ( r 0 , r 

′ ) 

·
∫ 

V INT 

d 

3 r ′′ 
↔ 
T ( r ′ , r ′′ ) ·

↔ 
G ( r ′′ , r ) . (76)

Let us now assume that | k 1 | r → ∞ , r / R INT → ∞ , and r/ ( | k 1 | R 2 INT 
) →

∞ , so that 

↔ 
G ( r 0 , r ) → 

(↔ 
I − ˆ r � ˆ r 

)
exp(i k 1 r) 

4 π r 
exp 

(
−i k 1 ̂  r ·r 0 

)
(77)

and 

↔ 
G ( r ′′ , r ) → 

(↔ 
I − ˆ r � ˆ r 

)
exp(i k 1 r) 

4 π r 
exp 

(
−i k 1 ̂  r ·r ′′ ). (78)

Then comparison with Eq. (74) makes it obvious that 

lim 

r→∞ 

[ ↔ 
G S (r , r 0 ) 

] T 
= 

exp(i k 1 r) 

4 π r 

[ 
exp 

(
−i k 1 ̂  r ·r 0 

)↔ 
I + 

↔ 
S ( r 0 , −ˆ r ) 

] 
·
(↔ 

I − ˆ r � ˆ r 

)
(79)

or 

lim 

r→∞ 

↔ 
G S (r ̂ r , r 0 ) = 

exp(i k 1 r) 

4 π r 

(↔ 
I − ˆ r � ˆ r 

)
·
{

exp 

(
−i k 1 ̂  r ·r 0 

)↔ 
I + 

[ ↔ 
S ( r 0 , −ˆ r ) 

] T }
. (80)

In other words, the field generated by the object at a far-field

observation point r ̂ r in response to the point-like source centered

at an arbitrary r 0 ∈ R 

3 can be expressed in terms of the total field

at r 0 generated by the object in response to a far-field point-like

source creating a homogeneous quasi-plane electromagnetic wave

propagating in the direction −ˆ r (see Fig. 3 ). 

Eq. (80) generalizes Eq. (7.2.54) of Ref. [44] and can be con-
sidered an extension of Eq. (68) . Interestingly, it can be used to s
alculate the energy radiated by a point-like source to infinity

as related to the radiative part of the enhancement of the de-

ay rate of the point emitter near a nanoparticle [86] ) using any

tandard computer solver capable of calculating the distribution of

 ( r ) in the vicinity of the particle (the so-called near-field) under

he plane-wave excitation [87] . 

Note also that the derivations in Sections 9 –11 can be fur-

her streamlined by introducing additional operators. Proving their

seudo self-adjointness then immediately implies the correspond-

ng reciprocity relations, as will be reported elsewhere. 

2. Generalized Foldy equations 

Let us now assume that N ≥ 2 in Fig. 1 and generalize the fa-

ous Foldy equations [64] by making explicit use of the represen-

ation of the scattering object as a collection of non-overlapping

istinct components. Let us re-write Eq. (34) as follows: 

↔ 
 (r , r ′ ) = 

N ∑ 

i = 1 

↔ 
U i (r , r ′ ) , (81)

here 

↔ 
 i (r , r ′ ) �= 

{ ↔ 
0 , r / ∈ V 

i 
INT , 

U(r ) δ(r − r ′ ) 
↔ 
I , r ∈ V 

i 
INT . 

(82)

he next step is to introduce the i th-component transition dyadic
 

T i (r , r ′ ) with respect to the common coordinate system centered at

 as the one satisfying the individual Lippmann–Schwinger equa-

ion formulated for the i th component of the object as if all the

ther components did not exist: 

ˆ 
 i = 

ˆ U i + 

ˆ U i ̂
 G ̂

 T i , (83)

here we again use the operator notation introduced in Section 7 .

e complete the definition of the component transition dyadic by

etting 

↔ 
 i (r , r ′ ) = 

↔ 
0 unless r ∈ V 

i 
INT and r ′ ∈ V 

i 
INT (84)

et us further define the i th partial “exciting” field E i ( r ) according

o 

 = 

(
ˆ I + 

ˆ G ̂

 T i 
)
E i (85)

cf. Eq. (40) ), where the invertibility of ˆ I + 

ˆ G ̂

 T i is discussed later in

his section. Eqs. (83) and (85) then imply 

ˆ 
 i E i = 

ˆ U i E. (86)

n other words, E i is the field that is transformed by the i th com-

onent transition dyadic into the polarization density inside this

omponent (cf. Eq. (39) ). Summing up all such partial exciting

elds and using Eqs. (38) and (81) yields 

 = E S + 

N ∑ 

i = 1 
ˆ G ̂

 T i E i . (87)

his, together with Eq. (85) , leads to the following closed system

f N integral equations for E i : 

 i = E S + 

N ∑ 

j( � = i ) = 1 
ˆ G ̂

 T j E j . (88)

The electromagnetic Foldy equations (87) and (88) have been

erived previously (see, e.g., Refs. [10,11,19,65] ) but in a less

traightforward way. It is easily seen that they imply the Neumann
eries 
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 = E S + 

N ∑ 

i =1 

ˆ G ̂

 T i E 
S + 

N ∑ 

i =1 
j( � = i )=1 

ˆ G ̂

 T i ̂  G ̂

 T j E 
S 

+ 

N ∑ 

i =1 
j( � = i )=1 
l( � = j)=1 

ˆ G ̂

 T i ̂  G ̂

 T j ̂  G ̂

 T l E 
S + · · · , (89) 

hich has often been cited as revealing “multiple scattering” by a

ulti-component object. It has been argued, however, that in the

requency domain, multiple scattering is a mathematical idealiza-

ion rather than an actual physical phenomenon [88,89] . Another

roblem with the Neumann expansion is that it can be divergent

90,91] . 

Let us further rewrite Eqs. (41) and (83) as follows: 

ˆ 
 = 

ˆ T 
(

ˆ I + 

ˆ G ̂

 T 
)−1 

, (90) 

ˆ 
 i = 

ˆ T i 
(

ˆ I + 

ˆ G ̂

 T i 
)−1 

. (91) 

he invertibility of the operator ˆ I + 

ˆ G ̂

 T follows from 

ˆ I − ˆ G ̂

 U 

)(
ˆ I + 

ˆ G ̂

 T 
)

= 

ˆ I , (92) 

hich is a direct consequence of Eq. (41) , and the invertibility of
ˆ 
 − ˆ G ̂

 U discussed in Section 7 , while the invertibility of ˆ I + 

ˆ G ̂

 T i is

roven analogously. 

Eqs. (81) , (90) , and (91) lead to a compact implicit relation be-

ween the total transition operator of the entire N -component ob-

ect, ˆ T , and the individual-component transition operators ˆ T i : 

ˆ 
 

(
ˆ I + 

ˆ G ̂

 T 
)−1 = 

N ∑ 

i =1 

ˆ T i 
(

ˆ I + 

ˆ G ̂

 T i 
)−1 

. (93) 

he explicit expression for ˆ T follows from Eqs. (41) , (81) , and (91) :

ˆ 
 = 

(
ˆ I − ˆ U 

ˆ G 

)−1 
ˆ U 

= 

[
ˆ I −

N ∑ 

i =1 

ˆ T i 
(

ˆ I + 

ˆ G ̂

 T i 
)−1 

ˆ G 

]−1 
N ∑ 

i =1 

ˆ T i 
(

ˆ I + 

ˆ G ̂

 T i 
)−1 

. 
(94) 

Let us now define 

ˆ 
 i 

�= 

(
ˆ I + 

ˆ G ̂

 T i 
)−1 (

ˆ I + 

ˆ G ̂

 T 
)
. (95) 

ogether with Eq. (93) , this yields 

ˆ 
 = 

N ∑ 

i =1 

ˆ T i ̂  X i (96) 

nd 

ˆ 
 i = 

ˆ I + 

ˆ G ̂

 T − ˆ G ̂

 T i ̂  X i = 

ˆ I + 

ˆ G 

N ∑ 

j( � = i )=1 

ˆ T j ̂  X j , (97)

hich are completely analogous to Eqs. (87) and (88) , since E i =
ˆ 
 i E 

S . Iterating Eqs. (96) and (97) , we obtain the following repre-

entation: 

ˆ 
 = 

N ∑ 

i =1 

ˆ T i + 

N ∑ 

i =1 
j( � = i )=1 

ˆ T i ̂  G ̂

 T j + 

N ∑ 

i =1 
j( � = i )=1 
l( � = j)=1 

ˆ T i ̂  G ̂

 T j ̂  G ̂

 T l + · · · . (98)

f course, this series can also be derived as a direct corollary of

qs. (40) and (89) . 

While being an analytically convenient and visual “multiple-

cattering” representation, Eq. (98) is just the simplest iterative so-

ution of Eq. (97) . It does not necessarily converge, and even if it
oes, it is slower than more advanced numerical iterative methods, 
.g., the conjugate-gradient technique, applied to the same equa-

ion. Th е latter has been previously discussed in the framework of

he superposition T -matrix method and its numerical implemen-

ations such as that in Refs. [92–94] . Alternatively, one can solve

q. (41) or the first part of Eq. (94) for ˆ T using a direct or iterative

rocedure, the benefit being that usually the individual transition

perators ˆ T i do not need to be known or evaluated separately. If

he individual ˆ T i are known then the computational cost of a sin-

le iteration will be comparable for both approaches. However, the

terative solution of Eq. (97) is expected to converge faster for well-

eparated moderately-sized (relative to the wavelength) particles,

ince most of the iterations in Eq. (41) will be spent on refining

he details of each particle independently, which is equivalent to

valuating all ˆ T i . 

3. Final remarks 

Two implicit yet essential limitations of our discussion have

o far been the following. First, we have refrained from the di-

ect treatment of the singularity of the free-space dyadic Green’s

unction 

↔ 

G (r , r ′ ) at points r inside the cumulative scattering vol-

me V INT and/or inside the cumulative source volume V S . Second,

e have assumed that S INT is sufficiently smooth and that the di-

lectric permittivity is a sufficiently smooth function of coordinates

hroughout each component volume V i 
INT 

. 

These two particular aspects of the VIE formalism have thor-

ughly been analyzed in Ref. [73] . In view of that recent compre-

ensive study, one can safely assume that (i) all our formulas are

alid in the sense of Eq. (21) ; and (ii) it is straightforward to fur-

her generalize all our results by considering the scattering object

n the form of an arbitrary finite group of components made of

onmagnetic isotropic materials, including those with edges, cor-

ers, and intersecting internal interfaces. 

The standard VIE formalism originally introduced by Saxon

95] has already been applied to a plethora of problems rang-

ng from the development of the numerically exact “elastic” and

thermal” discrete dipole approximations (see, e.g., Refs. [53,81,96–

8] and references therein) to the first-principles derivation of the

elastic” radiative transfer theory [13,19] . We hope that the ex-

ended formalism summarized in this tutorial brings a certain de-

ree of self-consistency and closure and will help solve even more

omplex problems, including the first-principles derivation of the

thermal” radiative transfer theory. 
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