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Although the model of randomly oriented nonspherical
particles has been used in a great variety of applications
of far-field electromagnetic scattering, it has never been de-
fined in strict mathematical terms. In this Letter, we use the
formalism of Euler rigid-body rotations to clarify the con-
cept of statistically random particle orientations and derive
its immediate corollaries in the form of the most general
mathematical properties of the orientation-averaged extinc-
tion and scattering matrices. Our results serve to provide a
rigorous mathematical foundation for numerous publica-
tions in which the notion of randomly oriented particles
and its light-scattering implications have been considered
intuitively obvious. © 2017 Optical Society of America
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The concept of randomly oriented nonspherical particles has
been widely used in studies of far-field electromagnetic scatter-
ing and radiative transfer (see, e.g., Refs. [1–20] and references
therein). Yet, the notion of random orientation has always been
assumed to be self-explanatory, and its consequences such as
optical isotropy of the extinction matrix and the dependence
of the scattering matrix on only the scattering angle have been
taken for granted as physically obvious and needing no proof.
Furthermore, a specific integral over the three Eulerian angles
has been assumed—again without explicit justification—to re-
present the desired averaging over random particle orientations
[4,7–12,14–19,21,22].

One should keep in mind, however, that literature on
electromagnetic scattering by particles contains many examples
of “physical obviousness” turning out to be a shaky and mis-
leading argument. Therefore, the great practical importance of
the model of electromagnetic scattering by randomly oriented
particles makes it essential to replace the presumed physical ob-
viousness of the main consequences of this model with explicit
mathematical proofs. We do that in the rest of this Letter.

Although the notion of a randomly oriented particle may
appear to be intuitively evident, it needs to be formulated
and parameterized mathematically before it can be used to
derive useful corollaries. First, it is imperative to recognize that
the randomness of particle orientations can be achieved only in
the statistical sense, i.e., by assuming that (1) an optical observ-
able is measured over a sufficiently long period of time and
(2) the scattering process is ergodic [14,19]. These assumptions
allow one to replace time averaging with ensemble averaging,
including averaging over particle orientations. In this Letter, we
apply the concept of random orientations to the far-field extinc-
tion and scattering matrices. As such, it is relevant to scattering
by a single random particle or a small and sparse random multi-
particle group as well as to the radiative transfer theory. For
simplicity, we will consider only far-field scattering by a single
random particle or a random two-particle group, but generali-
zation to other relevant situations is straightforward [14,19].

Second, it is quite natural to parameterize the orientation of
a particle with respect to a fixed right-handed reference frame
Oxyz by affixing a right-handed reference frame Ox 0y 0z 0 to the
particle and specifying the orientation of Ox 0y 0z 0 relative to
Oxyz. Note that the two reference frames are assumed to have
the same origin representing, e.g., the center of mass of the
particle (Fig. 1).

It has been known since the classical work by Leonhard
Euler that the orientation of Ox 0y 0z 0 with respect to Oxyz can
be uniquely parameterized (except when β � �π) by the set of
three rotation angles g � fα; β; γg, as shown in Fig. 2. It is
therefore natural to parameterize the orientation of the particle
by specifying the three Euler angles that transform the labora-
tory reference frame Oxyz into the particle reference frame
Ox 0y 0z 0. A statistical distribution of particle orientations can
then be parameterized by the normalized probability density
function P�g� such thatZ

2π

0

dα

Z
π

0

dβ

Z
2π

0

dγP�g� � 1: (1)

The average of a function f �g� over particle orientations is then
calculated according to
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hf i �
Z
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0
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2π

0

dγf �g�P�g�: (2)

The next step is to determine the form of the probability
density function Pr�g� corresponding to the random (or
uniform) orientation distribution. Let us affix to a nonspherical
particle two different particle reference frames, Ox 0y 0z 0 and
Ox 0 0y 0 0z 0 0, having the same origin (Fig. 3). We will determine

Pr�g� by requiring that irrespective of the particle morphology
and of the choice of the two particle reference frames, averaging
any function of particle orientation over the uniform orienta-
tion distribution of either Ox 0y 0z 0 or Ox 0 0y 0 0z 0 0 yields exactly
the same result. This natural definition is an essential step from
a physical notion of random orientation to rigorous mathemati-
cal implications.

Let g̃ � fα̃; β̃; γ̃g be the rotation transformingOx 0 0y 0 0z 0 0 into
Ox 0y 0z 0 and gg̃ be the rotation resulting from the rotation g̃ fol-
lowed by the rotation g � fα; β; γg. Then, the above definition
of randomness of particle orientations implies the identityZ
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Z
π
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Z
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0

dγf �g�Pr�g�

≡
Z
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0
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0

dγf �gg̃�Pr�g�; (3)

valid for any fixed g̃ . In the context of the group theory, Pr�g�
corresponds to a normalized right Haar measure on the 3D
rotation group. This measure is invariant to a right translation
by an arbitrary group element. The left Haar measure is defined
by replacing gg̃ with g̃g on the right-hand side of Eq. (3).

The normalized right Haar measure is unique for any para-
metrization of the group [24,25]. In particular, a fundamental
consequence of Eq. (3) derived in Section 1.3 of Chap. 1 in
Ref. [26] and Section 1.6 of Chap. 1 in Ref. [27] (see also
Ref. [28]) is that

Pr�g� �
sin β

8π2
: (4)

Moreover, the left and right Haar measures coincide for the 3D
rotation group [27,28] (which implies that Eq. (3) remains
valid with the same Pr�g� upon replacing gg̃ with g̃g), so we
do not distinguish between them further on. The derivation of
Eq. (4) was originally performed using the zxz notation of the
Euler angles (named by the axes of consecutive rotations).
However, it is also valid for any other (proper) notation in
which the first and the last axes coincide, including the zyz
notation of Fig. 2. By contrast, the Haar measure is more com-
plicated for Tait–Bryan angles wherein all three rotation axes
are different [28]. This justifies the conventional choice of the
Euler angles for the calculation of orientation-averaged optical
properties.

Thus, we can conclude that averaging over random particle
orientations is represented by

hf ir �
1

8π2

Z
2π

0

dα

Z
π

0

dβ sin β

Z
2π

0

dγf �α; β; γ�: (5)

Let us now consider the most fundamental properties of the
4 × 4 extinction matrix averaged over random orientations of a
nonspherical particle. The definition of the extinction matrix
K�n̂� can be found in Section 2.7 of Ref. [12], Section 3.8
of Ref. [14], or Section 13.3 of Ref. [19]. Let n̂ and n̂1 be the
unit vectors specifying two different directions of propagation
of the incident plane electromagnetic wave, and let the corre-
sponding extinction matrices be defined relative to the labora-
tory reference frame Oxyz and the auxiliary reference frame
Ox1y1z1, respectively (Fig. 4). Note that n̂ points in the pos-
itive direction of the z axis, n̂1 points in the positive direction
of the z1 axis, and the planes Oxz and Ox1z1 serve as the refer-
ence planes for defining the corresponding sets of the four
Stokes parameters [12,14,19]. The rotations g and g̃ transform
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Fig. 1. Laboratory, Oxyz, and particle, Ox 0y 0z 0, reference frames
having a common origin.
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Fig. 2. Euler rotation angles 0 ≤ α < 2π, 0 ≤ β ≤ π, and 0 ≤ γ <
2π as defined in Ref. [23].
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Fig. 3. Two particle reference frames having a common origin.
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the laboratory reference frame Oxyz into Ox 0y 0z 0 and Ox1y1z1,
respectively.

The implication of these definitions is as follows:

K�n̂1; g̃� � K�n̂; e� ⇒ K�n̂1; gg̃� � K�n̂; g�; (6)

where the second argument denotes the particle orientation and
e is the identity element of the rotation group (i.e., no rotation).
In other words, simultaneous rotation of the incident beam
and the particle does not change the extinction matrix. Then,
Eqs. (3) and (6) imply

hK�n̂1; g�ir ≡ hK�n̂; g�ir ≡K; (7)

where the averaging is defined by Eq. (5). In other words, the
orientation-averaged extinction matrix is independent of the
direction of propagation of the incident plane wave and of
the choice of the reference plane used to define the Stokes
parameters.

The derivation of the general structure of K is based on the
consideration of pairs of reciprocal scattering configurations as
defined in Ref. [2], i.e., those with the incident and scattering
directions interchanged and inverted. The standard assumption
has always been that for each particle orientation there is
another one called reciprocal. However, this assumption in
Section 5.22 of Ref. [2] was not accompanied by an explicit
mathematical definition of statistically random orientations,
which left it unclear whether the numbers of original and
reciprocal orientations are always equal. Therefore, we instead
exploit Eq. (3) and the fact that the reciprocal configuration
can be obtained from the original one by a single rotation
g̃ . The particular form of this rotation is known for arbitrary
n̂ and n̂ 0 [2] but is unimportant for the following. Equation (3)
then yields

hK�n̂; g g̃�ir � hK�n̂; g�ir �
1

2
hK�n̂; gg̃� �K�n̂; g�ir: (8)

This formula allows for the application of the reciprocity
relation for the amplitude scattering matrix [29], which leads
to the cancellation of the elements K 13, K 31, K 24, and K 42.
Furthermore, owing to Eq. (7), the extinction matrix must be
invariant with respect to an arbitrary rotation of the reference
plane around n̂, L�η�KL�−η� ≡K, where L�η� is the Stokes
rotation matrix for the rotation angle η [12,14,19]. It is then
straightforward to show that the resulting orientation-averaged
extinction matrix has a highly symmetric structure given by

K �

2
664
K 11 0 0 K 14

0 K 11 K 23 0
0 −K 23 K 11 0

K 14 0 0 K 11

3
775 (9)

and has only three independent elements.
In addition, let us assume that the nonspherical particle is

accompanied by its mirror counterpart. The following
derivation requires the second particle to be a mirror image
of the first particle with respect to the fixed scattering plane
Oxz (assumption 2 in Section 5.22 of Ref. [2]). We set the
particle reference frames such that they form a mirror-symmet-
ric configuration with respect to the Oxz plane in the default
orientation. We then note that the reflection h with respect to
the Oxz plane is a combination of the rotation gy around the y
axis by an angle π followed by the inversion i �h � igy�, and i
commutes with any rotation or reflection (e.g., Section 4.1 of
Ref. [30]). Then, the orientation average of any property of the
mirror particle is given by

hf h�g�ir _�hf �gh�ir � hf i�ggy�ir � hf i�g�ir
� hf i�gyg�ir � hf �hg�ir; (10)

where f i�g� _�f �gi�, and we have used Eq. (3) as well as its
counterpart with g and g̃ interchanged. In other words,
Eq. (10) proves that reflections and rotations effectively com-
mute inside the orientation averaging. In application to K this
implies that

hKh�n̂; g�ir � hK�n̂; g�ir � hK�n̂; hg� �K�n̂; g�ir; (11)

i.e., the averaging is performed on pairs for which the ampli-
tude scattering matrices are intimately related [2], thereby
causing the cancellation of the remaining off-diagonal elements
of K. The latter is then diagonal and has only one independent
element:

K � C ext diag�1; 1; 1; 1�; (12)

where C ext is the extinction cross section. It is easily seen that
Eq. (12) is also valid for a single randomly oriented particle with
a plane of symmetry.

Finally, let us consider the most general properties of the
orientation-averaged 4 × 4 Stokes scattering matrix. We remind
the reader that the scattering matrix F�n̂ 0; n̂� for the incidence
direction n̂ and the scattering direction n̂ 0 relates the Stokes
parameters of the incident plane wave and the scattered spheri-
cal wave in the far zone of the particle. In this case, both sets of
the Stokes parameters are defined with respect to the scattering
plane (i.e., the plane through n̂ and n̂ 0).

As before, let n̂ and n̂1 be the unit vectors specifying two
different incidence directions, and let the corresponding scat-
tering planes be given by the Oxz and Ox1z1 planes of the
reference frames Oxyz and Ox1y1z1, respectively (Fig. 4). The
corresponding scattering directions, n̂ 0 and n̂ 0

1, are obtained by
rotating the vectors n̂ and n̂1 clockwise around the y and y1 axis,
respectively, through the same angleΘ called the scattering angle.

Completely analogous to the case of the extinction matrix,
simple geometrical considerations suggest that

F�n̂ 0
1; n̂1; g g̃� � F�n̂ 0; n̂; g�; (13)

which, together with Eq. (3), implies that

hF�n̂ 0
1; n̂1; g�ir ≡ hF�n̂ 0; n̂; g�ir ≡ F�Θ�; (14)
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Fig. 4. Laboratory, Oxyz, and auxiliary, Ox1y1z1, reference frames.
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where the averaging is defined by Eq. (5). Thus, the orientation-
averaged scattering matrix is independent of the incidence
direction and of the orientation of the scattering plane and is
a function of only the scattering angle.

One can then use the reciprocity relation for the amplitude
scattering matrix [29] and the line of thought in Section 5.22 of
Ref. [2] to show that the orientation-averaged scattering matrix
has 10 independent elements and is given by

F�Θ��

2
64

F 11�Θ� F 12�Θ� F 13�Θ� F 14�Θ�
F 12�Θ� F 22�Θ� F 23�Θ� F 24�Θ�
−F 13�Θ� −F 23�Θ� F 33�Θ� F 34�Θ�
F 14�Θ� F 24�Θ� −F 34�Θ� F 44�Θ�

3
75: (15)

The only essential missing step in Ref. [2] is the explicit use of
Eq. (8) with K�n̂; g� being replaced by F�n̂ 0; n̂; g�.

Also, assuming that the randomly oriented nonspherical
particle is accompanied by its randomly oriented mirror
counterpart and using Eq. (10) or the corresponding analog
of Eq. (11) (with reflection defined with respect to the scatter-
ing plane) ultimately yields the following conventional block-
diagonal scattering matrix (cf. Refs. [1,2]):

F�Θ� �

2
64
F 11�Θ� F 12�Θ� 0 0
F 12�Θ� F 22�Θ� 0 0

0 0 F 33�Θ� F 34�Θ�
0 0 −F 34�Θ� F 44�Θ�

3
75: (16)

It can easily be shown that this formula also applies to a single
randomly oriented particle with a plane of symmetry.

The previous discussion has been based on the assumption
that all rotations of a particle occur in such a way that a point
inside the particle (e.g., its center of mass) remains fixed at the
origin of the laboratory reference frame. However, the extinc-
tion and scattering matrices are invariant with respect to parallel
translations of the particle as long as these translations are suf-
ficiently small (see Section 3.1 of Ref. [12] or Section 13.9 of
Ref. [19]). Therefore, all properties of the orientation-averaged
extinction and scattering matrices remain the same if the par-
ticle wobbles arbitrarily during the measurement.

In summary, we began this Letter by giving the explicit
mathematical definition of a randomly oriented (in the statis-
tical sense) nonspherical particle. We then derived the main
properties of the far-field extinction and scattering matrices as
direct mathematical corollaries of Eq. (3) rather than assuming
them to be intuitively obvious. As a result, we have provided
the rigorous (and long overdue) justification of the main prem-
ises implicit in Refs. [1–20] and numerous related publications.
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