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a b s t r a c t 

The majority of previous studies of the interaction of individual particles and multi-particle groups with 

electromagnetic field have focused on either elastic scattering in the presence of an external field or self- 

emission of electromagnetic radiation. In this paper we apply semi-classical fluctuational electrodynamics 

to address the ubiquitous scenario wherein a fixed particle or a fixed multi-particle group is exposed to 

an external quasi-polychromatic electromagnetic field as well as thermally emits its own electromag- 

netic radiation. We summarize the main relevant axioms of fluctuational electrodynamics, formulate in 

maximally rigorous mathematical terms the general scattering–emission problem for a fixed object, and 

derive such fundamental corollaries as the scattering–emission volume integral equation, the Lippmann–

Schwinger equation for the dyadic transition operator, the multi-particle scattering–emission equations, 

and the far-field limit. We show that in the framework of fluctuational electrodynamics, the computa- 

tion of the self-emitted component of the total field is completely separated from that of the elastically 

scattered field. The same is true of the computation of the emitted and elastically scattered components 

of quadratic/bilinear forms in the total electromagnetic field. These results pave the way to the practical 

computation of relevant optical observables. 

Published by Elsevier Ltd. 
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. Introduction 

The standard treatment of the scattering of electromagnetic

aves by particles and multi-particle groups [1–20] has tradition-

lly been based on “deterministic” macroscopic electromagnetics

21–24] and as such has not included explicitly the “stochastic”

henomenon of thermal emission by bodies having non-zero ab-

olute temperatures. In contrast, a large body of recent publica-

ions (see, e.g., Refs. [25–39] and references therein) have focused

n the study of (near-field) energy transfer in thermally emitting

hysical systems (including many-particle groups) using the semi-

lassical “fluctuational” electrodynamics (FED) [40–44] . However,

here are practical situations wherein thermal emission processes

re accompanied by elastic scattering of external electromagnetic

adiation [36] . An important example of such mixed scenario is a

loud of particles in a planetary atmosphere which can both scat-

er the incident stellar light at near-infrared wavelengths as well

s emit its own near-infrared radiation (see, e.g., Refs. [45–49] and

eferences therein). Fortunately, by its very construct, FED is ideally

uited to address such situations. 

Indeed, FED amounts to a reformulation of the macroscopic

axwell equations (MMEs) wherein the usual “deterministic” vol-
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me charge density is supplemented by the volume density of the

stochastic” thermal electric current. The latter is caused by ran- 

omly fluctuating positions of elementary charges constituting a

ody at a non-zero absolute temperature. As a consequence, the

odified MMEs describe simultaneously the processes of thermal

mission as well as elastic scattering, albeit at the price of added

athematical complexity. 

The classical formalism based on the MMEs and developed

or the study of elastic electromagnetic scattering by single- and

ulti-particle objects is well developed [1–10,12–20] . The next ob-

ious step is to analyze in a systematic way how the main as-

ects of this elastic-scattering formalism are modified by the in-

lusion of thermal emission effects. This paper is intended to facili-

ate this analysis by summarizing the main relevant axioms of FED,

ormulating in maximally rigorous mathematical terms the gen-

ral scattering–emission problem for a fixed (multi-particle) object

xposed to a quasi-polychromatic external field, and generalizing

uch fundamental corollaries of the MMEs as the volume integral

quation, the Lippmann–Schwinger equation for the dyadic tran-

ition operator, the Foldy equations, and the far-zone approxima-

ion. Fundamentally, we show that the FED framework allows one

o split the problem of finding the total electromagnetic field into

he computation of the self-emitted field and the calculation of the

lastically scattered field. Furthermore, we demonstrate that the

ame is true of the problem of computing second moments of the
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total electromagnetic field. These results are expected to pave the

way to the calculation of optical observables encountered in actual

practical applications. 

2. Stochastic macroscopic Maxwell equations, constitutive 

relations, and boundary conditions 

Under the assumption that all media involved are nonmagnetic,

the system of four stochastic MMEs for the instantaneous macro-

scopic electromagnetic field at an arbitrary observation point r is

as follows [44] : 

∇ · D (r , t) = ρ(r , t) , (1)

∇ × E (r , t) = −μ0 
∂H (r , t) 

∂t 
, (2)

∇ · H ( r , t ) = 0 , (3)

∇ × H (r , t) = J (r , t) + J f (r , t) + 

∂D (r , t) 

∂t 
, (4)

where we use the SI units, E ( r , t ) is the electric and H ( r , t ) the mag-

netic field, D ( r , t ) is the electric displacement, ρ( r , t ) and J ( r , t ) are

the macroscopic (free) volume charge density and current density,

respectively, J f ( r , t ) is the volume density of the fluctuating elec-

tric current, and μ0 is the magnetic permeability of a vacuum. All

quantities entering Eqs. (1) –( 4 ) are real-valued functions of time t

as well as of spatial coordinates. Implicit in the stochastic MMEs is

the continuity equation 

∂ρ(r , t) 

∂t 
+ ∇ · J (r , t) + ∇ · J f (r , t) = 0 , (5)

which is obtained by combining the time derivative of Eq. (1) with

the divergence of Eq. (4) and making use of the vector identity 

∇ · (∇ × a ) ≡ 0 . (6)

Typically Eqs. (1) –( 4 ) must be supplemented by appropriate

constitutive relations. In the case of a time-dispersive medium, we

have 

D ( r , t ) = 

∫ t 

−∞ 

d t ′ ε 
(
r , t − t ′ 

)
E 

(
r , t ′ 

)
, (7)

J (r , t) = 

∫ t 

−∞ 

d t ′ σ (r , t − t ′ ) E (r , t ′ ) , (8)

where ε is the electric permittivity and σ is the electric conduc-

tivity. 

If two different continuous media with finite conductivity are

separated by an interface S then it is postulated that the tangential

components of the electric and magnetic field vectors are continu-

ous across S : 

ˆ n × [ E 1 (r , t) − E 2 (r , t)] ≡ 0 , (9)

ˆ n × [ H 1 (r , t) − H 2 (r , t)] ≡ 0 , (10)

where 0 is a zero vector and ˆ n is a unit vector along the local

normal to S . 

3. The Poynting theorem 

The system of axioms ( 1 )–( 4 ) and ( 7 )–( 10 ) of fluctuational elec-

tromagnetics must provide a link to other physical quantities, in-

cluding those directly measurable with suitable instrumentation.

This is accomplished in part by using the Lorentz force postulate

which states that if a differential volume element d V contains a
otal charge ρ( r , t )d V moving at a velocity v ( r , t ) then the force ex-

rted by the electromagnetic field on that charge is 

 F = ρ(r , t) E (r , t)d V + μ0 ρ(r , t) v (r , t) × H (r , t)d V. (11)

pon scalar multiplying d F by v ( r , t ), we see that the magnetic field

oes no work, while for the local charge ρ( r , t )d V the rate of doing

ork by the electric field is ρ( r , t ) v ( r , t ) · E ( r , t )d V . Thus the total rate

f work done by the electromagnetic field inside a finite volume V

s given by 

 = 

∫ 
V 

d 

3 r [ J (r , t) + J f (r , t)] · E (r , t) . (12)

We now make use of Eqs. (2) and ( 4 ), the vector identity 

 · (a × b ) = b · (∇ × a ) − a · (∇ × b ) (13)

ith a = E and b = H , and the Gauss theorem 

 

V 

d 

3 r ∇ · A (r ) = 

∫ 
S 

d 

2 r A (r ) · ˆ n (r ) , (14)

here S is the closed surface bounding V and ˆ n (r ) is a unit vector

n the direction of the local outward normal to S . The result is the

o-called Poynting theorem quantifying the energy budget of the

olume V : ∫ 
S 

d 

2 r S (r , t) · ˆ n (r ) = Q + 

d U 

d t 
, (15)

here 

 (r , t) = E (r , t) × H (r , t) (16)

s the Poynting vector and the term 

d U 

d t 
= 

∫ 
V 

d 

3 r 

[
E (r , t) · ∂D (r , t) 

∂t 
+ μ0 H (r , t) · ∂H (r , t) 

∂t 

]
(17)

ccounts for both the rate of change of the stored electromagnetic

nergy in V and the rate of energy dissipated by the material in V

24] . It is postulated that the left-hand side of Eq. (15) represents

he net flow of electromagnetic energy entering V . 

. Fourier decomposition 

Let us express all time-varying fields entering the stochastic

MEs in terms of time-harmonic components using the Fourier

nalysis: 

 ( r , t ) = 

∫ ∞ 

−∞ 

d ω E ( r , ω ) exp ( −i ωt ) (18)

nd similarly for H ( r , t ), D ( r , t ), ρ( r , t ), J ( r , t ), and J f ( r , t ), where i =
(−1) 1 / 2 . The respective frequency spectra are given by the Fourier

ransforms 

 ( r , ω ) = 

1 

2 π

∫ ∞ 

−∞ 

d t E ( r , t ) exp ( i ωt ) , etc. (19)

t is straightforward to verify that since the actual physical fields

re real-valued, the frequency spectra satisfy the symmetry rela-

ions 

 ( r , −ω ) = [ E ( r , ω ) ] 
∗
, etc., (20)

here the asterisk denotes the complex-conjugate value. 

By virtue of the Fourier integral theorem, the frequency-domain

ystem of the stochastic Maxwell equations and boundary condi-

ions takes the form 

 · [ ε(r , ω) E (r , ω)] = − i 

ω 

∇ · J f (r , ω) , (21)

 × E (r , ω) = i ω μ0 H (r , ω) , (22)

 · H (r , ω) = 0 , (23)
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Fig. 1. Schematic representation of the standard scattering–emission problem. The 

unshaded exterior region V EXT is unbounded in all directions, whereas the shaded 

areas collectively represent the interior region of the object V INT . 
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 × H (r , ω) = −i ωε(r , ω) E (r , ω) + J f (r , ω) , (24)

 · J (r , ω) + ∇ · J f (r , ω) − i ωρ(r , ω) = 0 , (25)

ˆ  × [ E 1 (r , ω) − E 2 (r , ω)] ≡ 0 , (26)

ˆ  × [ H 1 (r , ω) − H 2 (r , ω)] ≡ 0 , (27)

here 

(r , ω) = 

∫ ∞ 

0 

d τ

[
ε(r , τ ) + 

i 

ω 

σ (r , τ ) 

]
exp (i ωτ ) (28)

s the so-called complex permittivity. Obviously, 

(r , − ω) = [ ε(r , ω)] ∗. (29)

Materials with Im [ ε(r , ω)] ≡ 0 are traditionally called lossless,

here “Im” stands for “the imaginary part of”. It is postulated in

he framework of FED that such materials are non-emitting: J f ( r , t )

0 and hence J f ( r , ω) ≡ 0 . Using the approach outlined in Section

.5.1 of Ref. [24] , it is straightforward to show that such materials

re also nonabsorbing. This means that the Poynting theorem ( 15 )

akes the form 

 ∞ 

−∞ 

d t 

∫ 
S 

d 

2 r S (r , t) · ˆ n (r ) = 0 (30)

rovided that the total electromagnetic field builds from zero start-

ng at t = −∞ and then decays back to zero at t = ∞ . 

Note that in the frequency domain Eqs. (21) –( 24 ) are no longer

ndependent. Indeed, taking the divergence of both sides of Eq.

22) and accounting for Eq. (6) yields Eq. (23) , while taking the di-

ergence of both sides of Eq. (24) yields Eq. (21) . Therefore, of the

our Maxwell equations (21) –( 24 ) we will consider in what follows

nly the curl equations (22) and ( 24 ). 

. Standard scattering–emission problem 

Consider a fixed finite object embedded in an infinite medium

hat is assumed to be homogeneous, linear, isotropic, and non-

bsorbing. Accordingly, the complex permittivity of the host

edium ε1 is assumed to be real-valued: Im ε 1 = 0 . The object can

e either a single body or a cluster consisting of a finite number N

1 of separated or touching components; it occupies collectively

 finite “interior” region V INT given by 

 INT = 

N ∪ 

i = 1 
V i , (31) 

here V i is the volume occupied by the i th component (see

ig. 1 ). The object is surrounded by the infinite exterior region

 EXT such that V INT ∪ V EXT =	 

3 , where 	 

3 denotes the entire three-

imensional space. The interior region is filled with isotropic, lin-

ar, and possibly inhomogeneous material. Point O serves as the

ommon origin of all position vectors and as the origin of the lab-

ratory coordinate system. 

Since the host medium is assumed to be non-absorbing, it is

lso non-emitting. Therefore, the Maxwell curl equations (22) and

 24 ) can now be re-written as follows: 

∇ × E (r , ω) = i ω μ0 H (r , ω) 
∇ × H (r , ω) = −i ω ε 1 E (r , ω) 

}
r ∈ V EXT , (32) 

∇ × E (r , ω) = i ω μ0 H (r , ω) 

∇ × H (r , ω) = −i ω ε 2 (r , ω) E (r , ω) + J f (r , ω) 

}
r ∈ V INT , (33) 
r

here ε2 ( r , ω) is the (potentially coordinate-dependent) complex

ermittivity of the object. The corresponding boundary conditions

ow read: 

ˆ n × [ E 1 (r , ω) − E 2 (r , ω)] = 0 

ˆ n × [ H 1 (r , ω) − H 2 (r , ω)] = 0 

}
r ∈ S INT , (34) 

here the subscripts 1 and 2 correspond to the exterior and inte-

ior sides of the boundary S INT of the object, respectively, and ˆ n is

he local outward normal to S INT . According to Eq. (31) , S INT is the

nion of the closed surfaces of the N components of the object: 

 INT = 

N ∪ 

i = 1 
S i . (35) 

Let us assume that the total field { E ( r , t ), H ( r , t )} everywhere in

pace can be represented by a vector superposition of two compo-

ents: the incident field (superscript “inc”) and the total induced

eld (superscript “ind”) representing cumulatively the field scat-

ered and emitted by the object: 

 (r , ω) = E 

inc (r , ω) + E 

ind (r , ω) , (36a)

 (r , ω) = H 

inc (r , ω) + H 

ind (r , ω) . (36b)

he incident field is assumed to be a solution of Eq. (32) in the

bsence of the object, i.e., when V EXT =	 

3 . For example, if the inci-

ent field represents a polychromatic parallel beam of light propa-

ating in the direction of the unit vector ˆ n 

inc then 

E 

inc (r , ω) = E 

inc 
0 (ω) exp [i k 1 (ω) ̂  n 

inc · r ] , (37a) 

 

inc (r , ω) = 

√ 

ε 1 
μ0 

ˆ n 

inc × E 

inc 
0 (ω) exp [i k 1 (ω) ̂  n 

inc · r ] 

− i 

ω μ0 

∇ × E 

ind (r , ω) , (37b)

here 

 1 (ω) = ω 

√ 

ε 1 μ0 (38) 

s the wave number in the host medium. Note that k 1 ( −ω) = −k 1 ( ω)

nd 

 

inc 
0 (−ω) = [ E 

inc 
0 (ω)] ∗. (39) 

To ensure the uniqueness of solution of the standard scattering–

mission problem, we postulate that the induced field satisfies the

ollowing condition at infinity: 

lim 

 → ∞ 

{ √ 

μ0 r × H 

ind (r , ω) + r 
√ 

ε 1 E 

ind (r , ω) } = 0 , (40)
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where r = | r | is the distance from the origin to the observation

point ( Fig. 1 ). The limit ( 40 ) holds uniformly over all outgoing

directions ˆ r = r /r and is traditionally called the Sommerfeld (or

Silver–Müller) radiation condition [2,50–53] . 

6. Stationarity of the random incident field and fluctuating 

sources 

Let us assume that owing to relatively slow random variations

in time of the Fourier harmonics E 

inc ( r , ω), the incident field 

E 

inc (r , t) = 

∫ ∞ 

−∞ 

d ω E 

inc (r , ω) exp (−i ωt) (41)

is quasi-polychromatic (this term is introduced by analogy with

the term “quasi-monochromatic” typically used to characterize a

monochromatic field with a slowly fluctuating complex amplitude

[17,20] ) and as such is a stationary random process. Then, by def-

inition, correlation functions of the form 〈 E 

inc ( r , t ) �E 

inc ( r ′ , t + τ ) 〉 ξ
must be functions of τ only, where � denotes the dyadic product

of two vectors and 〈 ���〉 ξ hereinafter denotes ensemble averaging

(in this case the average over the ensemble of realizations of the

random incident field). We thus have 

〈 E 

inc (r , t) � E 

inc ( r ′ , t + τ ) 〉 ξ
= 

∫ ∞ 

−∞ 

d ω 

∫ ∞ 

−∞ 

d ω 

′ 〈 E 

inc (r , ω) � E 

inc ( r ′ , ω 

′ ) 〉 ξ , 

× exp (−i ωt) exp [ −i ω 

′ (t + τ )] . (42)

For the right-hand side to depend on τ only, the Fourier compo-

nents of the incident field must be delta-correlated: 

〈 E 

inc (r , ω) � E 

inc ( r ′ , ω 

′ ) 〉 ξ
= δ(ω + ω 

′ ) 〈 E 

inc (r , ω) � [ E 

inc ( r ′ , ω)] ∗〉 ξ (43a)

= δ(ω + ω 

′ ) exp [i k 1 (ω) ̂  n 

inc · (r − r ′ )] 

× 〈 E 

inc (ω) � [ E 

inc (ω)] ∗〉 ξ , (43b)

where δ( ω) is the delta function, the first equality is a manifesta-

tion of the Khinchin (or Wiener–Khinchin) theorem [54] , and the

second equality applies specifically to a quasi-polychromatic paral-

lel beam. 

Let us also assume that the object is in local thermal equilib-

rium at a temperature T ( r ), r ∈ V INT , and, consequently, the volume

density of the fluctuating electric current inside V INT is a station-

ary random process. Thus the Fourier components of J f ( r , t ) must

also be delta-correlated in angular frequency. Furthermore, invok-

ing the fluctuation–dissipation theorem for an isotropic medium

[40–44] , we have for r, r ′ ∈ V INT : 

〈 J f (r , ω) � J f ( r ′ , ω 

′ ) 〉 ξ
= δ(ω + ω 

′ ) 〈 J f (r , ω) � [ J f ( r ′ , ω)] ∗〉 ξ (44a)

= 

ω 

π
Im [ ε 2 (r , ω )]�[ | ω | , T (r )] δ(r − r ′ ) δ(ω + ω 

′ ) 
↔ 
I , (44b)

where 
↔ 

I is the identity dyadic, δ( r ) is the three-dimensional delta

function, 

�[ ω, T ] = 

h̄ ω 

exp 

(
h̄ ω 
k B T 

)
− 1 

(45)

is the mean energy of the quantum harmonic oscillator devoid of

the zero-point energy term [44] , h̄ is the reduced Planck constant,

and k B is the Boltzmann constant. Note that consistent with the

previous discussion, the object does not emit electromagnetic ra-

diation if Im [ ε (r , ω)] ≡ 0 . 
2 
It is further postulated that for any t , 

 J f (r , t) 〉 ξ = 0 , (46)

hich implies that 
 ∞ 

−∞ 

d ω 〈 J f (r , ω) 〉 ξ exp (−i ωt) ≡ 0 (47)

nd hence 

 J f (r , ω) 〉 ξ ≡ 0 . (48)

Finally, we assume that the incident field and the fluctuating

ources are independent random processes. This implies, in partic-

lar, that 

 E 

inc (r , t) � J f ( r ′ , t ′ ) 〉 ξ
= 〈 E 

inc (r , t) 〉 ξ � 〈 J f ( r ′ , t ′ ) 〉 ξ = 

↔ 
0 (49)

nd hence 

 E 

inc (r , ω) � J f ( r ′ , ω 

′ ) 〉 ξ
= 〈 E 

inc (r , ω) 〉 ξ � 〈 J f ( r ′ , ω 

′ ) 〉 ξ = 

↔ 
0 , (50)

here 
↔ 

0 is a zero dyad. 

Eqs. (43a) , (44), ( 46 ), and ( 49 ) supplement the set of axioms

hat are used to describe electromagnetic scattering and emission

n the framework of FED. 

. Scattering–emission volume integral equation 

In Sections 7 –10 we will assume that ω is non-negative. The

orresponding results for negative angular frequencies follow from

q. (20) and its analogues. 

Although the standard scattering–emission problem has been

ormulated above as a boundary-value problem for the differential

tochastic MMEs, it is more convenient in many cases to deal with

n equivalent integral-equation formulation. Eqs. (32) and ( 33 ) im-

ly that if E ( r , ω) is known everywhere in space then H ( r , ω) can

lso be determined everywhere in space. From these equations, we

asily derive the following vector wave equations for E ( r , ω): 

 × ∇ × E ( r , ω ) − k 2 1 ( ω ) E ( r , ω ) = 0 , r ∈ V EXT , (51)

 × ∇ × E ( r , ω ) − ω 

2 ε 2 ( r , ω ) μ0 E ( r , ω ) 

= i ω μ0 J 
f ( r , ω ) , r ∈ V INT . (52)

qs. (51) and ( 52 ) can be rewritten as a single inhomogeneous dif-

erential equation 

 × ∇ × E ( r , ω ) − k 2 1 ( ω ) E ( r , ω ) = j ( r , ω ) , r ∈ R 

3 , (53)

here 

 (r , ω) = U(r , ω) E (r , ω) + i ω μ0 J 
f (r , ω) (54)

s the forcing function and 

 ( r , ω ) = 

{
0 , r ∈ V EXT , 

ω 

2 ε 2 ( r , ω ) μ0 − k 2 1 ( ω ) , r ∈ V INT 

(55)

s the potential function. It is evident that j ( r , ω) vanishes every-

here outside the interior region. 

Any solution of an inhomogeneous linear differential equation

an be expressed as a sum of two parts: (i) a solution of the re-

pective homogeneous equation with the right-hand side identi-

ally equal to zero, and (ii) a particular solution of the inhomoge-

eous equation. In the case of Eq. (53) , the first part satisfies the

quation 

 × ∇ × E 

inc ( r , ω ) − k 2 1 ( ω ) E 

inc ( r , ω ) = 0 , r ∈ R 

3 (56)
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U  
nd describes the field that would exist in free space in the ab-

ence of the object, i.e., the incident field. The physically appro-

riate particular solution of Eq. (53) must give the induced field

 

ind ( r , ω) corresponding to the forcing function j ( r , ω). Obviously, of

ll possible particular solutions of Eq. (53) , we must choose the

ne that satisfies the boundary conditions ( 34 ) and the radiation

ondition ( 40 ). 

Paralleling the derivation detailed in Section 4.3 of [17] and ex-

licitly based on the boundary conditions as well as on the radia-

ion condition at infinity, we obtain: 

 

ind (r , ω) = 

∫ 
V INT 

d 

3 r ′ 
↔ 
G (r , r ′ , ω) · j ( r ′ , ω) , r ∈ 	 

3 , (57)

here 

↔ 
 (r , r ′ , ω) = 

(
↔ 
I + 

1 

k 2 
1 
(ω) 

∇ � ∇ 

)
g(r , r ′ , ω) (58)

s the free-space dyadic Green’s function and 

(r , r ′ , ω) = 

exp[i k 1 (ω) | r − r ′ | ] 
4 π | r − r ′ | (59)

s the scalar Green’s function. The latter satisfies the three-

imensional Helmholtz equation 

 ∇ 

2 + k 2 1 (ω)] g(r , r ′ , ω) = −δ(r − r ′ ) . (60)

The final step is to substitute Eq. (54) in Eq. (57) , which yields

 

ind (r , ω) = E 

sca (r , ω) + E 

f (r , ω) , (61)

here 

 

sca (r , ω) = 

∫ 
V INT 

d 

3 r ′ U( r ′ , ω) 
↔ 
G (r , r ′ , ω) · E ( r ′ , ω) (62)

an be called the scattered field since it does not vanish in the ab-

ence of emission, and 

 

f (r , ω) = i ω μ0 

∫ 
V INT 

d 

3 r ′ 
↔ 
G (r , r ′ , ω) · J f ( r ′ , ω) (63)

s the fluctuating self-emitted field . Eqs. (36a) and ( 61 )–( 63 ) repre-

ent collectively the scattering–emission volume integral equation

SEVIE). 

Note that owing to the short-hand way Eqs. (57) , ( 62 ), and ( 63 )

re written, they contain a strong singularity (strictly speaking, a

on-integrable one) when r ∈ V INT . As discussed in Refs. [55,56] ,

his implies that the integration must be carried in the following

pecific principal-value sense: 
 

V INT 

d 

3 r ′ 
↔ 
G (r , r ′ , ω) F ( r ′ ) 

= lim 

V 0 → 0 

∫ 
V INT \ V 0 

d 

3 r ′ 
↔ 
G (r , r ′ , ω) F ( r ′ ) − 1 

3 k 2 
1 
(ω) 

F (r ) , (64) 

here V 0 is a spherical exclusion volume around r . In what fol-

ows, we always imply the abbreviation ( 64 ). 

Let us now re-write the total field as follows: 

 ( r , ω ) = E 

exc ( r , ω ) + E 

sca ( r , ω ) , r ∈ R 

3 , (65) 

here 

 

exc (r , ω) = E 

inc (r , ω) + E 

f (r , ω) (66)

s the exciting field . Both E 

inc ( r , ω), defined by Eq. (36a) , and E 

f ( r , ω),

iven by Eq. (63) , are assumed to be known. The SEVIE can now be

ast in the following compact form: 

 (r , ω) = E 

exc (r , ω) + 

∫ 
V INT 

d 

3 r ′ U( r ′ , ω) 
↔ 
G (r , r ′ , ω) 

·E ( r ′ , ω) , r ∈ 	 

3 . (67) 
his equation is essentially the same as Eq. (17) in Ref. [36] but

ses notation that is more convenient for the following derivations.

n particular, it makes it obvious that the only formal difference

f Eqs. (65) and ( 67 ) from their classical elastic-scattering coun-

erparts [17] is that E 

inc ( r , ω) in the latter has been replaced by

 

exc ( r , ω) in the former. 

. Dyadic transition operator 

The linearity and the integration domain of the SEVIE imply

hat it must be possible to express the scattered electric field

inearly in terms of the exciting field inside V INT . The general

xpression for such relation, more specifically, the expression of

 ( r , ω ) E ( r , ω ) in terms of E 

exc ( r , ω), is a linear integral operator with

he kernel 
↔ 

T (r , r ′ , ω) : 

(r , ω) E (r , ω) = 

∫ 
V INT 

d 

3 r ′ 
↔ 
T (r , r ′ , ω) · E 

exc ( r ′ , ω) , r ∈ V INT , (68)

here 
↔ 

T (r , r ′ , ω) is the so-called dyadic transition operator (cf.

efs. [57,58] ). The domain of argument values and the integration

omain in Eq. (68) can be extended to the whole space 	 

3 by set-

ing 
↔ 

T (r , r ′ , ω) = 

↔ 

0 if r �∈ V INT and/or r ′ �∈ V INT . 

Substituting this expression into the right-hand side of Eq.

62) results in 

 

sca (r , ω) = 

∫ 
V INT 

d 

3 r ′ 
↔ 
G (r , r ′ , ω) 

·
∫ 

V INT 

d 

3 r ′′ 
↔ 
T ( r ′ , r ′′ , ω) · E 

exc ( r ′′ , ω) . (69) 

qs. (62) , ( 65 ), and ( 69 ) then yield the following equation for 
↔ 

T : 

↔ 
 (r , r ′ , ω) = U(r , ω) δ(r − r ′ ) 

↔ 
I 

+ U(r , ω) 

∫ 
V INT 

d 

3 r ′′ 
↔ 
G (r , r ′′ , ω) ·

↔ 
T ( r ′′ , r ′ , ω) . (70) 

quations of this type are traditionally called Lippmann–Schwinger

quations [59,60] . It is clear that 
↔ 

T (r , r ′ , ω) is exactly the same

yadic operator as that emerging in the classical theory of elastic

lectromagnetic scattering by a finite object [12,17,57,58] . 

Iterating Eq. (70) yields 

↔ 
 (r , r ′ , ω) = U(r , ω) 

[ 
δ(r − r ′ ) 

↔ 
I + U( r ′ , ω) 

↔ 
G (r , r ′ , ω) 

+ U( r ′ , ω) 

∫ 
V INT 

d 

3 r ′′ U( r ′′ , ω) 
↔ 
G (r , r ′′ , ω) ·

↔ 
G ( r ′′ , r ′ , ω) 

+ U( r ′ , ω) 

∫ 
V INT 

d 

3 r ′′ 
∫ 

V INT 

d 

3 r ′′′ U( r ′′ , ω) U( r ′′′ , ω) 

×
↔ 
G (r , r ′′ , ω) ·

↔ 
G ( r ′′ , r ′′′ , ω) ·

↔ 
G ( r ′′′ , r ′ , ω) 

+ · · ·
] 
, r , r ′ ∈ V INT . (71) 

his Neumann expansion and the symmetry properties of the free-

pace dyadic Green’s function (see Appendix B in Ref. [17] ) imply

he following symmetry relation for the dyadic transition operator:

↔ 
 (r , r ′ , ω) = [ 

↔ 
T ( r ′ , r , ω)] T , (72)

here T stands for “transposed”. 

The above derivation of Eq. (72) relies on the presumed conver-

ence of the series ( 71 ). It is possible however to give a potentially

ess restrictive derivation. To this end, let us define the potential

yadic for r, r ′ ∈ 	 

3 as 

↔ 
 (r , r ′ , ω) = U(r , ω) δ(r − r ′ ) 

↔ 
I (73)
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(implying that 
↔ 

U (r , r ′ , ω) = 

↔ 

0 if r �∈ V INT and/or r ′ �∈ V INT ) and in-

troduce short-hand integral-operator notation according to 

ˆ B E = 

∫ 
	 3 

d 

3 r ′ 
↔ 
B (r , r ′ ) · E ( r ′ ) , (74a)

E ̂  B = 

∫ 
	 3 

d 

3 r ′ E ( r ′ ) ·
↔ 
B ( r ′ , r ) , (74b)

ˆ B ̂

 C = 

∫ 
	 3 

d 

3 r ′′ 
↔ 
B (r , r ′′ ) ·

↔ 
C ( r ′′ , r ′ ) . (74c)

Then the above formulas can be re-written as follows: 

E = E exc + 

ˆ G ̂

 U E, (75)

E = E exc + 

ˆ G ̂

 T E exc , (76)

ˆ T = 

ˆ U + 

ˆ U 

ˆ G ̂

 T , (77)

where the integration domains can be freely exchanged between

V INT and 	 

3 owing to the abovementioned properties of 
↔ 

T (r , r ′ , ω)

and 

↔ 

U (r , r ′ , ω) , while 

E exc = E inc + i ω μ0 ̂
 G J f . (78)

Again, as it was the case with the SEVIE, Eq. (76) differs from its

elastic-scattering analogue only in that E 

inc ( r , ω) has been replaced

by E 

exc ( r , ω). 

Let us now define 

↔ 
B 

tr (r , r ′ ) = [ 
↔ 
B ( r ′ , r )] T . (79)

Obviously, 

ˆ B E = E ̂  B 

tr , (80a)

E ̂  B = 

ˆ B 

tr E, (80b)

( ̂  B ̂

 C ) tr = 

ˆ C tr ˆ B 

tr . (80c)

A symmetric operator is equal to its own transpose, ˆ B = 

ˆ B tr , imply-

ing that its kernel satisfies 

↔ 
B (r , r ′ ) = [ 

↔ 
B ( r ′ , r )] T . (81)

The free-space dyadic Green’s operator ˆ G is symmetric, and the

same is obviously true of ˆ U . Then, starting from Eq. (77) and using

Eq. (80c) , we obtain: 

ˆ T tr = 

ˆ U + 

ˆ T tr ˆ G ̂

 U . (82)

Left-multiplying this formula by ( ̂ I − ˆ U ̂

 G ) followed by simple alge-

braic manipulations yields 

( ̂  T tr − ˆ U − ˆ U 

ˆ G ̂

 T tr )( ̂ I − ˆ G ̂

 U ) = 

ˆ 0 , (83)

where ˆ I and 

ˆ 0 are the unity and zero operators, respectively. 

A detailed discussion of the existence and uniqueness of solu-

tion of Eqs. (75) and ( 77 ) is beyond the scope of this paper (see,

e.g., Section 4.2 of Ref. [20] ), but we do assume both. Then the op-

erator ˆ I − ˆ G ̂

 U is invertible, which, along with Eq. (83) , implies that
ˆ T tr satisfies the same Eq. (77) as ˆ T . The presumed uniqueness of

solution of the latter implies that ˆ T tr = 

ˆ T , i.e., that its kernel satis-

fies Eq. (72) . 
. Multi-particle scattering–emission equations 

Let us now make explicit use of the representation of the scat-

ering/emitting object as a collection of non-overlapping distinct

omponents, as shown in Fig. 1 . It is convenient to re-write Eq.

73) as follows: 

↔ 
 (r , r ′ , ω) = 

N ∑ 

i = 1 

↔ 
U i (r , r ′ , ω) , (84)

here 

↔ 
 i (r , r ′ , ω) = 

{ ↔ 
0 , r / ∈ V i , 

U(r , ω) δ(r − r ′ ) 
↔ 
I , r ∈ V i . 

(85)

imilarly, 

 

f (r , ω) = 

N ∑ 

i = 1 
J f i (r , ω) , (86)

here 

 

f 
i ( r , ω ) = 

{
0 , r / ∈ V i , 

J f ( r , ω ) , r ∈ V i . 
(87)

Let us also introduce the i th-component dyadic transition oper-

tor 
↔ 

T i (r , r ′ , ω) with respect to the common laboratory coordinate

ystem as the one satisfying the equation 

ˆ 
 i = 

ˆ U i + 

ˆ U i ̂
 G ̂

 T i , (88)

here we use the compact notation of Eq. (74). It is obvious that

q. (88) is the individual Lippmann–Schwinger equation formu-

ated for the i th component of the object as if all the other compo-

ents did not exist, and so 
↔ 

T i (r , r ′ , ω) = 

↔ 

0 if r �∈ V i and/or r ′ �∈ V i .

t is then straightforward to generalize the derivation outlined in

ection 4.1 of Ref. [12] or Section 6.1 of Ref. [17] and show that in

he presence of the entire N -component object, the total electric

eld at any point r ∈ 	 

3 is given by 

 = E exc + 

N ∑ 

i = 1 
ˆ G ̂

 T i E i , (89)

here 

 

exc = E inc + E f , (90)

 

f = i ω μ0 

N ∑ 

i = 1 
ˆ G J f i , (91)

nd the partial “exciting” fields are found from the closed system

f N integral equations 

 i = E exc + 

N ∑ 

j( � = i ) = 1 
ˆ G ̂

 T j E j . (92)

Eqs. (88) –( 92 ) can be called scattering–emission equations for

 multi-component object and generalize the famous Foldy equa-

ions derived for a non-emitting object [57,61,62] . It is easily seen

hat they imply the following “order-of-scattering” Neumann se-

ies: 

 = E exc + 

N ∑ 

i = 1 
ˆ G ̂

 T i E 
exc + 

N ∑ 

i = 1 
j( � = i ) = 1 

ˆ G ̂

 T i ̂  G ̂

 T j E 
exc 

+ 

N ∑ 

i = 1 
j( � = i ) = 1 
l( � = j) = 1 

ˆ G ̂

 T i ̂  G ̂

 T j ̂  G ̂

 T l E 
exc + · · · . (93)
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A  
omparison of Eqs. (76) and ( 93 ) shows that 

ˆ 
 = 

N ∑ 

i = 1 
ˆ T i + 

N ∑ 

i = 1 
j( � = i ) = 1 

ˆ T i ̂  G ̂

 T j + 

N ∑ 

i = 1 
j( � = i ) = 1 
l( � = j) = 1 

ˆ T i ̂  G ̂

 T j ̂  G ̂

 T l + · · · . (94)

Needless to say, the practical application of Eqs. (93) and ( 94 )

elies on their presumed convergence. Again, the only formal dif-

erence of Eqs. (89) , ( 92 ), and ( 93 ) from their elastic-scattering

ounterparts [12,17] is the substitution of E exc for E inc . 

0. Far-field limit 

Let us now assume that the observation point is located in the

ar zone of the entire object and hence use the asymptotic formula

↔ 
 (r , r ′ , ω) → ( 

↔ 
I − ˆ r � ˆ r ) 

exp[i k 1 (ω) r] 

4 π r 
exp[ − i k 1 (ω) ̂ r · r ′ ] (95)

alid in the limit k 1 ( ω) r → ∞ , r / r ′ → ∞ , and r /[ k 1 ( ω) r ′ 2 ] → ∞ [17] .

hen Eqs. (61) –( 63 ) yield 

 

ind (r , ω) → 

far zone 

1 

4 π

exp[i k 1 (ω) r] 

r 
( 

↔ 
I − ˆ r � ˆ r ) 

·
∫ 

V INT 

d 

3 r ′ [ U( r ′ , ω) E ( r ′ , ω) 

+i ω μ0 J 
f ( r ′ , ω )] exp[ − i k 1 (ω ) ̂ r · r ′ ] (96) 

nd hence 

 

ind (r , ω) → 

far zone 

k 1 (ω) 

ω μ0 

ˆ r × E 

ind (r , ω) . (97)

hese formulas imply that at a sufficiently large distance r from

he object, the total field induced by the object via elastic scatter-

ng and emission becomes an outgoing transverse spherical wave

entered at the object, with an amplitude decreasing as 1/ r and

he electric (as well as magnetic) field vector vibrating perpendic-

larly to the radial direction: 

 

ind ( r , ω ) · ˆ r → 

far zone 
0 , (98) 

 

ind (r , ω) · ˆ r → 

far zone 
0 . (99)

1. Separability of the elastic-scattering and thermal-emission 

roblems: the total field 

Consistent with the linearity of the stochastic MMEs, the

oundary conditions, and the radiation condition at infinity, the re-

ults of Sections 7 –9 imply that the elastic-scattering and thermal-

mission parts of the problem can be completely separated. In-

eed, let us define the “elastic”, E 

sca,e ( r , ω), and “fluctuating”,

 

sca,f ( r , ω), scattered fields as the solutions of the following sepa-

ate volume integral equations: 

 

sca , e (r , ω) = 

∫ 
V INT 

d 

3 r ′ U( r ′ , ω) 
↔ 
G (r , r ′ , ω) 

·[ E 

inc ( r ′ , ω) + E 

sca , e ( r ′ , ω)] , (100) 

 

sca , f (r , ω) = 

∫ 
V INT 

d 

3 r ′ U( r ′ , ω) 
↔ 
G (r , r ′ , ω) 

·[ E 

f ( r ′ , ω) + E 

sca , f ( r ′ , ω)] . (101) 
t is then obvious that the sum E 

sca,e ( r , ω) + E 

sca,f ( r , ω) is the

olution of the equation 

 

sca , e (r , ω) + E 

sca , f (r , ω) = 

∫ 
V INT 

d 

3 r ′ U( r ′ , ω) 
↔ 
G (r , r ′ , ω) 

·[ E 

inc ( r ′ , ω) + E 

f ( r ′ , ω) + E 

sca , e ( r ′ , ω) 

+ E 

sca , f ( r ′ , ω)] , (102) 

hat is, Eq. (62) . Hence, 

 

sca (r , ω) = E 

sca , e (r , ω) + E 

sca , f (r , ω) . (103)

The separability of the elastic-scattering and thermal-emission

roblems is also explicit in Eqs. (66) , ( 69 ), and ( 93 ). In particular,

t is easily seen that 

 

sca , e (r , ω) = 

∫ 
V INT 

d 

3 r ′ 
↔ 
G (r , r ′ , ω) 

·
∫ 

V INT 

d 

3 r ′′ 
↔ 
T ( r ′ , r ′′ , ω) · E 

inc ( r ′′ , ω) (104) 

nd 

 

sca , f (r , ω) = 

∫ 
V INT 

d 

3 r ′ 
↔ 
G (r , r ′ , ω) 

·
∫ 

V INT 

d 

3 r ′′ 
↔ 
T ( r ′ , r ′′ , ω) · E 

f ( r ′′ , ω) . (105) 

Thus the total electromagnetic field can be represented as the

ector superposition of the “total elastic” and “total fluctuating”

elds: 

 (r , ω) = E 

te (r , ω) + E 

tf (r , ω) , (106)

here 

 

te (r , ω) = E 

inc (r , ω) + E 

sca , e (r , ω) , (107)

 

tf (r , ω) = E 

f (r , ω) + E 

sca , f (r , ω) . (108)

his of course implies that 

 (r , t) = E 

te (r , t) + E 

tf (r , t) , (109)

here 

 

te (r , t) = 

∫ ∞ 

−∞ 

d ω E 

te (r , ω) exp (−i ωt) , (110)

 

tf (r , t) = 

∫ ∞ 

−∞ 

d ω E 

tf (r , ω) exp (−i ωt) . (111)

ormulas analogous to Eqs. (106) –( 111 ) can be written for the total

agnetic field. 

If the incident field is a polychromatic parallel beam given by

q. (37a) then the asymptotic formula ( 95 ) and Eq. (104) yield 

 

sca , e (r , ω) = 

exp[i k 1 (ω) r] 

r 

↔ 
A ( ̂ r , ̂  n 

inc , ω) · E 

inc 
0 (ω) , (112)

here 
↔ 

A is the so-called scattering dyadic. 
↔ 

A depends on the in-

idence, ˆ n 

inc , and scattering, ˆ r , directions, but is independent of

 

inc 
0 

(ω) . While 

  ·
↔ 
A ( ̂ r , ̂  n 

inc , ω) = 0 , (113)

he dot product 
↔ 

A ( ̂  n 

sca , ̂  n 

inc , ω) · ˆ n 

inc is not defined by Eq. (112) . To

omplete the definition, we take this product to be zero as well: 

↔ 
 ( ̂ r , ̂  n 

inc , ω) · ˆ n 

inc = 0 . (114)
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Thus, 

↔ 
A ( ̂ r , ̂  n 

inc , ω) = 

1 

4 π
( 

↔ 
I − ˆ r � ˆ r ) ·

∫ 
V INT 

d 

3 r ′ exp[ − i k 1 (ω) ̂ r · r ′ )] 

×
∫ 

V INT 

d 

3 r ′′ 
↔ 
T ( r ′ , r ′′ , ω ) exp[i k 1 (ω ) ̂  n 

inc · r ′′ ] 

·( 
↔ 
I − ˆ n 

inc 
� ˆ n 

inc ) . (115)

It is then easily verified that the symmetry property ( 72 ) im-

plies the following so-called reciprocity relation for the scattering

dyadic: 

↔ 
A (−ˆ n 

inc , −ˆ r , ω) = [ 
↔ 
A ( ̂ r , ̂  n 

inc , ω)] T . (116)

This relation was originally derived by Saxon [63] using a less

straightforward approach. 

12. Separability of the elastic-scattering and thermal-emission 

problems: second moments of the total field 

In Section 6 we listed the randomness, stationarity, and inde-

pendence of the incident field and the fluctuating sources as es-

sential postulates of the semi-classical FED. Coupled with the lin-

earity of Eqs. (63) , ( 104 ), and ( 105 ), they imply that the scattered

and emitted fields are also stationary random processes such that

〈 E 

inc (r , ω) � E 

f ( r ′ , ω 

′ ) 〉 ξ = 

↔ 
0 , (117)

〈 E 

inc (r , ω) � E 

sca , f ( r ′ , ω 

′ ) 〉 ξ = 

↔ 
0 , (118)

〈 E 

sca , e (r , ω) � E 

f ( r ′ , ω 

′ ) 〉 ξ = 

↔ 
0 , (119)

〈 E 

sca , e (r , ω) � E 

sca , f ( r ′ , ω 

′ ) 〉 ξ = 

↔ 
0 . (120)

As a consequence, 

〈 E 

te (r , ω) � E 

tf ( r ′ , ω 

′ ) 〉 ξ = 

↔ 
0 (121)

and hence 

〈 E 

te (r , t) � E 

tf ( r ′ , t ′ ) 〉 ξ = 

↔ 
0 . (122)

Furthermore, Eqs. (43a) , ( 44a ), ( 104 ), and ( 105 ) imply that 

〈 E 

te (r , ω) � E 

te ( r ′ , ω 

′ ) 〉 ξ
= δ(ω + ω 

′ ) 〈 E 

te (r , ω) � [ E 

te ( r ′ , ω)] ∗〉 ξ (123)

and 

〈 E 

tf (r , ω) � E 

tf ( r ′ , ω 

′ ) 〉 ξ
= δ(ω + ω 

′ ) 〈 E 

tf (r , ω) � [ E 

tf ( r ′ , ω)] ∗〉 ξ . (124)

As a consequence, 〈 E ( r , t ) �E ( r ′ , t ) 〉 ξ is independent of t and is given

by 

〈 E (r , t) � E ( r ′ , t) 〉 ξ = 〈 E 

te (r , t) � E 

te ( r ′ , t) 〉 ξ
+ 〈 E 

tf (r , t) � E 

tf ( r ′ , t) 〉 ξ , (125)

where 

〈 E 

te (r , t) � E 

te ( r ′ , t) 〉 ξ
= 2 Re 

∫ ∞ 

0 

d ω〈 E 

te (r , ω) � [ E 

te ( r ′ , ω)] ∗〉 ξ , (126)

〈 E 

tf (r , t) � E 

tf ( r ′ , t) 〉 ξ
= 2 Re 

∫ ∞ 

0 

d ω〈 E 

tf (r , ω) � [ E 

tf ( r ′ , ω)] ∗〉 ξ , (127)
nd “Re” stands for “the real part of”. In particular, the ensemble-

veraged total Poynting vector is time-independent and given by

 S (r , t) 〉 ξ = 〈 S te (r , t) 〉 ξ + 〈 S tf (r , t) 〉 ξ , (128)

here 

 S te (r , t) 〉 ξ = 2 Re 

∫ ∞ 

0 

d ω 〈 E 

te (r , ω ) × [ H 

te (r , ω)] ∗〉 ξ , (129)

 S tf (r , t) 〉 ξ = 2 Re 

∫ ∞ 

0 

d ω 〈 E 

tf (r , ω ) × [ H 

tf (r , ω)] ∗〉 ξ . (130)

These results will be instrumental in the forthcoming discus-

ion of relevant optical observables and, fundamentally, will en-

ble separate computation of the corresponding elastic-scattering

nd thermal-emission second moments of the total electromag-

etic field. 

3. Conclusions 

This paper has summarized a fairly straightforward generaliza-

ion of the standard quasi-polychromatic elastic-scattering formal-

sm for a finite (multiparticle) object [9,12,17,58] intended to allow

or thermal self-emission. So far we have focused only on funda-

ental equations describing the total electromagnetic field and its

econd moments. We have recapitulated the main axioms of FED,

ormulated the general scattering–emission problem for a fixed ob-

ect, and derived the SEVIE, the Lippmann–Schwinger equation for

he dyadic transition operator, the generalized scattering–emission

ersion of the Foldy equations, and the far-field limit of the total

eld. We have shown that in the framework of FED, the compu-

ation of the total field is completely separated into the indepen-

ent computations of the elastically scattered and emitted fields.

he same is true of the calculation of quadratic/bilinear combi-

ations in the total electromagnetic field. Subsequent publications

ill describe the application of this formalism to the computation

f optical observables entering the generalized far-field, single-

cattering, and radiative-transfer approximations along the lines of

efs. [12,17] . 

Finally we note that although the incident field is usually as-

umed to be a plane polychromatic beam, the results of Sections

 –10 are valid as long as the incident field satisfies Eq. (56) . Also,

he formulas of Section 9 were derived under the assumption that

he entire object is a collection of distinct particles. It is clear how-

ver that these formulas remain valid for any finite object occupy-

ng a volume V INT provided that V INT is subdivided arbitrarily into

 > 1 non-overlapping parts V i . 
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