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A frequently observed characteristic of electromagnetic scattering by a disordered parti-
culate medium is the absence of pronounced speckles in angular patterns of the scattered
light. It is known that such diffuse speckle-free scattering patterns can be caused by
averaging over randomly changing particle positions and/or over a finite spectral range. To
get further insight into the possible physical causes of the absence of speckles, we use the
numerically exact superposition T-matrix solver of the Maxwell equations and analyze the
scattering of plane-wave and Gaussian beams by representative multi-sphere groups. We
show that phase and amplitude variations across an incident Gaussian beam do not serve
to extinguish the pronounced speckle pattern typical of plane-wave illumination of a fixed
multi-particle group. Averaging over random particle positions and/or over a finite
spectral range is still required to generate the classical diffuse speckle-free regime.

Published by Elsevier Ltd.
1. Introduction

The two classical monographs by Viktor V. Sobolev
[1,2] had served to advance various mathematical aspects
of the phenomenological radiative transfer theory (RTT)
intended to describe light scattering by turbid media.
Since the publication of these treatises, significant pro-
gress has also been achieved in the physical foundation of
the RTT [3–21]. It has been recognized in particular that a
defining trait of the scattering regime described by the RTT
is the absence of spike-like speckles in angular patterns of
the scattered light. This recognition makes it imperative to
understand what factors can serve to extinguish such
sharp interference features.

The first-principles analytical derivation of the RTT
from the macroscopic Maxwell equations (MMEs) given in
[14,20] has demonstrated that the diffuse speckle-free
regime can result from averaging the scattering patterns
generated by a large multi-particle group over particle
(M.I. Mishchenko).
positions randomly varying in time. This derivation is
based on the assumption that the incident electromagnetic
field is a monochromatic plane wave and is then gen-
eralized to the case of illumination by a superposition of
statistically independent quasi-monochromatic plane
waves [20]. One can think of other factors potentially
resulting in speckle-free scattering patterns [22,23],
especially in observations of fixed particulate samples such
as powder surfaces. For example, it has been shown
recently on the basis of direct computer solutions of the
MMEs [24] that averaging scattering patterns generated by
a fixed quasi-random multi-particle configuration over a
finite spectral range can be quantitatively equivalent to
averaging over random particle coordinates.

The illumination scenario that has not been analyzed so
far is the case of an uncollimated incident field such as a
finite-width Gaussian beam characterized by strong lateral
variations of both phase and amplitude. Of course, the
incident Gaussian beam can formally be expanded in plane
electromagnetic waves [25,26], but these waves are not
statistically independent. This renders the analytical deri-
vation of [20] inapplicable and leaves unanswered the
question of whether the illumination of a fixed particulate
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sample by a finite-width laser beam can yield diffuse
angular patters of the scattered light or whether ensemble
and/or spectral averaging is still necessary to smooth out
the speckles. The main objective of this short commu-
nication is to answer this question based on direct com-
puter simulations of electromagnetic scattering using the
superposition T-matrix method (STMM) [27–29].
2. Modeling methodology

Our analysis is based on the comparison of far-field
scattering patterns generated by two types of particulate
Fig. 1. Scattering geometry.

Fig. 2. Elements of the matrix ~F
ð2ÞðΘÞ: “11” denotes the phas
object. The first one (hereinafter Object 1) is a fixed con-
figuration of N identical spherical particles quasi-randomly
populating an imaginary spherical volume V having a
radius R (Fig. 1). The particle coordinates are assigned by
running a random-number generator and making sure
that the particle volumes do not overlap.

The second type of object (hereinafter Object 2) is a
spherical volume V of discrete random mediumwhose far-
field scattering properties are modeled by summing the
results obtained by averaging over the equiprobable
orientation distribution of Object 1 and of its mirror
counterpart. It has been shown previously [20,30] that this
type of averaging yields numerical results that are quan-
titatively equivalent to those obtained by ensemble aver-
aging over random particle positions throughout V. Spe-
cifically, it has been demonstrated that different statistical
realizations of Object 2 yield virtually indistinguishable
far-zone scattering characteristics.

The transformation of the time-averaged Stokes col-
umn vector of the incident Gaussian beam (“inc”) into the
time-averaged Stokes column vector of the scattered
spherical wavefront (“sca”) in the far zone of a fixed par-
ticulate object is described by the phase matrix Z:

Iscaðρn̂scaÞ ¼ 1
ρ2
Zðn̂sca

; n̂incÞIinc; ð1Þ

where n̂inc ¼ fθinc;φincg is the unit vector in the incidence
direction, n̂sca ¼ fθsca;φscag is that in the scattering direc-
tion, ρ is the distance from the center of the object to the
far-zone observation point, and fθ;φg are the zenith and
azimuth angles in the fixed (laboratory) spherical coordi-
nate system centered at the object (Fig. 1).

In what follows, we assume that θinc ¼ 0: The shape of
the Gaussian beam is specified by the non-negative beam
e function ~F
ð2Þ
11 ðΘÞ; while “ij/11” denotes ~F

ð2Þ
ij ðΘÞ= ~F ð2Þ

11 ðΘÞ:
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width parameter ω0; i.e., the distance from the z-axis in
the z¼0 plane required for the electric-field amplitude to
decrease by a factor of 1=e [29].

In the case of Object 1, the normalized scattering matrix
is defined as

~F
ð1ÞðΘÞ ¼ Cð1ÞZðθsca ¼Θ; φsca ¼ 0; θinc ¼ 0; φinc ¼ 0Þ; ð2Þ

where Cð1Þ is a normalization constant. In the case of
Object 2, the normalized scattering matrix is calculated
according to

~F
ð2ÞðΘÞ ¼ Cð2Þ〈Zðθsca ¼Θ; φsca; θinc ¼ 0; φinc ¼ φsca; Ψ Þ〉Ψ ;

ð3Þ
where 〈⋯〉Ψ denotes ensemble averaging inasmuch as it is
modeled by averaging over the uniform orientation dis-
tribution of Object 1 and its mirror counterpart with
respect to the laboratory coordinate system. As a con-
sequence of taking the average over the uniform orienta-
tion distribution, ~F

ð2ÞðΘÞ is independent of φsca: The nor-
malization constants in Eqs. (2) and (3) are chosen such
that the (1,1) element of each scattering matrix (i.e., the
Fig. 3. Elements of the matrix ~F
ð1ÞðΘÞ: “11” denotes the phas
phase function) satisfies the standard normalization con-
dition

1
2

Z π

0
dΘ ~F 11ðΘÞ sin Θ¼ 1: ð4Þ

The normalized scattering matrices ~F
ð1ÞðΘÞ and ~F

ð2ÞðΘÞ
are computed using the numerically exact STMM solver of
the MMEs described in [27–29]. Note that this technique
affords an efficient quasi-analytical orientation-averaging
procedure that is highly accurate and, unlike the numerical
integration approach, yields ~F

ð2ÞðΘÞ results completely
devoid of residual “noise” (cf. [31]). In all computations, R
is fixed at a value implying the volume size parameter
kR¼50, where k is the wave number in the host medium,
while r is fixed at a value implying the particle size para-
meter kr¼4. The refractive index of the particles is fixed at
m¼1.32 and their number is fixed at N¼200. Figs. 2 and 3
summarize the results of computations for the following
values of the dimensionless beam-width parameter:
kω0¼5, 10, 20, and 1 (plane wave).
e function ~F
ð1Þ
11 ðΘÞ; while “ij/11” denotes ~F

ð1Þ
ij ðΘÞ= ~F ð1Þ

11 ðΘÞ:
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3. Discussion and conclusions

The uniform orientation distribution of Object 1 and its
mirror counterpart causes the dimensionless scattering
matrix ~F

ð2ÞðΘÞ to have the following well-known sym-
metric structure [20,32]:

~F
ð2ÞðΘÞ ¼

~F
ð2Þ
11 ðΘÞ ~F

ð2Þ
12 ðΘÞ 0 0

~F
ð2Þ
12 ðΘÞ ~F

ð2Þ
22 ðΘÞ 0 0

0 0 ~F
ð2Þ
33 ðΘÞ ~F

ð2Þ
34 ðΘÞ

0 0 � ~F
ð2Þ
34 ðΘÞ ~F

ð2Þ
44 ðΘÞ

2
6666664

3
7777775
; ð5Þ

with

~F
ð2Þ
12 ð0Þ ¼ ~F

ð2Þ
34 ð0Þ ¼ ~F

ð2Þ
12 ðπÞ ¼ ~F

ð2Þ
34 ðπÞ ¼ 0: ð6Þ

Fig. 2 demonstrates that the elements of the matrix (5) are
smooth functions of the scattering angle for all four values
of the dimensionless width parameter kω0: We can thus
conclude that averaging over the ensemble always results
in optical traits typical of a spherical volume of discrete
random medium irrespective of the lateral width of the
incident beam.

Similarly, it is quite obvious from Fig. 3 that there is no
radical qualitative difference between the cases of illumi-
nation of a fixed quasi-random multi-sphere object by a
plane electromagnetic wave or a Gaussian beam of finite
lateral width. Irrespective of kω0; the angular profiles of all
scattering-matrix elements are burdened by pronounced
speckles in the form of sharp large-amplitude maxima and
minima. The average amplitude of these spike-like fea-
tures does not seem to decrease with a decrease of kω0

from infinity all the way down to 5. Furthermore, the
matrix ~F

ð1ÞðΘÞ obviously lacks the symmetric block-
diagonal structure of the matrix ~F

ð2ÞðΘÞ described by Eqs.
(5) and (6). We can thus conclude that, by itself, illumi-
nating a fixed particulate sample by an uncollimated yet
fully coherent beam cannot serve to eradicate the speckles
and yield scattering patterns typical of the diffuse scat-
tering regime.

The latter conclusion should not be considered totally
unexpected and is in fact consistent with the qualitative
explanation of speckles given in [24]. Indeed, since the
phase of the Gaussian beam is not constant across the
beam, the phase difference between the two multi-particle
paths shown in Fig. 6 of [24] depends on kω0 as well as on
the specific coordinates of particles 1 and 10: Nonetheless,
in the case of a fixed multi-particle group this phase dif-
ference remains constant in time rather than randomly
changes, thereby causing a static contribution to the
speckle pattern.

The main implications of this result are as follows. In
the case of true discrete random media such as ergodic
low-density suspensions of particles in gases and liquids,
the nondetection of speckles in the scattered light is most
typically explained by random movements of particles
during the time required to take an optical measurement.
In the case of a fixed particulate sample such as a powder
surface, the absence of speckles can be caused by using a
polychromatic rather than monochromatic source of illu-
mination. If the source of illumination is a coherent laser
beam then the absence of speckles in the angular dis-
tribution of light scattered by a fixed particulate sample
cannot be explained by the finite width of the beam and
can only be caused by using a detector of light with very
poor angular resolution.
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