Notes

Expansion of tabulated scattering matrices in generalized spherical functions

Michael I. Mishchenko a,*, Igor V. Geogdzhayev b, Ping Yang c

a NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
b Columbia University, Department of Applied Physics and Applied Mathematics/NASA GISS, 2880 Broadway, New York, NY 10025, USA
c Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843, USA

A R T I C L E I N F O

Article history:
Received 28 April 2016
Received in revised form
12 May 2016
Accepted 13 May 2016
Available online 21 May 2016

Keywords:
Electromagnetic scattering
Polarization
Scattering matrix
Generalized spherical functions
Radiative transfer
Stokes parameters

A B S T R A C T

An efficient way to solve the vector radiative transfer equation for plane-parallel turbid media is to Fourier-decompose it in azimuth. This methodology is typically based on the analytical computation of the Fourier components of the phase matrix and is predicated on the knowledge of the coefficients appearing in the expansion of the normalized scattering matrix in generalized spherical functions. Quite often the expansion coefficients have to be determined from tabulated values of the scattering matrix obtained from measurements or calculated by solving the Maxwell equations. In such cases one needs an efficient and accurate computer procedure converting a tabulated scattering matrix into the corresponding set of expansion coefficients. This short communication summarizes the theoretical basis of this procedure and serves as the user guide to a simple public-domain FORTRAN program.

Published by Elsevier Ltd.

1. Introduction

An efficient way of solving the vector radiative transfer equation (VRTE) for plane-parallel turbid media composed of statistically isotropic and mirror-symmetric random particles [1,2] is to Fourier-decompose the VRTE in azimuth and find each Fourier component separately (see, e.g., [3–20] and references therein). The central element of this methodology is the analytical procedure for the computation of the Fourier components of the phase matrix using the addition theorem for generalized spherical functions (GSFs). This procedure dates back to the seminal papers by Kuščer and Ribarič [21], Domke [22], Sievert [23,24], and Hovenier and van der Mee [25]. The most convenient version of this procedure based on real-valued Stokes parameters was developed by de Haan et al. [5] and summarized by Hovenier et al. [26]. Their approach is based on the underlying expansion of the corresponding normalized scattering matrix [1,2] in appropriate GSFs and is thus predicated on the knowledge of the corresponding expansion coefficients for the particle ensemble in question.

There are several numerical techniques for the explicit computation of the expansion coefficients for specific particle types based on such direct solvers of the macroscopic Maxwell equations as the Lorenz–Mie theory and the (superposition) T-matrix method. In particular, direct computations of the expansion coefficients bypassing the prior computation of the scattering matrix can be performed for

- monodisperse or polydisperse homogeneous and radially inhomogeneous spherical particles [27–31];
- monodisperse or polydisperse, randomly oriented homogeneous spheroids, circular cylinders, and regular 2D Chebyshev particles [30,32];
- monodisperse bispheres [33];
- clusters of separated, externally touching, and/or nested spheres [34–36].
Several FORTRAN computer programs based on these techniques are publicly available on-line [37]. Other nonspherical shapes such as polyhedral particles, regular 3D Chebyshev particles, and 2D and 3D Gaussian random spheres can be handled using the T-matrix code described in [38] and also publicly available on-line [39]. Of course, these public-domain computer programs may be inapplicable to certain particle morphologies and/or size-parameter ranges. In many such cases one may be able to use the core-mantle and invariant-imbedding T-matrix programs described in [40–43].

Quite often however the expansion coefficients cannot be computed directly and must be determined from tabulated values of the scattering matrix elements. This happens when the scattering matrix is measured experimentally [44–48] or is computed using alternative numerical techniques such as, for example, the ray tracing (or geometrical optics) approximation [49–57], the discrete-dipole approximation [58–61], the finite-difference time-domain method [62–64], and the pseudo-spectral time domain method [65,66] (see also Refs. [67–74]). In such cases it is essential to have an efficient, accurate, and user-friendly computer procedure converting a tabulated scattering matrix into the corresponding set of expansion coefficients. The main objective of this short communication is to summarize the theoretical basis of this procedure and serve as the user guide to a simple public-domain FORTRAN program.

To make the discussion more compact, we will use throughout the terminology and notation adopted in the monographs [1,2,30]. Note that [1,30] are available on-line as PDF files at (http://www.giss.nasa.gov/staff/mmishchenko/books.html) as well as at https://www.researchgate.net/profile/Michael_Mishchenko.

2. Expansion of the scattering matrix in generalized spherical functions

We assume that the random particles forming a sparse turbid layer are statistically isotropic and mirror symmetric [1,2,26,30]. This means that all orientations of a particle are equally probable. Furthermore, each particle has a plane of symmetry and/or is accompanied by its mirror counterpart.

This assumption allows us to fully characterize the single-scattering properties of the particulate medium by the ensemble-averaged single-scattering albedo \(\sigma\) and so-called normalized 4 × 4 Stokes scattering matrix \(\mathbf{F}(\theta)\) with real-valued components. The latter has the well-known block-diagonal structure:

\[
\mathbf{F}(\theta) = \begin{bmatrix}
 a_1(\theta) & b_1(\theta) & 0 & 0 \\
 b_1(\theta) & a_2(\theta) & 0 & 0 \\
 0 & a_3(\theta) & b_2(\theta) & 0 \\
 0 & 0 & -b_2(\theta) & a_4(\theta)
\end{bmatrix},
\]

where \(\theta \in [0, \pi]\) is the angle between the incidence and scattering directions (i.e., the scattering angle). The (1,1) element (called the phase function) is non-negative and satisfies the normalization condition

\[
\frac{1}{2} \int_0^\pi d\theta \sin \theta \ a_1(\theta) = 1.
\]

The elements of the normalized scattering matrix (1) can be expanded in GSFs \(P_{\mu\nu}(\cos \theta)\) [1,2,26,30]:

\[
a_1(\theta) = \sum_{s=0}^{\text{max}} a_1^s P_{00}(\cos \theta),
\]

\[
a_2(\theta) + a_3(\theta) = \sum_{s=0}^{\text{max}} (a_2^s + a_3^s) P_{22}(\cos \theta),
\]

\[
a_2(\theta) - a_3(\theta) = \sum_{s=0}^{\text{max}} (a_2^s - a_3^s) P_{2-2}(\cos \theta),
\]

\[
a_4(\theta) = \sum_{s=0}^{\text{max}} a_4^s P_{00}(\cos \theta),
\]

\[
b_1(\theta) = \sum_{s=0}^{\text{max}} b_1^s P_{02}(\cos \theta),
\]

\[
b_2(\theta) = \sum_{s=0}^{\text{max}} b_2^s P_{02}(\cos \theta),
\]

where the upper summation limit \(s_{\text{max}}\) depends on the requisite numerical accuracy. Note that these expansions can also be written in terms of real-valued so-called Wigner d-functions given by

\[
d_{\mu\nu}^m(\theta) = i^{n-m} P_{\mu\nu}^{m}(\cos \theta)
\]

(see [75] and Appendix F in [1]).

If the normalized scattering matrix is known beforehand, the expansion coefficients can be calculated by evaluating the following integrals:

\[
a_1^s = (s + \frac{1}{2}) \int_0^\pi d\theta \sin \theta \ a_1(\theta) \ d_{00}^s(\theta),
\]

\[
a_2^s + a_3^s = (s + \frac{1}{2}) \int_0^\pi d\theta \sin \theta \ [a_2(\theta) + a_3(\theta)] \ d_{22}^s(\theta),
\]

\[
a_2^s - a_3^s = (s + \frac{1}{2}) \int_0^\pi d\theta \sin \theta \ [a_2(\theta) - a_3(\theta)] \ d_{2-2}^s(\theta),
\]

\[
a_4^s = (s + \frac{1}{2}) \int_0^\pi d\theta \sin \theta \ a_4(\theta) \ d_{00}^s(\theta),
\]

\[
b_1^s = -(s + \frac{1}{2}) \int_0^\pi d\theta \sin \theta \ b_1(\theta) \ d_{02}^s(\theta),
\]

\[
b_2^s = -(s + \frac{1}{2}) \int_0^\pi d\theta \sin \theta \ b_2(\theta) \ d_{02}^s(\theta).
\]

These formulas follow from Eqs. (3)–(9) and the orthogonality property of the Wigner d-functions [1,75].

3. Numerical integration

As we have already mentioned, in some cases the expansion coefficients can be calculated directly without computing explicitly the elements of the scattering matrix. Alternatively, one needs to evaluate the integrals (10)–(15) numerically by using a quadrature formula. By virtue of being exact for all polynomials of degree \(2N_C - 1\) or lower, where \(N_C\) is the number of quadrature nodes, the classical Gaussian
The quadrature formula represents by far the best practical choice \[76\]. We thus have
\[
\alpha_1' \approx (s+\frac{1}{2}) \sum_{j=1}^{N_c} w_j a_1(\arccos \mu_j) d_{00}'(\arccos \mu_j), \quad (16)
\]
\[
\alpha_2 + \alpha_3' \approx (s+\frac{1}{2}) \sum_{j=1}^{N_c} w_j [a_2(\arccos \mu_j) + a_3(\arccos \mu_j)] d_{22}'(\arccos \mu_j), \quad (17)
\]
\[
\alpha_2 - \alpha_3' \approx (s+\frac{1}{2}) \sum_{j=1}^{N_c} w_j [a_2(\arccos \mu_j) - a_3(\arccos \mu_j)] d_{2-2}'(\arccos \mu_j), \quad (18)
\]
\[
\alpha_4' \approx (s+\frac{1}{2}) \sum_{j=1}^{N_c} w_j a_4(\arccos \mu_j) d_{00}'(\arccos \mu_j), \quad (19)
\]
\[
\beta_1' \approx -(s+\frac{1}{2}) \sum_{j=1}^{N_c} w_j b_1(\arccos \mu_j) d_{02}'(\arccos \mu_j), \quad (20)
\]
\[
\beta_2' \approx -(s+\frac{1}{2}) \sum_{j=1}^{N_c} w_j b_2(\arccos \mu_j) d_{22}'(\arccos \mu_j), \quad (21)
\]
where \(w_j\) and \(a_j\) are the Gaussian quadrature nodes and weights on the interval \([-1, 1]\) and \(N_c = s_{\text{max}}\).

To compute the Wigner \(d\)-functions entering Eqs. (16)–(21), we use the following recurrence relation \[75\]:
\[
d_{mn}^\pm(\theta) = \frac{1}{s} \sqrt{(s+1)^2 - m^2} \sqrt{(s+1)^2 - n^2} \times [(2s+1)(s+1) \cos \theta - mn] d_{mn}'(\theta) \\nonumber \\
\times (s+1) \sqrt{s^2 - m^2} \sqrt{s^2 - n^2} d_{mn}'(\theta), \quad (22)
\]
where \(s \geq s_{\text{min}}\) and
\[
s_{\text{min}} = \max(|m|, |n|). \quad (23)
\]
Note that in general, \(d_{mn}'(\theta) \equiv 0\) for \(s < s_{\text{min}}\). The initial values for the recurrence relation \(22\) are given by
\[
d_{mn}'(0) = 0, \quad (24)
\]
\[
d_{mn}^m(\theta) = \xi_m 2^{-m} \left[(2s_{\text{min}})^{m} \right]^{1/2} \times \left((1 - \cos \theta)^m - n/2 (1 + \cos \theta)^m - n/2 \right), \quad (25)
\]
where
\[
\xi_m = \begin{cases} 1 & \text{for } n \geq m, \\ (-1)^{m-n} & \text{for } n < m. \end{cases} \quad (26)
\]

It is imperative to recognize that the normalization condition (2) requires the expansion coefficient \(\alpha_1^0\) to be identically equal to unity:
\[
\alpha_1^0 \equiv 1. \quad (27)
\]
Even small deviations from this identity in radiative-transfer computations for optically thick particulate layers can lead to large numerical errors. Therefore, the final step in the computation of the expansion coefficients according to Eqs. (16)–(21) is the calculation of the normalization coefficient
\[
C = \frac{1}{\alpha_1^1} \quad (28)
\]
and the subsequent multiplication of all the expansion coefficients \(\alpha_1^1, \alpha_2^2, \alpha_3^3, \alpha_4^4, \beta_1^1, \beta_2^2\) by this coefficient.

The deviation of \(C\) from unity should be considered an important indicator of numerical accuracy of the resulting expansion coefficients and, in fact, of the accuracy of the input scattering matrix. Typically achieving small \(|C - 1|\) values requires a careful treatment of the diffraction peak in the diagonal elements of the scattering matrix, e.g., tabulating it with very high angular resolution.

4. FORTRAN procedure

The public-domain FORTRAN procedure for the calculation of the expansion coefficients is partitioned into two files: sphere_expan.f and params.h. The first one combines the main program and all relevant subroutines, while the second one contains user-defined parameters. These files are available at \[77\]. Both files must reside in the same directory during the execution of the program.

A file input_file_name tabulating the six nonzero elements of the scattering matrix (1) for a set of scattering angles serves as the input. The data should be arranged in seven columns as follows:
\[
\begin{array}{cccccccc}
\theta_1 & a_1(\theta_1) & a_2(\theta_1) & a_3(\theta_1) & a_4(\theta_1) & b_1(\theta_1) & b_2(\theta_1) \\
\theta_2 & a_1(\theta_2) & a_2(\theta_2) & a_3(\theta_2) & a_4(\theta_2) & b_1(\theta_2) & b_2(\theta_2) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\theta_{N_s} & a_1(\theta_{N_s}) & a_2(\theta_{N_s}) & a_3(\theta_{N_s}) & a_4(\theta_{N_s}) & b_1(\theta_{N_s}) & b_2(\theta_{N_s})
\end{array}
\quad (29)
\]
where \(N_s\) is the total number of (increasing) input scattering angles. The typical execution command reads
\[
./a.out input_file_name
\quad (30)
\]
The result of the execution is a set of two files input_file_name.expan_coeff and input_file_name.expan_matr tabulating the expansion coefficients and the scattering matrix elements re-expanded according to Eqs. (3)–(8). The latter can be compared with the original input to assess the resulting numerical accuracy. The format of the file input_file_name.expan_matr is given by Eq. (29), while that of the file input_file_name.expan_coeff is as follows:
\[
\begin{array}{cccccccc}
s_{\text{max}} & C & 0 & a_1^1 & a_2^2 & a_3^3 & a_4^4 & \beta_1^1 & \beta_2^2 \\
1 & a_1^1 & a_2^2 & a_3^3 & a_4^4 & \beta_1^1 & \beta_2^2 & \beta_1^1 & \beta_2^2 \\
\vdots & \vdots
\end{array}
\quad (31)
\]
In order to evaluate the sums (16)–(21), the input scattering matrix should ideally be precomputed at the Gaussian nodes (cf. \[28,30\]). Otherwise it has to be interpolated to the Gaussian nodes numerically. While polynomial or spline interpolation can be applied to scattering matrices with a smooth angular dependence, it can be problematic in the case of phase functions with a strong forward peak and sharp angular features such as halos exhibited by pristine hexagonal ice crystals. The residual noise in the measured scattering matrix elements can also cause problems. We have therefore decided to use simple
linear interpolation (extrapolation) irrespective of the source of tabulated values of the scattering matrix.

Depending on the nature of the input, the algorithm can operate in either of two modes controlled by the parameter NSPHER. In the first mode a positive integer value of NSPHER prescribes the number s_{max} of the expansion coefficients to be calculated (and thus the number of Gaussian nodes $N_G = s_{\text{max}}$ to be used). The second mode is entered if NSPHER is set to a negative value. In that case the number of the expansion coefficients N_G is originally set to MIN_NSPPHER and is then increased in steps of DELTA_NG to reduce the discrepancy between the original and the re-expanded scattering matrices to below a user-specified threshold DESIRED_ED_ERR. The user can choose one of three error metrics for the estimation of the numerical discrepancy by specifying the appropriate value of the parameter ERRTYP:

- the maximum absolute difference between the original and expanded phase functions ($\text{ERRTYP}=\text{MAXABS}$);
- the maximum absolute relative difference between the original and expanded phase functions (in percent; $\text{ERRTYP}=\text{MAXPERCENT}$); or
- the mean square root error of the expanded phase function ($\text{ERRTYP}=\text{MSRE}$).

Additionally, the range of scattering angles (in degrees) at which the discrepancy is estimated can be specified by defining the parameters ang_min and ang_max.

Each error metric can be calculated on the original grid of scattering angles at which the input scattering matrix is specified or on the alternative set of scattering angles calculated by retaining the smallest and the largest original scattering angles and replacing the intermediate angles by the middle points of the intervals formed by pairs of adjacent angles in the original grid. The values of the phase function for the new angles are found by linear interpolation and the discrepancy between the original and the expanded phase functions is calculated for the new set of angles. The purpose of this test is to check whether the requisite accuracy has been achieved for scattering angles other than the original ones. The first mode is entered by specifying any integer value of USE_ALT_ANG other than 1.

5. Illustrative example

As an example, we describe the application of the program sphere_expan.f to scattering matrices with sharp angular features, we use the MODIS C5 scattering matrix computed for MODIS channel 1 covering the spectral range 620–670 nm. The solid curves in Fig. 2 show the original MODIS C5 channel-1 scattering matrix corresponding to an effective particle size of $D_{\text{eff}}=60 \, \mu$m. We first computed the expansion coefficients using the algorithm described above and then used the resulting expansion coefficients to re-calculate the scattering matrix and compare it with the original one. Specifically, the scattering matrix elements were expanded in GSFs using $s_{\text{max}} = N_G = 50$ and 5000 coefficients. The re-expanded matrix corresponding to $N_G=50$ is depicted by the dashed curves and reveals a rather poor fit. In particular, this number of the expansion coefficients is grossly insufficient to describe the sharp forward-scattering phase-function peak. Increasing the number of the expansion coefficients to 5000 (the results not shown) yields an essentially perfect fit for the entire range of scattering angles. The resulting normalization coefficient $C=1.00022$ is very close to unity and hence is also indicative of excellent numerical fidelity.

To investigate the rate of numerical convergence in more detail, we calculated the re-expanded phase functions for increasing numbers of the expansion coefficients and computed the mean square root errors between the original and re-expanded phase functions for the entire scattering-angle range. The results are presented in Fig. 3 and demonstrate that increasing the number of the expansion coefficients does
tend to reduce the error. The reduction is not uniform since shifts of the Gaussian quadrature nodes relative to the angular features of the phase function can occasionally increase the errors as N_c increases. In general, Fig. 3 shows that the initial sharp reduction of the error, which is largely due to improved modeling of the forward-scattering peak, is followed by a much slower overall decrease.

Fig. 2. Comparison of the original MODIS channel-1 ice-crystal scattering matrix (solid curves) with the re-expanded one for $s_{\text{max}} = 50$ (dashed curves).
Fig. 3. The dependence of the mean square root error on the number of the expansion coefficients.

Acknowledgments

We thank two anonymous reviewers for constructive suggestions. M.I.M. and I.V.G. acknowledge support from the NASA ACE Project managed by Hal Maring, Paula Bontempi, and Arlindo da Silva.

References
