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The effective-medium approximation (EMA) is based on the assumption that a heterogeneous
particle can have a homogeneous counterpart possessing similar scattering and absorption
properties. We analyze the numerical accuracy of the EMA by comparing superposition T-
matrix computations for spherical aerosol particles filled with numerous randomly dis-
tributed small inclusions and Lorenz–Mie computations based on the Maxwell-Garnett
mixing rule. We verify numerically that the EMA can indeed be realized for inclusion size
parameters smaller than a threshold value. The threshold size parameter depends on the
refractive-index contrast between the host and inclusion materials and quite often does not
exceed several tenths, especially in calculations of the scattering matrix and the absorption
cross section. As the inclusion size parameter approaches the threshold value, the scattering-
matrix errors of the EMA start to grow with increasing the host size parameter and/or the
number of inclusions. We confirm, in particular, the existence of the effective-medium regime
in the important case of dust aerosols with hematite or air-bubble inclusions, but then the
large refractive-index contrast necessitates inclusion size parameters of the order of a few
tenths. Irrespective of the highly restricted conditions of applicability of the EMA, our results
provide further evidence that the effective-medium regime must be a direct corollary of the
macroscopic Maxwell equations under specific assumptions.
Published by Elsevier Ltd.
1. Introduction

Owing to its unparalleled simplicity, the effective-
medium approximation (EMA) has been widely used to
model complex heterogeneous substances as being homo-
geneous and having a refractive index computed with one
of the phenomenological mixing rules such as the Lorentz–
Lorenz, Bruggeman, and Maxwell-Garnett formulas [1,2].
Applications of various mixing rules in remote sensing,
ng research have
be possible to

(M.I. Mishchenko).
assemble a representative list of relevant publications as it
would contain hundreds of entries.

The use of the EMA appears to be unavoidable in many
cases given the extreme morphological complexity of the
vast majority of aerosol particles (e.g., [3–12]). The main
cause of this situation is the limited applicability of direct
computer solvers of the Maxwell equations to repre-
sentative ensembles of heterogeneous particles. It should
be kept in mind however that, in the words of Chýlek et al.
[2], mixing rules have always been heuristic shortcuts not
derived explicitly from the Maxwell equations. As a con-
sequence, the accuracy of such ad hoc effective refractive

indices (ERIs) and the precise conditions for their per-
missible use have often been difficult to assess.
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the inclusion size parameter and of the refractive-index
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Despite the obvious shortcomings of the EMA, its
applications in remote sensing and climate research can be
expected to be as widespread in the future as they have
been in the past. For example, the use of the concept of an
ERI has been and is expected to remain implicit in virtually
all computations of electromagnetic scattering by dust-like
aerosols since it has become the norm to ignore the
internal heterogeneity of such particles. Therefore, the
failure of this concept in application to dust-like aerosols
may create an extremely problematic situation. This makes
it imperative to perform an in-depth analysis of the range
and conditions of practical applicability of the EMA.

This analysis has been initiated in several recent pub-
lications [13–18] by taking advantage of the latest improve-
ments in first-principle modeling methodologies [19]. The
overall outcome of these studies can hardly be characterized
as optimistic. It should be recognized however that some of
these initial results are based on a few rather artificial
models of heterogeneous aerosols that do not necessarily
offer the EMA a “fair chance”. Indeed, it is well-known that
the concept of bulk refractive index is a byproduct of deriv-
ing the macroscopic Maxwell equations from the micro-
scopic Maxwell–Lorentz equations dealing with discrete
elementary charges [20–30]. The main assumption in this
derivation is that the microscopic electromagnetic field can
be meaningfully homogenized over “physically infinitesimal”
volume elements that are much smaller than the wavelength
and yet contain vast numbers of molecules. It is obvious that
the extrapolation of this approach to the case of a macro-
scopically heterogeneous material must also be based on the
assumption that inclusions are quasi-uniformly distributed
throughout the host medium, are sufficiently small, and are
present in large numbers. Only then can one hope that the
concept of the ERI might work.

We have already mentioned that a direct analytical deri-
vation of the EMA from the Maxwell equations is still absent.
However, the actual existence of the effective-medium
regime has been demonstrated numerically by comparing
Lorenz–Mie results for a homogeneous spherical particle with
those obtained by applying the superposition T-matrix solver
of the Maxwell equations to a spherical particle filled ran-
domly with a large number of very small spherical inclusions
[31]. The refractive indices of the host and of the inclusions
were 1.33 and 1.55, respectively. The possibility to identify an
ERI enabling the Lorenz–Mie theory to reproduce even the
finest details of the angular profile of the scattering matrix
demonstrated convincingly that the effective-medium con-
cept must have physical validity. Yet the practical range of this
validity may not necessarily be wide and may exclude many
actual types of heterogeneous atmospheric particulates.

Given the great importance of mineral-dust aerosols in
atmospheric radiative-transfer modeling and remote sen-
sing, the main objective of this paper is to extend the
analysis of [31] and demonstrate numerically the funda-
mental existence of the effective-medium regime in the
case of two types of inclusions representing the largest
refractive-index contrast with the mineral host, i.e., air
bubbles and absorbing hematite grains. Furthermore, we
trace and analyze the accumulation of errors of the EMA as
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the ideal conditions of the ERI regime are increasingly
violated. A useful intermediate aspect of our study is a
general analysis of the accuracy of the EMA as a function of

Fig. 1. The essence of the effective-medium approximation.
contrast between the host particle and the inclusions.

2. Modeling methodology

The gist of the EMA is illustrated in Fig. 1 wherein a par-
ticle randomly filled with numerous, quasi-uniformly dis-
tributed small inclusions is replaced by a homogeneous
object of the same overall shape but with an artificial
(effective) refractive index coinciding neither with that of the
host nor with that of the inclusions. Given its artificial nature,
the ERI carries no independent physical content and is useful
only to the extent to which it can simplify the computation of
relevant optical observables. In the case of atmospheric

radiative-transfer and remote sensing research, all such
observables can, in the final analysis, be expressed in terms of
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the elements of the real-valued 4� 4 so-called phase and
extinction matrices Zðn̂sca

; n̂incÞ and Kðn̂incÞ [32,33]. These
matrices provide a self-contained description of electro-
magtnetic scattering in the far zone of a finite object illumi-
nated by a plane electromagnetic wave incident in the
direction of the unit vector n̂inc

; the unit vector n̂sca specify-
ing the scattering direction. The computation of these
matrices and/or appropriate derivative quantities using var-
ious mixing rules and a direct computer solver of the Max-
well equations thus serves as a suitable means of evaluating
the accuracy of the EMA.

In many cases aerosol particles have nonspherical outer
boundaries in addition to being internally heterogeneous. In
principle, realistic computations of electromagnetic scat-
tering by such aerosols should be based on particle models
incorporating both morphological features. It should be
kept in mind however that the effects of nonsphericity and
internal heterogeneity on the phase and extinction matrices
can be similar, thereby making it problematic to evaluate
unequivocally the actual performance of a mixing rule
intended to simulate only the effects of internal hetero-
geneity. To circumvent this problem, we will model atmo-
spheric aerosols as particles with spherical overall shapes
(see the upper panel of Fig. 1). An added benefit of this
approach is the possibility to use the highly efficient and
accurate superposition T-matrix method (STMM) with its
quasi-analytical orientation-averaging procedure [34,35].

By its very nature, the EMA is intended to reproduce the
scattering and absorption properties of particles with het-
erogeneous yet statistically uniform interiors [1,2]. We
simulate the statistical randomness and quasi-uniformity of a
heterogeneous particle’s interior in two steps. First, we use a
random-number generator to create a fixed yet quasi-random
configuration of a large number N of inclusions, while making
sure that the volumes of the inclusions do not overlap and do
not cross the particle’s outer boundary. Second, we average
the relevant far-field optical observables over the equiprob-
able orientation distribution of the resulting discretely het-
erogeneous object using the STMM code described by
Mackowski [35]. In principle, this procedure should be
repeated a number of times for different randomly generated
configurations of the N inclusions, and the resulting optical
observables should be configuration-averaged. However,
several control tests have shown that averaging over different
configurations of inclusions is not essential since the final
result is virtually indistinguishable from that obtained by
using only one randomly generated configuration.

Quite a number of mixing rules have been proposed
over the years, as summarized by Sihvola [1] and Chýlek
et al. [2]. Evaluating all of them one-by-one can be
exceedingly laborious, but is hardly needed. Indeed, we
have verified that in all specific cases considered below,
the popular Maxwell-Garnett (MG) and Bruggeman
mixing rules yield very close (if not nearly identical) ERIs.
Therefore, all our results and conclusions apply equally to
both mixing rules. Furthermore, our previous studies
[31,36] as well as extensive additional tests (not shown)
have demonstrated that if the STMM result for a hetero-
geneous particle can be accurately reproduced by a Lor-
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enz–Mie computation then the resulting best-fit ERI is
likely to be very close to the MG ERI. Based on this
evidence, we will narrow the scope of our study by eval-
uating the performance of only the MG mixing rule.

In this paper we will analyze only light scattering by
randomly oriented particles, which makes it a convenient
simplification to assume that n̂inc points in the positive
direction of the z-axis of the laboratory spherical coordi-
nate system. The scattering geometry can thus be sum-
marized by Fig. 2. It is worth reminding that the intro-
duction of the far-field phase and extinction matrices is
based on the assumption that the Stokes parameters of the
incident plane wave and the outgoing spherical scattered
wave are defined with respect to the corresponding mer-
idional planes containing the vectors n̂inc and n̂sca as well
as the z-axis. Since n̂inc is parallel to the z-axis, there is no
implicit meridional plane of the incident light. Therefore,
this plane must be prescribed explicitly.

For demonstration purposes, we define the 4� 4
dimensionless scattering matrix ~FðΘÞ according to

~FðΘÞ ¼ 4π
Csca

Zðθsca ¼Θ;φsca; θinc ¼ 0;φinc ¼ φsca;Ψ Þ
D E

Ψ
; ð1Þ

where θA ½0; π� is the polar angle of a propagation direc-
tion, φA ½0; 2πÞ is the corresponding azimuth angle, and Θ
is the scattering angle; the average is taken over the
equiprobable distribution of orientations Ψ of a hetero-
geneous particle; and the normalization constant Csca is
given by

Csca ¼
Z

4π
dn̂sca

〈Z11ðθsca;φsca; θinc ¼ 0;φinc ¼ 0;Ψ Þ〉Ψ : ð2Þ

Note that the uniform orientation distribution renders ~F
independent of φsca; while Csca represents the orientation-
averaged scattering cross section for the particular case of
unpolarized incident light [32,33]. The ð1; 1Þ element of the
scattering matrix ~FðΘÞ (traditionally called the phase func-
tion) is normalized according to

1
Z π

~

Fig. 2. Scattering geometry.
2 0



where Cext is the orientation-averaged extinction cross
section.

pectro
A frequently used far-field scattering characteristic is the
so-called asymmetry-parameter defined as

g¼ 1
2

Z π

0
dΘ sin Θ ~F 11ðΘÞ cos Θ: ð4Þ

Owing to the uniform orientation distribution, the
dimensionless scattering matrix (1) has the following
well-known symmetric structure [32,37]:

~FðΘÞ ¼

~F 11ðΘÞ ~F 21ðΘÞ ~F 13ðΘÞ ~F 14ðΘÞ
~F 21ðΘÞ ~F 22ðΘÞ ~F 23ðΘÞ ~F 24ðΘÞ

� ~F 13ðΘÞ � ~F 23ðΘÞ ~F 33ðΘÞ ~F 34ðΘÞ
~F 14ðΘÞ ~F 24ðΘÞ � ~F 34ðΘÞ ~F 44ðΘÞ

2
66664

3
77775: ð5Þ

Numerous STMM computations for heterogeneous spherical
particles with multiple quasi-randomly distributed inclu-
sions have demonstrated that the elements populating the
upper right and lower left 2� 2 blocks of this matrix are
negligibly small (in the absolute-value sense) compared to
the other elements. This is an expected result of averaging
over the equiprobable orientation distribution of an inho-
mogeneous particle coupled with quasi-randomness of the
initial inclusion positions throughout the particle volume.
Thus the scattering matrix can be considered to have the
following typical block-diagonal structure:

~FðΘÞ �

~F 11ðΘÞ ~F 21ðΘÞ 0 0
~F 21ðΘÞ ~F 22ðΘÞ 0 0
0 0 ~F 33ðΘÞ ~F 34ðΘÞ
0 0 � ~F 34ðΘÞ ~F 44ðΘÞ

2
66664

3
77775: ð6Þ

A fundamental property of the Lorenz–Mie (LM) scat-
tering matrix is the identity [37]

~F
LM
22 ðΘÞ � ~F

LM
11 ðΘÞ: ð7Þ

This implies that if the boundary of a host particle is perfectly
spherical then the EMA yields this identity precisely, irre-
spective of the actual particle interior. Therefore, a deviation of
the ratio ~F 22ðΘÞ= ~F 11ðΘÞ for a heterogeneous spherical object
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from 100% serves as the most direct and unequivocal indicator
of the numerical failure of the EMA [13,31].

Fig. 3. Percent errors of the Max
The extinction matrix also becomes simpler upon aver-
aging over the equiprobable orientation distribution of a
heterogeneous particle. Specifically, it becomes indepen-
dent of n̂inc and has the following symmetric form [33]:

〈Kðn̂inc
;Ψ Þ〉Ψ ¼

K11 0 0 K14

0 K11 K23 0
0 �K23 K11 0
K14 0 0 K11

2
66664

3
77775: ð8Þ

Furthermore, the off-diagonal elements become negligibly
small in comparison to the diagonal ones, so that the
extinction matrix can be considered to be diagonal and
given by

〈Kðn̂inc
;Ψ Þ〉Ψ � Cext

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
6664

3
7775; ð9Þ
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3. Accuracy of the EMA as a function of the inclusion
size parameter and relative refractive index

By analogy with the well-known Rayleigh approxima-
tion [37], we can expect that the accuracy of the EMA must
depend strongly on the size parameter of the inclusions
and their refractive index relative to that of the host par-
ticle. To demonstrate the effect of the refractive-index
contrast, in Fig. 3 we depict three errors of the MG mix-
ing rule defined according to

δ ~F 11ðΘÞ ¼
~F
MG
11 ðΘÞ� ~F

STMM
11 ðΘÞ

~F
MG
11 ðΘÞ

�����
������ 100%; ð10Þ

~
~F
MG
21 ðΘÞ ~F

STMM
21 ðΘÞ

���
���
δF 21ðΘÞ ¼
~F
MG
11 ðΘÞ

�
~F
STMM
11 ðΘÞ

�� ��� 100%; ð11Þ

well-Garnett mixing rule.



pectro
~
~F
MG
34 ðΘÞ ~F

STMM
34 ðΘÞ

���
���
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δF 34ðΘÞ ¼
~F
MG
11 ðΘÞ

�
~F
STMM
11 ðΘÞ

�� ��� 100%: ð12Þ

Table 1
Percent errors of the Maxwell-Garnett mixing rule.

mincl x N δCext (%) δg (%)

1.4 0.3 8000 0.33 0.29
1.5 0.3 8000 0.67 0.40
1.6 0.3 8000 0.84 0.05
1.7 0.3 8000 0.57 –0.91
1.8 0.3 8000 –0.58 –1.63
1.9 0.3 8000 –2.34 –0.39
2 0.3 8000 –3.20 –0.91
1.4 0.6 1000 –5.96 –2.73

Fig. 4. The ratio ~F 22ðΘÞ= ~F 11ðΘÞ (in percent) for differen
These errors were calculated assuming the following fixed
values of the heterogeneous particle characteristics: the
host size parameter X ¼ 2πR=λ¼ 10; where R is the host
particle radius and λ is the wavelength of the incident
light; the host refractive index mhost¼1.32; the inclusion
size parameter x¼ 2πr=λ¼ 0:3; where r is the inclusion
radius; and the number of inclusions N¼8000. The
resulting volume fraction of the inclusions is 21.6%. The
only variable characteristic was the inclusion refractive
index mincl which ranged from 1.4 to 2 while remaining
real-valued. Table 1 lists the corresponding extinction and
asymmetry-parameter errors defined by

CMG�CSTMM

scopy & Radiative Transfer 178 (2016) 284–294
δCext ¼ ext ext

CMG
ext

� 100%; ð13Þ

t models of a heterogeneous spherical particle.
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δg¼ gMG�gSTMM

gMG � 100%; ð14Þ
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while panels a–g of Fig. 4 depict the corresponding angular

Table 2
Percent errors of the Maxwell-Garnett mixing rule in the case of dust aerosols

X x N δCext (%) δCsca (%)

4 0.1 1280 0.45 0.49
4 0.2 160 0.49 0.58
4 0.3 47 1.45 1.63
4 0.5 10 5.71 6.21
8 0.1 10240 0.05 0.12
8 0.2 1280 0.09 0.30
8 0.3 379 –0.19 0.22
8 0.5 82 0.53 1.64

Fig. 5. Elements of the dimensionless scattering matrix for X¼4 spherica
profiles of the ratio ~F
STMM
22 ðΘÞ= ~F STMM

11 ðΘÞ: Note that since the
refractive indices of both the host and the inclusions are

scopy & Radiative Transfer 178 (2016) 284–294 289
real-valued, the scattering cross section coincides with the
extinction cross section: Csca ¼ Cext:

with hematite inclusions.

δCabs (%) ϖ δϖ (%) δg (%)

–5.14 0.9933 0.036 0.441
–14.49 0.9927 0.097 0.521
–25.33 0.9919 0.175 1.787
–72.15 0.9883 0.531 6.052
–4.15 0.9842 0.065 –0.302

–13.43 0.9827 0.209 –0.680
–26.85 0.9808 0.411 –0.469
–71.62 0.9738 1.120 0.092

l dust particles filled with identical spherical hematite inclusions.
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Fig. 3 demonstrates that if the refractive index of the
host particle material and that of the inclusions are very
close (1.32 and 1.4, respectively) then all three errors are
negligibly small. As expected, the errors grow with
increasing refractive-index contrast between the host and
the inclusions. This growth is not always monotonous at
all scattering angles, yet by the time the refractive index of
the inclusions reaches the value 2, all three errors exhibit
values that can be considered unacceptable in many
applications. Importantly, this happens despite the very
small size parameter of the inclusions. The deviation of the

ratio ~F
STMM
22 ðΘÞ= ~F STMM

11 ðΘÞ from 100% in Fig. 4a–g also
increases with increasing refractive-index contrast and
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reaches 10% for mincl¼2. Again, this is a qualitatively
expected result.

Fig. 6. Elements of the dimensionless scattering matrix for X¼8 spherica
The results shown in Table 1 reveal that the extinction
and asymmetry-parameter errors of the MG mixing rule
are substantially smaller than the scattering-matrix errors.
They do seem to increase with mincl, but remain suffi-
ciently small for most typical applications.

Panels h–l of Fig. 4 reveal other interesting traits of the

ratio ~F
STMM
22 ðΘÞ= ~F STMM

11 ðΘÞ which suggest that the errors of
the MGmixing rule can depend in a rather convoluted way
on the inclusion number, size parameter, and refractive-
index contrast. First, Fig. 4h pertains to the case of
N¼8000 air-bubble inclusions with mincl¼1 and x¼0.3.
The corresponding refractive-index contrast is similar to
that in the case of mincl¼1.75. However, comparison of
Fig. 4h with Fig. 4d and e shows significantly smaller

scopy & Radiative Transfer 178 (2016) 284–294
deviations of the ratio ~F
STMM
22 ðΘÞ= ~F STMM

11 ðΘÞ from 100% in

l dust particles filled with identical spherical hematite inclusions.



Table 3
Percent errors of the Maxwell-Garnett mixing rule in the case of dust
aerosols with air-bubble inclusions.

X x N δCext (%) δg (%)

4 0.15 380 –0.10 –0.06
4 0.2 160 –0.53 –0.29
4 0.3 47 –0.42 –0.09
4 0.5 10 –0.24 0.52
4 1.09 1 0.34 1.11
8 0.15 3035 0.08 0.05
8 0.2 1280 –0.08 0.00
8 0.3 380 0.16 0.43
8 0.5 82 –0.52 0.54
8 1 11 –0.28 1.34

Fig. 7. Elements of the dimensionless scattering matrix for X¼4 sph

M.I. Mishchenko et al. / Journal of Quantitative Spectro
the former case. The cause of this disparity is not imme-
diately obvious to us.

Second, comparison of panels g, i, and j of Fig. 4 shows
that in the high-contrast case of mincl¼2, the performance
of the MG mixing rule deteriorates rather strongly as the
number of inclusions increases. Interestingly, this dete-
rioration is virtually absent in the low-contrast case of
mincl¼1.4 (not shown).

Third, comparison of Fig. 4a and k as well as of Fig. 4j
and l shows that decreasing the inclusion size parameter
while keeping their volume fraction fixed can result in a
significant (if not dramatic) reduction of errors of the MG

scopy & Radiative Transfer 178 (2016) 284–294 291
mixing rule. The same conclusion follows from comparing
the first and last entries of Table 1.

erical dust particles filled with identical air-bubble inclusions.
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4. Dust-like aerosols with hematite and air-bubble
inclusions

Following Kahnert [16], we use mhost¼1.6 as the gen-
eric refractive index of the dust-particle host material.
According to Table 1 of Lindqvist et al. [38], the refractive
indices of the majority of materials encountered in dust
aerosols are within several hundredths of the generic
value and thus represent the case of low refractive-index
contrast. Major exceptions are the cases of hematite
(mincl¼3.102þ i0.0925) and air-bubble (mincl¼1) inclu-
sions which require a special consideration.

As before, we assume that a spherical dust particle is

M.I. Mishchenko et al. / Journal of Quantitative S292
filled with identical spherical inclusions. The size para-
meter of the spherical host is fixed at either X¼4 or 8,

Fig. 8. Elements of the dimensionless scattering matrix for X¼8 sph
while the number N of inclusions varies with the inclusion
size parameter x such that the cumulative volume fraction
of the inclusions remains fixed at 2%. According to Lindq-
vist et al. [38], the 2% volume fraction is typical of the
hematite content in dust aerosols. Table 2 along with
Figs. 5 and 6 summarize the results of computations for
dust particles with hematite inclusions, while Table 3
along with Figs. 7 and 8 summarize those for dust particles
with air-bubble inclusions. The corresponding MG refrac-
tive indices are 1.6231þ i0.9779�10–3 and 1.5878. Note
that the errors δCsca; δCabs; and δϖ are defined by analogy
with Eqs. (13) and (14):

CMG�CSTMM

scopy & Radiative Transfer 178 (2016) 284–294
δCsca ¼ sca sca

CMG
sca

� 100%; ð15Þ

erical dust particles filled with identical air-bubble inclusions.



nature of the EMA as well as explain why its range of
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δCabs ¼
CMG
abs �CSTMM

abs

CMG
abs

� 100%; ð16Þ

δϖ ¼ϖMG�ϖSTMM

ϖMG � 100%; ð17Þ

where

Cabs ¼ Cext�CscaZ0 ð18Þ
is the (non-negative) absorption cross section and

ϖ ¼ Csca

Cext
r1 ð19Þ

is the single-scattering albedo. Obviously, it is the presence
of absorbing hematite inclusions that causes the inequal-
ities Cabs40 and ϖo1:

The most profound outcome of these computations is the
quantitative demonstration of the existence of the effective-
medium regime for dust aerosols filled with hematite or air-
bubble inclusions. Indeed, the red curves in Figs. 5–8
essentially occult the black curves depicting the corre-
sponding MG results and thereby reproduce even the finest
angular features of the MG scattering matrix. This implies
that the inclusion size parameters x¼0.1 for hematite and
0.15 for air bubbles are definitely within the EMA domain.

However, the inclusion size parameter x¼0.5 is already
outside the EMA domain. Indeed, the phase-function
errors of the MG mixing rule can now exceed a factor of

three, while the ratio ~F
STMM
22 ðΘÞ= ~F STMM

11 ðΘÞ can be as low as
70%. Furthermore, the errors of the MG mixing rule now
strongly depend on the host size parameter and can thus
be expected to be significantly larger for dust particles
with size parameters greater than 8. It appears that
increasing x (while keeping the volume fraction of the
inclusions constant) serves to decrease the extreme oscil-

lations in the ratios ~F
STMM
ij ðΘÞ= ~F STMM

11 ðΘÞ other than

~F
STMM
22 ðΘÞ= ~F STMM

11 ðΘÞ and to enhance the phase function at
scattering angles between 80° and 160°. Furthermore, such
effects of increasing heterogeneity as the side-scattering
enhancement of the phase function and the growing

deviation of the ratio ~F
STMM
22 ðΘÞ= ~F STMM

11 ðΘÞ from 100%
appear to be sufficiently general to survive averaging over
a polydispersion of aerosol sizes.

Table 2 also reveals a significant growth of errors of the
MG mixing rule by the time the inclusion size parameter
reaches the value x¼0.5 (the only exception is the error δg
which remains small in the case of X¼8). Especially dra-
matic is the escalation of the error in the absorption cross
section, δCabs: Interestingly, the MG mixing rule predicts
absorption cross sections smaller than the exact STMM

M.I. Mishchenko et al. / Journal of Quantitative S
values. This trend is opposite to that observed for X¼40
water droplets contaminated by x¼1 soot inclusions [14].
5. Conclusions

Our analysis of the EMA differs from that by Liu et al. [15],
Kahnert [16], and Videen et al. [27] who evaluated the

numerical accuracy of mixing rules in cases selected on an ad
hoc basis. Indeed, we first looked for the very existence of the
effective medium regime under suitable conditions and then
analyzed the result of an increasing violation of these con-
ditions. In this way we have been able to confirm numeri-
cally that the EMA can indeed be realized in the limit of a
very small inclusion size parameter and a very low
refractive-index contrast between the host and the inclu-
sions. As these ideal conditions are increasingly violated, the
accuracy of the EMA progressively deteriorates and even-
tually becomes inadequate.

In particular, we have been able to establish the exis-
tence of the effective-medium regime in the practically
important cases of dust particles with hematite and air-
bubble inclusions. The large refractive-index contrast
between the host and inclusion materials in these cases
necessitates extremely small inclusion size parameters for
the EMA to work. We have not discussed specifically
whether such small inclusions are indeed typical of real
dust aerosols, but this issue should urgently be studied
using modern laboratory instrumentation (cf. [12]).
Obviously, finding that the actual size parameters of
hematite and air-bubble inclusions in the near-UV, visible,
and near-IR spectral ranges are substantially greater than a
few tenths would cause a major modeling problem.

The results of Liu et al. [15] imply, qualitatively, that only in
extremely well-mixed cases down to an inhomogeneity scale
of x� 0:4 can the EMA be reliable, whereas the applicability of
the EMA to cases of stratified or weak mixing is very limited (if
not, in fact, fortuitous). Our results show that depending on the
refractive-index contrast, the maximal allowable size para-
meter of the inclusions can be even smaller, especially in cal-
culations of the scattering matrix and the absorption cross
section. Furthermore, as the inclusion size parameter increases
and approaches the threshold value, the scattering-matrix
errors of the EMA start to grow with increasing the host size
parameter and/or the number of the inclusions. This is another
factor that must be taken into account in deciding whether to
even attempt the use of a mixing rule.

Irrespective of the highly restricted conditions of
applicability of the EMA, our numerically exact computer
results provide further evidence that the effective-medium
regime does exist, and this existence must follow from the
fundamental laws of classical electromagnetics under
quite specific assumptions. We hope that this additional
evidence will stimulate attempts to derive the EMA as a
direct corollary of the macroscopic Maxwell equations.
This derivation can be expected to clarify the physical
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applicability appears to be so limited.
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