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We use the recently generalized version of the multi-sphere superposition T-matrix
method (STMM) to compute the scattering and absorption properties of microscopic
water droplets contaminated by black carbon. The soot material is assumed to be ran-
domly distributed throughout the droplet interior in the form of numerous small spherical
inclusions. Our numerically-exact STMM results are compared with approximate ones
obtained using the Maxwell-Garnett effective-medium approximation (MGA) and the
Monte Carlo ray-tracing approximation (MCRTA). We show that the popular MGA can be
used to calculate the droplet optical cross sections, single-scattering albedo, and asym-
metry parameter provided that the soot inclusions are quasi-uniformly distributed
throughout the droplet interior, but can fail in computations of the elements of the
scattering matrix depending on the volume fraction of soot inclusions. The integral
radiative characteristics computed with the MCRTA can deviate more significantly from
their exact STMM counterparts, while accurate MCRTA computations of the phase func-
tion require droplet size parameters substantially exceeding 60.
& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

It is widely recognized that black carbon (or soot)
aerosols can act as cloud condensation nuclei and serve as
cloud-droplet pollutants [1–3]. Internal contamination of
cloud droplets by soot may cause substantial changes in
the optical and radiative properties of liquid-water clouds
(see, e.g., [4–6] and references therein). Numerically-
accurate calculations of electromagnetic scattering and
absorption by cloud droplets with multiple absorbing
inclusions have represented a challenging problem
because direct computer solutions of the macroscopic
relatively large
ite recently [7,8].

ty, 2880 Broadway,
As a consequence, various approximate approaches have
had to be used. For example, calculations of the atmo-
spheric energy budget have relied heavily on heuristic
effective-medium approximations (EMAs) [5,6,9,10] as a
means of taking into account the optical effects of internal
mixing. The EMAs are based on modeling complex het-
erogeneous particles as being homogeneous and having a
refractive index computed with one of the phenomen-
ological mixing rules such as the Lorentz–Lorenz, Brug-
geman, and Maxwell-Garnett mixing formulas [9].
Another approximate approach frequently used to calcu-
late single-scattering properties of large cloud, snow, and
soil particles containing numerous inclusions is the Monte
Carlo ray-tracing approximation (MCRTA) which treats the
inclusions as point-like scatterers described by the Lor-
enz–Mie theory (e.g., [11–15]). However, the accuracy and

range of applicability of such approximate methodologies
have been poorly known.
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The concept of a T matrix was introduced by Waterman
in 1971 [16] and has been widely used in studies of elec-
tromagnetic scattering and absorption by morphologically
complex particles [17–24]. The most recent version of the
multi-sphere superposition T-matrix method (STMM)
developed by Mackowski [25] has extended the formula-
tion to arbitrary configurations of spherical domains
wherein any of the spheres can be located at points that
are either internal or external to the other spheres. As a
result, the method became applicable to the case of
internal mixing (according to the definition in [26]). Unlike
the approximate methodologies, the STMM is a direct
computer solver of the frequency-domain macroscopic
Maxwell equations and renders solutions that are both
numerically exact and highly efficient. Furthermore, the
STMM program can now be run on distributed-memory
computer clusters as well as on serial platforms. The
parallel-computing option enables accurate calculations of
absorption and scattering characteristics of internal mix-
tures containing tens of thousands of inclusions [27–29] as
well as exquisite ensemble averaging [30]. Quite expect-
edly, however, the numerical effort becomes prohibitive
and the number of inclusions has to be reduced when the
host size parameter increases and approaches �100.

Given the availability of this improved version of the
STMM methodology, the main objective of this Note is to
model typical effects of multiple quasi-randomly dis-
tributed absorptive inclusions on the scattering and
absorption properties of microscopic spherical water dro-
plets. We then compare the numerically-exact STMM
results with those computed with the Maxwell-Garnett
EMA and the MCRTA in order to evaluate and quantify the
corresponding errors in the integral radiometric char-
acteristics and scattering-matrix elements. We expect that
doing so will provide guidance to researchers in deciding
whether to use either approximate approach in specific
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applications depending on the acceptable level of numer-
ical uncertainty.
2. Numerical results and discussion
A recent study has revealed that for the same cumu-
lative amount of an absorptive foreign material, the

Fig. 1. Spherical water microdroplets populated with an increasing num
absorption is maximized when the material is distributed
quasi-uniformly throughout the droplet interior in the
form of numerous small inclusions [31]. Another reason to
focus on this model of heterogeneous water droplets is
that it appears to be the only internal-mixing scenario that
can potentially make applicable the EMA concept and the
MCRTA [27–32].

To model this type of heterogeneity, we place an
increasing number (N¼10, 25, 50, 100, 200, 300, 400, 500,
and 600) of spherical soot inclusions quasi-randomly
inside a spherical host water droplet, as illustrated in
Fig. 1. The positions of the soot inclusion cannot be com-
pletely random since these particles are not allowed to
overlap. However, assigning the inclusion coordinates
using a random-number generator and then averaging
over the uniform orientation distribution of the resulting
heterogeneous droplet yields in effect a scattering object
with a random and statistically uniform distribution of
inclusions. All soot inclusions are assumed to be identical,
with their size parameter fixed at k1r¼1, where k1 ¼ 2π=λ
is the wave number in the infinite nonabsorbing med-
ium surrounding the droplet and r¼0.1 mm is radius of
the inclusions. The wavelength λ is fixed at π=5
mmE0.6283 mm, thereby implying that k1 ¼ 10: The soot
refractive index, 1.95þ0.79i, is chosen according to the
recommendation in [33], while the host refractive index,
1.33, is representative of liquid water at visible and near-
infrared wavelengths.

Note that the size spectrum of black-carbon aerosols
serving as cloud condensation nuclei is wide and some-
times can span several orders of magnitude [34,35]. The
inclusion sizes affect the overall light scattering and
absorption of heterogeneous particles [13,28,29]. Ideally
one would need to assume that these embedded particu-
lates are polydisperse and randomly distributed inside a
water droplet. However, instead of estimating the actual
radiative impact by soot-contaminated cloud droplets, the
main goal of this study is to examine the applicability of
approximate theories such as the Maxwell-Garnett EMA
and the MCRTA in computations of scattering and
absorption characteristics of heterogeneous water–soot

scopy & Radiative Transfer 178 (2016) 255–262
mixtures by comparing their outputs with numerically-
exact STMM results. Moreover, the black-carbon radius of

ber N of spherical soot inclusions ranging from N¼10 to N¼600.
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0.1 mm is a representative value consistent with both
models and observations [36,37].

The integral radiometric characteristics typically used
to describe the single-scattering and absorption properties
of atmospheric particulates include the ensemble-
averaged extinction, Cext, scattering, Csca, and absorption,

L. Liu, M.I. Mishchenko / Journal of Quantitative S
Cabs¼Cext�Csca, cross sections; the single-scattering
albedo ϖ¼Csca/Cext; and the asymmetry parameter g
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Fig. 2. Ensemble-averaged elements of the Stokes scatterin
[19,38]. The angular distribution and the polarization state
of the singly scattered light are nominally described in
terms of the normalized Stokes scattering matrix

~FðΘÞ ¼

a1ðΘÞ b1ðΘÞ 0 0
b1ðΘÞ a2ðΘÞ 0 0
0 0 a3ðΘÞ b2ðΘÞ

2
66664

3
77775; ð1Þ
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where ΘA ½01;1801� is the scattering angle (i.e., the angle
between the incidence and scattering directions) [19,38].
Note that the specific block-diagonal structure of the
scattering matrix (1) has been confirmed by all the STMM
results discussed below. The (1,1) element of the scattering
matrix is the conventional phase function normalized
according to

1
2

Z π

0
dΘ sin Θ a1ðΘÞ ¼ 1; ð2Þ

while the asymmetry parameter is defined according to

g ¼ 1
2

Z π

0
dΘ sin Θ cos Θ a1ðΘÞ: ð3Þ

In the case of heterogeneous water droplets, the
orientation-averaged values of the above optical char-
acteristics are calculated by running the STMM program
developed in [25]. To suppress the scattering resonances
typical of monodisperse objects [19,38], all scattering and
absorption characteristics are further averaged over three
discrete host size parameters, k1R¼59, 60, and 61. These
size-parameter values correspond to droplet radii R¼5.9,
6, and 6.1 mm which lie in the range of observed effective
radii of cloud droplets in the terrestrial atmosphere, per-
haps somewhat on the smaller side [39,40]. The quasi-
random positions of the soot inclusions are generated
separately for each host size parameter. Note that as the
number of the inclusions increases from 10 to 600 inside a
6 mm droplet, the corresponding volume fraction of the
soot material grows from 4.63�10�5 to 2.78�10�3.

The solid curves in Fig. 2 show the orientation- and
size-averaged elements of the Stokes scattering matrix as
functions of the scattering angle for N¼100 and 600. For
comparison, the dotted curves depict the corresponding
Lorenz–Mie results for homogeneous droplets with
refractive indices calculated using the Maxwell-Garnett
approximation (MGA) for the respective volume fractions
of soot in the k1R¼60 droplet. In this case the water dro-
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plets are assumed to be polydisperse and characterized by
a very narrow power law size distribution [19,41] with an
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Fig. 3. The phase function and the ratio a3ðΘÞ=a4ðΘ
effective size parameter of 60 and an effective variance
of 0.001.

The STMM results in Fig. 2 show that as the number of
absorbing inclusions increases, the phase functions of the
soot-contaminated droplets become progressively smooth
and shallow at side-scattering angles, while the char-
acteristic rainbow and glory features weaken. Further-
more, the deviation of the ratio a2ðΘÞ=a1ðΘÞ from unity
increases and exhibits strong backscattering depolariza-
tion qualitatively attributable to the growing contribution
of “multiple internal scattering”.

Although the phase functions rendered by the MGA are
qualitatively similar to their STMM counterparts, sub-
stantial quantitative differences are quite obvious. For
example, at the exact backscattering direction, the
a1ð1801Þ difference between the STMM and MGA results
exceeds a factor of three in the case of the droplets with
100 soot inclusions (see the left-hand panel of Fig. 3). The
corresponding phase-function differences at side-
scattering angles for N¼600 exceed a factor of two. The
differences in the ratios ajðΘÞ=a1ðΘÞ and 7bjðΘÞ=a1ðΘÞ
can partly be attributed to the use of different size dis-
tributions in the STMM and MGA computations, but in
some cases they obviously have a component caused by
the very use of an approximate scattering methodology.
Most importantly, whenever the MGA is applied to a
spherical host it reproduces the two fundamental Lorenz–
Mie identities,

a2ðΘÞ
a1ðΘÞ � 1 and

a3ðΘÞ
a4ðΘÞ � 1: ð4Þ

However, Fig. 2 reveals a substantial violation of the first
identity by the numerically-exact STMM results. The vio-
lation of the second identity, as illustrated by the right-
hand panel of Fig. 3, is equally pronounced. These results
confirm once again an essential limitedness of the concept
of effective refractive index.

Fig. 4 compares the phase functions computed for the
water microdroplets with an increasing number of soot

scopy & Radiative Transfer 178 (2016) 255–262
inclusions using the STMM and the MCRTA. The latter is a
simple and efficient heuristic method combining ray-
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of the MGA, its accuracy can be expected to improve as the
host water droplets become larger.
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Fig. 4. Comparison of the STMM phase functions (solid curves) and their

L. Liu, M.I. Mishchenko / Journal of Quantitative Spectro
optics and radiative-transfer concepts. It permits the
treatment of light scattering and absorption by arbitrarily
shaped host particles containing small, randomly posi-
tioned, widely separated inclusions and is expected to be
applicable to host particles with sizes much greater than
the wavelength of the incident radiation. In an ad hoc
fashion, the ray-tracing program takes care of individual
reflection and refraction events at the outer boundary of
the host particle, while the Monte Carlo procedure
essentially simulates the summation of the so-called lad-
der diagrams appearing in the microphysical theory of
radiative transfer [38,42]. This model is detailed in
[11,12,43–45] and is implemented in the form of a com-
puter program publicly available at http://tools.tropos.de.
This specific program is based on the so-called scalar
approximation of radiative transfer [42] and hence can be
used to compute only the (1,1) element of the scattering
matrix (i.e., the phase function).

It is obvious from Fig. 4 that the MCRTA is unable to
reproduce the strong backscattering enhancement tradi-
tionally called the glory. Furthermore, the sharpness and
magnitude of the primary and secondary rainbows ren-
dered by the MCRTA are grossly overestimated. The side-
scattering differences between the STMM and MCRTA
phase functions are also quite pronounced. One can think
of several potential causes of these side- and back-
scattering differences, including the inadequacy of the ray-
tracing concepts of reflections and refractions and the
failure of the radiative-transfer concept of ladder sequen-
ces of widely separated particles [38,42]. The numerical

MCRTA counterparts.
comparisons of ray-tracing and Lorenz–Mie results in
[19,41] and of radiative-transfer and STMM results in [46]
suggest that the failure of the ray-tracing concepts is likely
to be the more significant factor.

Fig. 5 further quantifies the accuracy of the MGA and
MCRTA as a function of the number of inclusions N. Note
that the extinction cross section computed by the MCRTA
for a particle much larger than the wavelength is identi-
cally equal to twice the area of the particle's projection on
the plane normal to the incidence direction, the diffraction
on and the geometric interception of the “incident rays” by
the particle’s projection being equal contributors. We
define the relative errors of the approximate results, in
percent, as ðCapprox=CSTMM�1Þ � 100%; where C represents
any parameter of interest. The relative MGA errors as a
function of the number of soot inclusions fall within the
ranges [�4.44%, 7.82%], [�0.98%, 0.03%], and [0.10%,
2.75%] for the absorption cross section, single-scattering
albedo, and asymmetry parameter, respectively. The cor-
responding MCRTA ranges are [�31.43%, �18.16%], [0.10%,
2.77%], and [2.49%, 2.75%]. The errors of both sets of
approximate results usually grow with the number of soot
inclusions. The notable exception is the MCRTA asymmetry
parameter whose significant deviation from its STMM
counterpart is essentially N-independent.

The reader should recall that the soot volume fraction
at N¼600 is 2.78�10�3. The real degree of soot con-
tamination in terrestrial water clouds is unlikely to reach
such high values [4, 47–49]. Therefore, we conclude that
the popular Maxwell-Garnett mixing rule can be safely
used to calculate the optical cross sections, single-
scattering albedo, and symmetry parameter for the
quasi-uniform internal mixing scenario. Although the
average performance of the MCRTA is not as good as that
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3. Concluding remarks

Our numerically exact single-scattering STMM results
show that the presence of soot in water microdroplets can
have a noticeable effect on their extinction, scattering, and
absorption cross sections, single scattering albedo, asym-
metry parameter, and, especially, elements of the scatter-
ing matrix. The significant linear depolarization evident
from the a2ðΘÞ=a1ðΘÞ ratio is the prime manifestation of
the morphological complexity of soot-contaminated dro-
plets despite their perfectly spherical outer boundaries.
Our results indicate that the Maxwell-Garnett effective-
medium approximation can be safely used to calculate the
integral radiative characteristics of soot-contaminated
droplets but, depending on the actual volume fraction of
soot, can fail in computations of the elements of the
scattering matrix. Droplet size parameters �60 are not
sufficiently large for the MCRTA to yield adequately accu-
rate phase functions. One can expect, however, that as the
droplet size parameter increases the accuracy of the
MCRTA can become significantly better. In general, our
study testifies against indiscriminate use of the approx-

imate methods in remote-sensing applications dealing
with soot-contaminated cloud droplets.



Fig. 5. Comparison of the STMM cross sections, single scattering albedo, and asymmetry parameter with their MCRTA and MGA counterparts.
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Besides the MGA, another popular EMA is the so-called
Bruggeman mixing rule [9,50]. If the volume fraction of
the inclusions is substantial then the predictions of the
two mixing rules can, in principle, differ. However, in the
case of volume fractions as small as those considered in
this Note both mixing rules yield nearly identical results

despite the large refractive-index mismatch between
liquid water and soot. Therefore, all conclusions reached
above for the MGA are also valid for the Bruggeman
mixing rule.

On a final note, we hope that our methodology of
obtaining physical insight into the validity of the two
approximate methods will find applications in light-
scattering parameterization development. A good example

would be the analysis of such important aspects of char-
acterizing ambient aerosols as the interconnection between
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the effective refractive index and the effective particle mass
density as well as the consistency of mixing rules used to

L. Liu, M.I. Mishchenko / Journal of Quantitative S
calculate these two parameters of a multicomponent mix-

ture via the index–density relationship [51].
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