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In this paper we have analyzed circumstances under which a rigid particulate sample can behave optically as a true
discrete random medium consisting of particles randomly moving relative to each other during measurement. To
this end, we applied the numerically exact superposition 7-matrix method to model far-field scattering character-
istics of fully ordered and quasi-randomly arranged rigid multiparticle groups in fixed and random orientations.
We have shown that, in and of itself, averaging optical observables over movements of a rigid sample as a whole is
insufficient unless it is combined with a quasi-random arrangement of the constituent particles in the sample.
Otherwise, certain scattering effects typical of discrete random media (including some manifestations of coherent

backscattering) may not be accurately replicated.
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1. INTRODUCTION

According to [1], the “optical” definition of a type-1 discrete
random medium (DRM) is that it is a morphologically complex
object in the form of an imaginary volume V' populated by a
large number NV of small particles in such a way that the spatial
distribution of the particles throughout the volume is maxi-
mally random and uniform in the statistical sense [2-10]. In
“true” DRMs such as low-density suspensions of particles in
gases and liquids, statistical randomness and uniformity are
naturally achieved over a sufficiently long period as a result
of random temporal changes of particle positions. To model
light scattering by such objects, one needs to assume ergodicity
and average the solution of the macroscopic Maxwell equations
(MMEs) over a representative set of realizations of a multipar-
ticle group. This so-called ensemble averaging (EA) serves to
randomize phase relationships between various multiparticle
sequences and thereby yields typical speckle-free patterns of
time-averaged optical observables [1,10].

Furthermore, it is frequently assumed that the optical con-
cept of a DRM can be applied to rigid particulate media such as
powder surfaces, sheets of paper, layers of paint, and biological
tissues. This assumption is usually invoked whenever the
measured scattering patterns exhibit no speckles. For example,
it has been demonstrated experimentally that rotating or vibrat-
ing an entire rigid particulate sample during the measurement
results in characteristic speckle-free angular patterns of the
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scattered light [11-13]. In this case, it is the movement of
the sample as a whole relative to the source of light and the
detector that causes the randomization of the phase relations
between different multiparticle sequences. However, these
experimental results, despite their qualitative importance, have
not established the quantitative equivalence of the EA (i.e., the
averaging over random individual-particle coordinates) and
the averaging over movements of a rigid sample as a whole,
which will be referred to as rigid-sample averaging (RSA).

This issue was partially resolved in [1,10,14] by using
numerically exact computer solutions of the MMEs and imple-
menting a two-step modeling procedure. First, researchers used
a random-number generator of particle coordinates to render a
rigid particulate sample in the form of an /N-particle group
quasi-randomly and quasi-uniformly populating a spherical
volume V. Second, all far-field scattering characteristics of
the rigid sample were averaged over the uniform distribution
of its orientations with respect to the laboratory reference
frame. It was found that upon orientation averaging, different
(but N- and V-equivalent) computer renditions of the rigid
particulate sample yielded virtually indistinguishable far-field
scattering patterns.

That result can be viewed as a testimony to the quantitative
equivalence the EA and the RSA and is, in fact, not surprising.
Indeed, combining orientation averaging with the initial quasi-
randomness of particle positions in a rigid-sample rendition can
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Fig. 1. Fully ordered (upper panels) and quasi-random (lower panels) rigid particulate samples as viewed by an observer looking in the negative

direction of the z axis of the sample’s reference frame.

qualitatively be thought of as yielding an infinite continuous
set of random realizations of the /V-particle group with respect
to the laboratory coordinate system.

Importantly, however, the specific RSA simulations in
[1,10,14] convolved the optical effect of averaging over sample
orientations with that of the initial quasi-randomness and
quasi-uniformity of particle positions resulting from the use
of the random-number generator of particle coordinates. As a
consequence, the relative importance of these two effects in
causing EA-equivalent scattering patterns remained unknown.

A straightforward and simple way to deconvolve these two
optical effects and establish definitively what makes a multipar-
ticle group a DRM is to compare two limiting cases, i.e.,
fully ordered and quasi-random rigid multiparticle groups
having the same N and V. As in [1,10,14], we performed this
comparison by computing the relevant far-field optical observ-
ables using the numerically exact and computationally efficient
superposition 7-matrix solver of the MMEs [15,16].

2. MODELING METHODOLOGY

Figure 1 shows the eight rigid particulate samples analyzed in
this paper. Each sample consisted of /V identical particles
populating a spherical volume V" having a radius R. In all cases,
the particles did not overlap and did not cross the spherical
surface S serving as the boundary of the volume V. The
particles in samples (a)—(d) were centered at the nodes of a
regular cubic grid with S serving as the smallest circumscribing
sphere of the corresponding multiparticle group. The particles
in samples (e)—(h) were positioned quasi-randomly and
quasi-uniformly using a random-number generator of particle
coordinates. All particles have the same refractive index

m = 1.32 characteristic of liquid water and water ice at
visible wavelengths. For the purposes of light-scattering com-
putations, we characterized each sample by its size parameter
X = 2aR/A, where 1 is the wavelength, and each particle
by its size parameter x = 277 /4, where 7 is the particle radius.
Table 1 summarizes the geometrical characteristics of the
eight particulate samples, in which p = N73 /R’ is the packing
density. We chose the specific numbers in Table 1 to explore
a representative range of model parameters while keeping the
computational effort reasonable.

Consistent with [7,10], the time-averaged Stokes column
vector of the scattered spherical wavefront (“sca”) in the far
zone of a fixed particulate object is expressed in terms of the
time-averaged Stokes column vector of the incident quasi-
monochromatic plane wave (“inc”) via the 4 x 4 real-valued
phase matrix Z as

1 . .
Isca (Dﬁsca) — ﬁ Z(ﬁsca) ﬁmc) A)Imc’ (1)

where A" = {0, ™} is the unit vector in the incidence
direction; i*®* = {6°?, ¢*“} is that in the scattering direction;
D is the distance from the center of the object to the far-zone
observation point; and {6, ¢} are the zenith and azimuth angles

Table 1. N- and V-Equivalent Pairs of Particulate
Samples

Samples X x N p

(a) and (e) 41 2 925 0.107
(b) and (f) 52 4 123 0.056
(c) and (g) 52 4 257 0.117
(d) and (h) 54 4 515 0.209
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Fig.2. Far-field scattering geometry. In this case, the fixed scattering
object is the fully ordered sample (c).

of a propagation direction in the fixed (laboratory) spherical
coordinate system centered at the object (Fig. 2). In what
follows, we will assume that 0" = 0, i.e., that the incident
wavefront propagates in the positive direction of the z-axis.
Assuming also that the incidence and scattering directions
belong to the xz plane (i.e., ¢** = ¢ = 0), the correspond-
ing normalized scattering matrix is defined as
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F~(1) (@) — C(I)Z(Hsca — G)’ (psca =0 einc =0, (pinc — 0)J
(2
where C is a normalization constant and © is the scattering
angle. In the case of a rigid sample in random orientation

with respect to the laboratory reference frame, the normalized
scattering matrix is defined according to

F(Z) (@) — C(Z) (Z(esca =0, (psca =0; ginc — 0, (pinc — 0)),
(3)
where (- - -) denotes averaging over the uniform orientation dis-
tribution of the sample. The constants C M and C® are chosen
such that the (1,1) element of each scattering matrix (conven-

tionally referred to as the phase function) satisfies the standard
normalization condition

%/ dOF,,(®)sin © = 1. @)
0

3. RIGID PARTICULATE SAMPLES IN A FIXED
ORIENTATION

Let us first consider the situation wherein the orientation of
a rigid particulate sample is fixed such that the axes of the
sample’s coordinate system coincide with those of the labora-
tory reference frame (Fig. 2). Figure 3 visualizes a representative
subset of the 16 elements of the scattering matrix F(®) for
the samples (@) and (e). Not surprisingly, the majority of the
£ 1 (G)) and F(l) (®) /F (G)) curves reveal pronounced

speckle patterns 1n the form of irregular spike-like oscillations
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“4j/11” stands for £(©)/F!}(©)(%). Note that £3)(©)/F{)(©) = 100% and £} (©)/F}}(©) =0 for the sample (a).
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[17,18]. However, there are two essential differences between
the scattering properties of the two fixed samples.

First, the amplitude of the speckle oscillations is noticeably
greater for the fully ordered sample (a). This is not surprising
and can be explained in terms of the qualitative interpretation
of speckles in the framework of the far-field Foldy formalism
(see Section 18.2 of [10] or Section 8.1 of [1]). Indeed, in the
case of a fully ordered particulate sample, there are many pairs
of single- and/or multdiparticle sequences having exactly the
same phase difference between the respective pairs of light
paths. This serves to magnify the corresponding cases of inter-
ference maxima or minima.

Especially instructive is the two-orders-of-magnitude differ-
ence in the corresponding £,;(180°) values. We observed
similar £,,(180°) differences in the 7-matrix results for the
samples (b) and (f), (c) and (g), and (d) and (h) (not shown).
The common origin of these differences is that the fully ordered
samples in Fig. 1 can be viewed as consisting of parallel two-
dimensional arrays (or layers) of particles confined to plains
normal to the z axis (Fig. 2). As a consequence, the far-field
wavelets singly scattered by particles from the same layer in
the exact backscattering direction have exactly the same phase
and always interfere constructively. This optical effect is analo-
gous to the phenomenon of specular reflection from a perfectly
flat interface and was first identified and analyzed in [19].

The cumulative waves backscattered by different layers
interfere according to the respective phase differences, the over-
all backscattered intensity being dominated by a set of layers
phase-separated from each other by values close to multiples
of 2z It is likely that the strong maximum exhibited by the
sample (a) phase function at ® =~ 90° has a similar “specular-
reflection” origin, i.e., is caused by layers of particles forming
a 45° angle with the z axis.

There is another fundamental difference. On one hand,
all 16 elements of the matrix F1(®) for the quasi-random
sample (e) are nonzero and reveal no specific symmetries. On
the other hand, the 7-matrix results for the fully ordered
sample (a) reveal (with an extremely high numerical accuracy)
the following symmetric block-diagonal structure:

o oo
- F7(®) F/(O© 0 0
F(l)(®) — 12 (©) 1 (©) ) A0 (5)
0 0 P (C)) 34 ()
0 0o -FQe) £Je)
with

F©) = FQ0) = F) ) = F)(m) =0, (6)

FRO =FO,  FAlm=-Fwm. 0

It is rather straightforward to show that this remarkable
structure of the F"(®) matrix for the sample (a) is not a num-
erical artifact but rather follows rigorously from the MMEs.
Indeed, mirroring this fully ordered sample with respect to
the xz plane of the laboratory reference frame (i.e., the scatter-
ing plane) or rotating it through a 90° angle around the z axis
results in exactly the same multiparticle configuration. As a
consequence, the amplitude scattering matrix evaluated with
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respect to the xz plane has the following symmetries (see
Sections 5.2 and 5.3 of [20]):

(5,0 0
s@ = |4 o | ®
S(0) = {5110(0) 5110(0)}’ ©)
| S1i(n) 0
S(r) = [ n _Sn(ﬂ)}. (10)

It is then straightforward to verify that Egs. (8)—(10) imply
Egs. (5)-(7).

4. RIGID PARTICULATE SAMPLES IN RANDOM
ORIENTATION

Let us now consider the 7-matrix results for the same rigid
particulate samples but in random orientation. Now the
mirror-symmetric morphology of the fully ordered samples
implies the following structure of the normalized scattering
matrix [7,10,20]:

e FJe o 0
FO (@) = F (122) ©) F (222) (©) ~(2)0 ~(2§)
0 0 F35 (©) F34 (©)
0 o -FP© FPe)
(11)
with

FRo)=FP0) = F)m) = FQm =0 (12)

F20)=F20), FP) =-F3 @), (13)

FQ(x) = FQ(z) - 289 (). (14)

The T-matrix results for the sample (a) (Fig. 4) as well as for the
samples (b)—(d) (not shown) perfectly reproduce this structure.
Furthermore, the structure described by Egs. (11)—(14) is
reproduced by the 7-matrix results for the random samples
(e)—(h) in the numerical sense. This means, in particular, that
all off-block diagonal elements of the scattering matrix F® (@)
are negligibly small (in the absolute-value sense) compared to
the block-diagonal elements at the same scattering angle.
Despite this qualitative “structural” similarity, Fig. 4 reveals
substantial quantitative differences between the scattering
matrices computed for the samples (a) and (e). For example,
the sample (a) phase function exhibits quasi-periodic order-
of-magnitude oscillations at scattering angles exceeding ~30°,
while the sample (e) phase function is quite smooth. In general,
Figs. 4 and 5 demonstrate that all scattering-matrix curves for
the quasi-random particulate samples are much smoother and
featureless than those for the V- and V-equivalent fully ordered
samples. There is little doubt that the residual ripple in the solid
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curves can be explained as the inability of orientation averaging
to completely smooth out the more pronounced speckle
patterns exhibited by fully ordered particulate samples in a fixed
orientation.
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Fig. 5. Ratio ﬁz) ®) /ﬁ(lzl)(G)) for rigid particulate samples in

random orientation.

The ratios -3 (©)/F (©) and F)(©)/F7) (®) for the
samples (a) and (e) can differ at side- and near-backscattering
angles to the extent of having opposite signs. In particular, the
backscattering minimum in the —1:"(122) (®) /ﬁ(lzl) (®) curve for
the sample (e) is a specific manifestation of the phenomenon
of coherent backscattering called the polarization opposition
effect (POE) [21,22]. Instead of exhibiting the POE, the polari-
zation curve for the sample (a) shows a near-backscattering
positive-polarization maximum. This difference has a profound
practical significance since the POE has actually been observed
for certain natural and artificial particulate surfaces [23-27].

Finally, both Fﬁ) (©®)/F (121) (®) curves in Fig. 4 exhibit
backscattering peaks often attributed to coherent backscatter-
ing [1,10,14]. However, the ﬁﬁ)@)/ﬁﬁ?(@) curve for the
sample (d) in Fig. 5 shows that full ordering of particles can
cause a backscattering minimum instead of the more typical
backscattering surge. This factor can affect the interpretation
of active remote-sensing observations of particulate surfaces
(e.g., [28-31] and references therein).

5. CONCLUDING REMARKS

Our main objective was to establish when a rigid particulate sam-
ple can behave optically as a true DRM in the form of a large
group of particles randomly moving relative to each other during
measurement. To answer this question, we used the superposition
T -matrix method to compute the far-field scattering characteris-
tics of rigid multiparticle samples consisting of fully ordered and
quasi-randomly arranged particles. To model the movement of a
rigid sample as a whole during measurement, we averaged the far-
field optical observables over the uniform orientation distribution
of the sample relative to the laboratory reference frame.

Not surprisingly, our 7-matrix results for V- and V-
equivalent pairs of fully ordered and quasi-random rigid samples
in a fixed orientation revealed stark quantitative and qualitative
differences. Averaging over orientations of fully ordered and
quasi-randomly arranged rigid samples yields far-field scattering
matrices having essentially the same mathematical structure and
symmetry properties. Yet the corresponding angular patterns
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of non-zero matrix elements reveal profound quantitative
differences. In particular, we have found that fully ordered
samples may not exhibit certain typical manifestations of coher-
ent backscattering,

Therefore, we have concluded that averaging optical observ-
ables over movements of a rigid particulate sample as a whole
during measurement is insufficient to replicate the scattering prop-
erties of a true DRM and must be combined with a quasi-random
arrangement of the constituent particles in the sample.
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