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We use the numerically exact (superposition) T -matrix method to analyze recent measurements of the backscat-
tering linear depolarization ratio (LDR) for a plume of aged smoke at lidar wavelengths ranging from 355 to
1064 nm. We show that the unique spectral dependence of the measured LDRs can be modeled, but only by
assuming expressly nonspherical morphologies of smoke particles containing substantial amounts of nonabsorb-
ing (or weakly absorbing) refractory materials such as sulfates. Our results demonstrate that spectral backscatter-
ing LDR measurements can be indicative of the presence of morphologically complex smoke particles, but
additional (e.g., passive polarimetric or bistatic lidar) measurements may be required for a definitive characteri-
zation of the particle morphology and composition. © 2016 Optical Society of America
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Scattering, polarization.
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1. INTRODUCTION

Soot particles represent an important category of tropospheric
aerosols causing a direct radiative forcing of climate, affecting
cloud formation, and reducing the albedo of ice and snow
surfaces [1–8]. It is therefore essential to determine the global
distribution of soot and soot-containing aerosols and their
microphysical properties from satellite observations.

It is widely recognized that one of the most potent remote-
sensing tools for the optical characterization of morphologically
complex particulates is the measurement of the linear depolari-
zation ratio (LDR) with backscattering lidars [9–20]. Until quite
recently, it had generally been believed that strong absorption of
light by black carbon causes very small (and thereby hardly use-
ful) LDR values. However, the observations of a smoke plume
with the NASA Langley High Spectral Resolution Lidar-2
(HSRL-2) reported by Burton et al. [20] revealed highly unusual
LDR values reaching 0.2 at the 355-nm lidar wavelength.
Furthermore, the measured spectral dependence of the smoke
LDR was distinctly different from that of dust aerosols.

The initial theoretical analysis of the observed LDR values
in [20] (based on the results of [21]) was promising but
somewhat inconclusive. Yet it appears to be important to dem-
onstrate explicitly that specific complex morphologies of soot-
containing aerosols can indeed reproduce the observed spectral
dependence of the LDR and thereby confirm the potential of

lidar depolarization measurements to identify and characterize
smoke particles. This demonstration would be especially appro-
priate given the anticipated flight of a polarization lidar as part
of the planned NASA Aerosol–Cloud–Ecosystem space mission.

Given the extreme complexity of the depolarization
scattering phenomenon, it is imperative to analyze the LDR
measurements reported in [20] on the basis of a first-principles
scattering methodology involving a direct computer solver of
the macroscopic Maxwell equations [22–24]. In this paper,
we use for this purpose the highly efficient and numerically
exact (superposition) T -matrix method.

2. LIDAR MEASUREMENTS

The real-valued so-called normalized Stokes scattering matrix
typical of randomly oriented aerosol particles has the following
block-diagonal structure [25,26]:

F̃�Θ� �

2
6664

a1�Θ� b1�Θ� 0 0

b1�Θ� a2�Θ� 0 0

0 0 a3�Θ� b2�Θ�
0 0 −b2�Θ� a4�Θ�

3
7775; (1)

where Θ is the scattering angle and the (1, 1) element (conven-
tionally referred to as the phase function) is normalized
according to
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dΘa1�Θ� sinΘ � 1: (2)

The LDR is then defined as

δ � a1�180°� − a2�180°�
a1�180°� � a2�180°�

: (3)

The LDR values measured by Burton et al. [20] at the three
NASA HSRL-2 wavelengths (355, 532, and 1064 nm) are
summarized in Table 1. The measured values are reported
as mean ± one standard deviation for the sample, while system-
atic measurement uncertainties from the NASA HSRL-2 are
given in parentheses. Also shown are the resulting approximate
ranges of the measured LDR values, each calculated as the
mean ± the sum of the systematic measurement uncertainty
and one standard deviation. The observations were performed
during the Colorado deployment of the DISCOVER-AQ
(Deriving Information on Surface Conditions from Column
and Vertically Resolved Observations Relevant to Air
Quality) field mission on 27 July 2014, and pertain to a plume
of wildfire smoke situated at a ∼8-km altitude. Figure 1 reveals
indeed that the spectral dependence of the smoke LDR is
distinctly different from that observed typically for dust-
dominated aerosol.

3. MODEL PARTICLE MORPHOLOGIES

It has been well documented that the morphology of smoke par-
ticulates can change dramatically during their aging [27–33].
The LDR values computed for fluffy and compact aggregates

consisting of pure black-carbon monomers are very small (typ-
ically smaller than a few percent [17,34,35]) and cannot explain
the observed values indicated in Table 1. Therefore, we need to
consider alternative particulate morphologies lacking spherical
symmetry and involving significant amounts of a nonabsorbing
(or weakly absorbing) refractory material.

One such morphology considered in [21] is a spherical sul-
fate host with a partially imbedded soot aggregate. Four other
model morphologies of aged soot-containing particulates are
shown in Fig. 2. The so-called closed-cell morphology depicted
in Fig. 2(a) (hereinafter model 1) represents the process of
accumulation of a refractory material around individual soot
monomers constituting a compact cluster formed after the col-
lapse of the initial fluffy soot aggregate. Figure 2(b) shows a
spherical sulfate aerosol hosting a completely imbedded com-
pact soot cluster (hereinafter model 2). Figure 2(c) shows two
spherical sulfate particles in contact, each encapsulating a com-
pact soot aggregate (hereinafter model 3). Finally, Fig. 2(d)
shows a concentric core–mantle spheroid intended to model
a high-density aspherical soot core enveloped by a layer of sul-
fate material (hereinafter model 4). The scattering properties of
models 1–3 were computed using the random-orientation
superposition T -matrix method developed by Mackowski [36],
while those of model 4 were quantified using the random-
orientation T -matrix program by Quirantes [37].

4. NUMERICAL RESULTS

Extensive T -matrix computations for various realizations of
model 2 have shown that this morphology causes LDR values
too small to reproduce the observed depolarization of lidar re-
turns by smoke particulates. Indeed, linear depolarization is
typically ∼1% or smaller at all wavelengths. The most likely
explanation of this finding is that the outer boundary of such
particles is spherical and dominates (i.e., suppresses) the
resulting LDRs. Therefore, we will exclude model 2 from the
following discussion.
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Fig. 1. Spectral dependence of the LDRs observed for dust-
dominated aerosol and smoke [20].

Table 1. Measured Spectral Values of the Linear
Depolarization Ratio and Their Ranges [20]

δ (355 nm) δ (532 nm) δ (1064 nm)

Measured 0.203� 0.036
(0.017)

0.093� 0.015
(0.011)

0.018� 0.002
(0.007)

Range [0.150, 0.256] [0.067, 0.119] [0.009, 0.027]

Fig. 2. Model morphologies of soot-containing particulates.
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A. Model 1
It has been demonstrated in [34,38] that the overall morphol-
ogy of a random soot aggregate is well represented by a fractal
cluster parameterized by the following statistical scaling law:

N � k0

�
Rg

a

�
Df

; (4)

where a is the monomer mean radius, k0 is the fractal prefactor,
Df is the fractal dimension, N is the number of monomers in
the cluster, and Rg is the radius of gyration. The latter is a mea-
sure of the overall radius of the aggregate and is defined by

R2
g �

1

N

XN
i�1

r2i ; (5)

where ri is the distance of the ith monomer to the cluster’s
center of mass. The fractal dimension serves as a quantitative
measure of the aggregate morphology. Df values close to 3 re-
present densely packed aggregates, whereas chain-like branched
clusters can have significantly smaller values. The fractal pre-
factor is also related to the state of compactness of a fractal
particle in that for a fixed fractal dimension the packing density
tends to be smaller for smaller k0.

Consistent with the previous discussion of model 1, we will
assume that each monomer in the aggregate shown in Fig. 2(a)
consists of a spherical soot core with a radius as located in the
center of a spherical sulfate host with a radius a. The refractive
indices of soot at the three lidar wavelengths were estimated
according to Eqs. (19a) and (19b) of [39] and are as follows:
1.66284� 0.715235i at 355 nm, 1.73156� 0.600028i at
532 nm, and 1.81895� 0.590511i at 1064 nm. The corre-
sponding sulfate refractive indices were interpolated from
the tabulated values at 50% relative humidity in [40] and
are as follows: 1.3813 at 355 nm, 1.3684 at 532 nm, and
1.3595 at 1064 nm.

Our T -matrix results show that model 1 is capable of repro-
ducing the observed spectral dependence of the LDR. As an
example, in Table 2 we list the LDR values computed for
10 random realizations of the model-1 morphology with the
following fixed fractal parameters: k0 � 1.2, Df � 2.6,
N � 125, as � 20 nm, and a � 6as. It can be seen indeed
that the LDR values in Table 2 follow the observed spectral
trend and are approximately consistent with the ranges of
the measured LDRs in Table 1.

Similarly, in Table 3 we show the results of T -matrix com-
putations for the same fixed values of the parameters k0,Df ,N ,
and as, but for seven values of a ranging from 5.7as to 6.3as.
Again the resulting LDRs, at least those for a ≥ 6as, are largely
consistent with Table 1.

B. Model 3
Table 4 summarizes the results of T -matrix computations for
10 random realizations of the model-3 morphology, assuming
that each spherical sulfate host encapsulates a soot fractal
aggregate with k0 � 1.2, Df � 2.6, N � 125, and as �
20 nm. The host radius is 232 nm, and the corresponding soot
volume fraction is 0.08. The soot and sulfate refractive indices
are the same as in the preceding subsection. Table 5 is similar
but illustrates the sensitivity of the modeled LDRs to the host
radius when the soot inclusions remain the same. Again, most
of these model-3 T -matrix results are consistent with the LDR
ranges in Table 1.

C. Model 4
Finally, Tables 6 and 7 summarize select T -matrix results for
the model-4 morphology. The overall shape of the core–mantle
spheroidal particle is characterized by the axis ratio ε � a∕b,
where b is the rotational (vertical) axis of the corresponding

Table 2. T -matrix Results for 10 Fractal-Parameter-
Equivalent Realizations of Model 1

Realization δ (355 nm) δ (532 nm) δ (1064 nm)

1 0.222 0.056 0.015
2 0.238 0.060 0.021
3 0.237 0.066 0.012
4 0.229 0.060 0.015
5 0.252 0.062 0.013
6 0.224 0.068 0.015
7 0.243 0.054 0.012
8 0.237 0.055 0.010
9 0.239 0.072 0.013
10 0.226 0.056 0.014

Table 3. T -matrix Results for Seven Versions of Model 1

a∕as δ (355 nm) δ (532 nm) δ (1064 nm)

5.7 0.289 0.054 0.015
5.8 0.274 0.057 0.015
5.9 0.259 0.060 0.015
6 0.244 0.063 0.016
6.1 0.228 0.067 0.016
6.2 0.212 0.072 0.016
6.3 0.199 0.078 0.016

Table 4. T -matrix Results for 10 Fractal-Parameter-
Equivalent Realizations of Model 3

Realization δ (355 nm) δ (532 nm) δ (1064 nm)

1 0.225 0.093 0.016
2 0.242 0.105 0.018
3 0.220 0.097 0.017
4 0.264 0.110 0.019
5 0.267 0.107 0.019
6 0.232 0.101 0.017
7 0.252 0.102 0.018
8 0.235 0.095 0.016
9 0.264 0.108 0.019
10 0.262 0.109 0.019

Table 5. T -matrix Results for Six Versions of Model 3

Host radius (nm) δ (355 nm) δ (532 nm) δ (1064 nm)

230 0.276 0.091 0.017
232 0.248 0.103 0.017
234 0.224 0.116 0.018
236 0.202 0.130 0.018
368 0.196 0.113 0.024

9970 Vol. 55, No. 35 / December 10 2016 / Applied Optics Research Article



ellipse and a is the horizontal axis. The axis ratio is assumed to
be the same for both the soot core and the sulfate shell. To
suppress the effect of scattering resonances on the modeled
LDRs, each result is averaged over a narrow power law distri-
bution of shell sizes while assuming that the core remains the
same. Accordingly, Reff in Tables 6 and 7 is the effective equal-
volume-sphere radius of the entire core–mantle particle, and
Rcore is the monodisperse equal-volume-sphere radius of the
soot core. The effective variance of the power law distribution
[41] is fixed at 0.01. The sulfate and soot refractive indices are
assumed to be wavelength-independent. The former is fixed at
1.44, while the latter is msoot � 1.75� 0.435i in Table 6 and
msoot � 1.67� 0.27i in Table 7. Again, the reader can verify
that the majority of modeled LDR values in these tables are
consistent with the LDR ranges given in Table 1.

5. DISCUSSION

The main objective of this paper is rather limited: to demon-
strate that complex morphologies of aged soot-containing aero-
sols can reproduce the unique spectral dependence of linear
depolarization observed for an aged smoke plume by Burton
et al. [20] (see Fig. 3). Perhaps the most important outcome
of our study is that achieving this objective requires the use
of expressly nonspherical overall morphologies containing sub-
stantial amounts of nonabsorbing (or weakly absorbing) refrac-
tory materials (referred to generically as “sulfates”). We have
shown that the measured spectral LDR values can be repro-
duced by a range of model morphologies and a range of model
soot and sulfate refractive indices. We leave it up to the experts
in aerosol physics and chemistry to discuss which morphologi-
cal models and/or refractive indices are more or less realistic. It
is obvious, however, that spectral LDR measurements can in-
deed be used to identify the presence of morphologically
complex smoke particles, even though additional observations
(e.g., with a passive polarimetrer [42] or a bistatic lidar [43,44])
may be required to narrow down the plausible ranges of particle
morphology (including size) and composition.
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