
3.1  Introduction

Small particles forming clouds of interstellar and circum-
stellar dust, regolith surfaces of many solar system bod-
ies, and cometary atmospheres have a strong and often 
controlling effect on many ambient physical and chemical 
processes. Similarly, aerosol and cloud particles exert a 
strong influence on the regional and global climates of the 
Earth, other planets of the solar system, and exoplanets. 
Therefore, detailed and accurate knowledge of physical 
and chemical characteristics of such particles has the 
utmost scientific importance.

More often than not, it is impossible to collect samples 
of such particles and subject them to controlled physical 
and chemical laboratory tests. Instead, the astrophysicist 
usually has to rely on a theoretical analysis of remote 
observations of the electromagnetic radiation scattered 
or directly transmitted by the particles. In some cases, 
remote-sensing studies can be supplemented by in situ 
measurements of electromagnetic scattering. It has been 
established in numerous investigations that the scattering 
and absorption properties of small particles can exhibit a 
strong dependence on their size, morphology, orientation, 
and refractive index. These dependencies make measure-
ments of electromagnetic scattering and their theoretical 
analysis an extremely useful and sometimes the only prac-
tical means of physical and chemical particle character-
ization in astrophysics.

The majority of remote-sensing studies have tradition-
ally relied on measurements of only the scattered intensity 
and its spectral dependence. However, it is now widely 

recognized that polarimetric characteristics of the scat-
tered radiation can contain much more reliable and specific 
information on such important properties of particles as 
their size, morphology, and chemical composition (Videen 
and Kocifaj 2002; Videen et al. 2004; Mishchenko et al. 
2010, 2011a). A classical textbook example is the use of 
ground-based polarimetry to discover micrometer-sized 
sulfuric acid droplets in the atmosphere of Venus (Hansen 
and Hovenier 1974). This discovery was facilitated by 
the spherical shape of the droplets as well as by the large 
optical thickness of Venusian clouds and their vertical and 
spatial uniformity during the period of observations. The 
majority of practical circumstances encountered by the 
astrophysicist is more challenging and can involve mor-
phologically complex particles and strong heterogeneity 
of the scene captured by the field of view of the telescope. 
Another complicating factor is a potentially high packing 
density of regolith particles covering planetary surfaces. 
This implies that the optical-characterization tools used in 
astrophysics should rely as much as possible on advanced 
first-principle theories of electromagnetic scattering.

The solution of any inverse optical-characterization 
problem is based on two main prerequisites:

(1)	 a thorough understanding of the physical nature of an 
optical measurement;

(2)	 the ability to model this measurement theoretically 
with adequate accuracy.

The principal objective of this chapter is to introduce 
the most general conceptual framework directly based 
on Maxwell’s electromagnetics and suitable for the 
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formulation of a wide range of optical-characterization 
problems. Consistent with this objective, we begin this 
chapter by clarifying the specific nature of the measure-
ment afforded by a class of instruments that can be called 
polarization-sensitive well-collimated radiometers. This 
will help us formulate relevant optical observables and 
explain how they can be modeled in the framework of 
the fundamental scattering theory directly based on the 
macroscopic Maxwell equations (MMEs). We discuss in 
detail a representative range of illumination scenarios and 
object morphologies encountered in astrophysical remote 
sensing as well as in related laboratory and in situ optical 
characterization.

3.2  Polarization-sensitive 
well-collimated radiometers

Although this is not often recognized, the majority of actual 
directional radiometers in use today are well-collimated 
radiometers (WCRs), which are based on the physical 
principle illustrated schematically in Fig. 3.1(a). The main 
functional elements of a WCR are the objective and relay 
lenses, the diaphragm, and the photoelectric detector. To 
explain the physical nature of the measurement enabled 
by the WCR, let us consider the response of the WCR to 
the electromagnetic field formed by a superposition of two 
plane waves propagating in the directions of the unit vec-
tors q̂1  and q̂2 . According to classical electromagnetics, 
the objective lens acts as a linear optical transformer in that 
its effect on the total field is a superposition of its effects on 
each plane-wave component. Specifically, the well-known 
paraxial approximation (e.g. Section 5.1 of Goodman 
2005) implies that in the near zone of the objective lens 
a plane wavefront is transformed into a converging spher-
ical wavefront (Fig. 3.1(b)) with its respective focal point 
located in the plane of the diaphragm. However, the ultim-
ate fate of the two spherical wavefronts in Fig. 3.1(a) is dif-
ferent. The first spherical wavefront passes freely through 
the pinhole, is converted back into a plane wavefront, and 
is relayed onto the sensitive surface of the photodetector, 
thereby contributing to the cumulative reading of the 
WCR. On the other hand, the second spherical wavefront 
becomes extinguished by the diaphragm and does not con-
tribute to the reading of the photodetector. The wavefront 
reaching the photodetector is plane and propagates nor-
mally to the detector’s sensitive surface; these two key fac-
tors make applicable the existing quantum-electrodynamic 
theory of the photoelectric effect (Kimble and Mandel 
1984; Mandel and Wolf 1995).

Thus the combination {objective lens, diaphragm} 
serves to select only plane (or near-plane) wavefronts 

propagating in directions very close to the optical axis 
of the instrument (hence the adjective “well-collimated”) 
and falling within its small acceptance solid angle

	
∆Ω = πd
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where d is the diameter of the pinhole and f is the focal 
length of the objective lens. This implies that, in general, 
a WCR exposed to an electromagnetic field other than a 
single plane electromagnetic wave does not measure the 
directional distribution of the electromagnetic energy flow 
at an observation point. Indeed, there are situations when 
a WCR does not react to the Poynting vector of the total 
electromagnetic field even if this vector is directed inside 
the WCR along its optical axis (Mishchenko 2013). It is 
therefore imperative to formulate precisely what a WCR 
actually does.

Let us assume that the WCR is exposed to an elec-
tromagnetic field in the form of a superposition of seven 
plane wavefronts, as sketched in Fig. 3.2. According to the 
above discussion, the WCR does the following:

•	selects only those wavefronts whose propagation direc-
tions fall within its small acceptance solid angle, ∆Ωq̂ 
(i.e. ˆ , ˆ ,q q3 4  and ˆ ,q5  but not ˆ , ˆ , ˆ ,q q q1 2 6  or q̂7);
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Figure 3.1  (a) Basic optical scheme of a well-collimated 
radiometer. (b) A lens focuses an incident plane wave by 
introducing a phase shift that varies quadratically with radial 
distance from the optical axis. (c) Basic optical scheme of a 
panoramic (imaging) radiometer.
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•	adds up the respective instantaneous elec-
tric and magnetic field vectors:  ′E   =  E3 + E4 + 
E5 and  ′H H H H= + +3 4 5 ;

•	integrates the absolute value of the vector product 
′ ′ ′S E H= ×  (which, by its very construct, is always 

directed along—or very close to—the optical axis of 
the WCR) over the surface, S, of the objective lens as 
well as over time.

Thus by its very construct, a WCR does not respond 
to the Poynting vector of the total electromagnetic field at 
the surface of the objective lens given by

	
S H H= ×

= =
∑ ∑i
i

j
j1

7

1

7

.
	

(2)

Instead, it measures the artificially defined quantity | |′S  
for the superposition of the three plane wavefronts filtered 
out by the {objective lens, diaphragm} combination by 
relaying these wavefronts onto the sensitive surface of the 
photodetector. In other words, the WCR acts as a wave-
front angular filter rather than a Poynting-vector angular 
filter (Mishchenko 2013).

The total field formed by the superposition of the seven 
plane waves is not a transverse electromagnetic wave and 
so cannot be characterized by the Stokes parameters. 
However, since the three plane (or near-plane) wavefronts 
passed by the diaphragm propagate in essentially the same 
direction, namely along the optical axis of the instrument, 
they do form a parallel beam that can be characterized 
by all four Stokes parameters rather than only by the first 
one, i.e. the intensity. By inserting special optical elem-
ents between the relay lens and the detector, it is pos-
sible to modify this beam in such a way that the new first 
Stokes parameter of the beam reaching the photodetector 
contains information about the second, third, or fourth 
Stokes parameters of the original beam. This is usually 

done using polarizers and retarders and typically involves 
a succession of several measurements to fully characterize 
the four-component Stokes column vector. The result is a 
photopolarimetric WCR.

A WCR is an inherently monodirectional instrument. 
The basic optical scheme of a multidirectional panoramic 
radiometer is sketched in Fig. 3.1(c). Now the functional 
role of the diaphragm is played by each individual pixel 
of the L-pixel, two-dimensional charge coupled device 
(CCD). For example, the wavefront propagating along the 
optical axis in the direction q̂1 is detected by the central 
pixel of the CCD, while the wavefront propagating in the 
direction q̂2 is not extinguished (compare Fig. 3.1(a)) but 
is instead detected by an off-center pixel. This implies that 
each pixel is expected to measure the cumulative intensity 
of the superposition of plane (or near-plane) wavefronts 
propagating in the direction defined by the correspond-
ing {objective lens, pixel} filter. Consequently, a single 
exposure of the CCD yields L simultaneous measure-
ments, which are traditionally thought of as forming a 
two-dimensional image.

There are technical issues that make precise radio-
metric measurements with CCDs more problematic than 
those with photomultipliers and photodiodes. However, 
the following remark has a more basic nature. The quan-
tum theory of the photoelectric effect is well established 
in the case of photodetection of a plane electromagnetic 
wave or a parallel polychromatic beam propagating per-
pendicularly to the plane sensitive surface of the photo-
detector (Kimble and Mandel 1984; Mandel and Wolf 
1995). This theory serves to make the measurement with a 
WCR a well-characterized and theoretically interpretable 
procedure and further emphasizes the key role played by 
the relay lens in Fig. 3.1(a).

Unlike the optical scheme of a monodirectional WCR 
shown in Fig.  3.1(a), that of a panoramic radiometer 
shown in Fig.  3.1(c) implies that each pixel is located 
in the focal point of a converging spherical wavefront 
rather than being illuminated by a plane wavefront. It is 
also clear that the angle between the symmetry axis of a 
spherical wavefront and the normal to the sensitive sur-
face varies from pixel to pixel and can deviate from zero 
quite substantially. To the best of the author’s knowledge, 
the quantum theory of photodetection of a converging 
spherical wave is not yet available. As a consequence, 
the quantitative relationship between the individual inten-
sities of the plane wavefronts in Fig. 3.1(c) and the signals 
generated by the respective CCD pixels remains poorly 
characterized. This makes theoretical interpretations of 
measurements with panoramic radiometers less definitive 
than those with WCRs.
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Figure 3.2  Response of a WCR to a superposition of several 
plane electromagnetic waves.
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It is imperative to recognize that, despite seemingly 
being quite different, the one natural and five manmade 
devices shown in Fig. 3.3 perform the same physical oper-
ation:  they filter out electromagnetic wavefronts rather 
than electromagnetic energy currents. In a reflecting 
optical telescope or a radio telescope, the functional role 
of the objective lens is played by the mirror(s) or the radio 
antenna. However, in the final analysis, all these devices 
are WCRs, perhaps with the added panoramic capability. 
It is the recognition of this fundamental fact that enables 
us to develop a self-consistent discipline of directional 
radiometry based on first principles.

In summary, the above discussion shows that the meas-
urement enabled by a polarization-sensitive WCR is well 
defined in terms of basic concepts of light–matter inter-
action and thus should be amenable to theoretical model-
ing. The following sections explain the fundamentals of 
this modeling for various types of the scattering object 
and different illumination–observation settings.

3.3  Electromagnetic scattering by a 
fixed object

Correct and reliable interpretation of remote polari-
metric observations and related laboratory and in situ 

optical measurements is only possible in the frame-
work of a rigorous, physically based theory of electro-
magnetic scattering by particles and particle groups. 
To introduce the fundamental concept of electromag-
netic scattering by a fixed object, let us assume that 
the unbounded host medium surrounding the object 
is homogeneous, linear, isotropic, and nonabsorbing. 
At each moment in time, the entire scattering object 
(e.g. a cloud of water droplets or a powder surface) can 
be represented by a specific spatial configuration of a 
number, N ≥ 1, of discrete finite particles, as illustrated 
in Fig. 3.4. The object is illuminated by a plane electro-
magnetic wave given by
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with constant amplitudes E0
inc  and H0

inc, where E 
is the complex electric field, H is the complex mag-
netic field, t is time, r is the position (radius) vector, 
ω  is the angular frequency, k inc  is the (real-valued) 
wave vector, i = −( ) ,1 1 2  and ℜ3 denotes the entire 
three-dimensional space. Alternatively, the object can 
be illuminated by a quasi-monochromatic parallel 
beam of light given by

(f)
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Figure 3.3  (a) 26-inch refractor of the Pulkovo Observatory. (b) NASA’s 34-m Goldstone radio telescope. (c) NASA’s Hubble 
Space Telescope. (d) Human eye. (e) Digital photographic camera. (f) Light-scattering setup built at the University of Amsterdam.

(f) after Muñoz and Hovenier (2011).
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where fluctuations in time of the complex amplitudes of the 
electric and magnetic fields, E0

inc( )t  and H0
inc( )t , around their 

respective mean values occur much more slowly than the har-
monic oscillations of the time factor, exp( )−iωt . Note that 
the actual real-valued fields are obtained by taking the real 
part of the respective complex fields:  E( , ) Re ( , )r E r  t t=  
and H(r, t) = Re ( , )H r  t  (notice the typographical distinc-
tion between the bold italic E and H and the upright bold E 
and H).

These assumptions imply that all sources and fields are 
time harmonic and allow us to fully describe the total elec-
tromagnetic field at any moment in time everywhere in 
space as the solution of the frequency-domain macroscopic 
differential Maxwell equations. Specifically, it is conveni-
ent to factor out the time-harmonic dependence of the 
electric and magnetic fields:  E r E r( , ) exp( ) ( ) it t= − ω  
and H( , ) exp( ) ( )r H r it t= − ω . The electric and magnetic 
field amplitudes, E r( )  and H r( ), can then be found from 
the following curl equations:
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Here, VINT  is the cumulative “interior” volume occu-
pied by the scattering object; VEXT  is the infinite exter-
ior region such that V VINT EXT∪ = ℜ3 ; the host medium 

and the scattering object are assumed to be non-magnetic; 
µ0  is the permeability of a vacuum; ε1  is the real-valued 
electric permittivity of the host medium; and ε ω2( , )r   is 
the complex permittivity of the object. Since the first rela-
tions in Eqs (5) and (6) yield the magnetic field provided 
that the electric field is known everywhere, the solution of 
Eqs (5) and (6) is usually sought in terms of only the elec-
tric field. To have a unique solution, Eqs (5) and (6) must 
be supplemented by appropriate boundary conditions at 
the particle surfaces as well as by the radiation conditions 
at infinity (Müller 1969).

Note that although the amplitudes E r( )  and H r( )  
do not depend on time explicitly, they can fluctuate ran-
domly if the incident light is quasi-monochromatic (see 
Eq. (4)). However, such fluctuations are assumed to occur 
much more slowly than the time-harmonic oscillations 
described by the factor exp( )−iωt , which justifies the use 
of the frequency-domain Maxwell equations at any given 
moment.

Equation (3) represents the transport of electromag-
netic energy from one point to another in the absence of 
the particles, and embodies the concept of a perfectly 
monochromatic parallel beam of light. In particular, the 
plane electromagnetic wave propagates in an infinite 
nonabsorbing medium without a change in its intensity 
or polarization state, as sketched in Fig. 3.5(a). However, 
the presence of the particles modifies the total electro-
magnetic field that would exist otherwise. This modifi-
cation is called electromagnetic scattering (Mishchenko 
2009). It is customary to call the difference between the 
total field in the presence of the object (i.e. E r( , ) t ) and 
the original field that would exist in the absence of the 
object (i.e. E rinc  ( , )t ) the scattered field and denote it 
as E rsca  ( , )t  (see Fig. 3.5(b)). Thus, the total field in the 
presence of the object is intentionally represented as the 
sum of the respective incident (original) and scattered 
fields:

	 E r E r E r( , ) ( , ) ( , ).         inc scat t t= + 	 (7)

Of course, we can think of incident fields other than 
a plane wave and thereby generalize the concept of scat-
tering. In this regard, an especially convenient framework 
is provided by the so-called volume integral equation 
(VIE), which follows from the frequency-domain macro-
scopic Maxwell equations; it is exact, and incorporates 
the boundary and radiation conditions:
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Figure 3.4  Scattering object in the form of a group of N 
discrete particles.
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where the common factor, exp( )−iωt , is omitted; 
m( ) [ ( , ) ]′ = ′r rε ω ε2 1

1 2  is the (complex) refractive 
index of the object’s interior relative to that of the host 
exterior medium; k1 1 0

1 2= =| | ( )k inc ω ε µ  is the wave 
number in the host medium; 



G( , )r r ′  is the free-space 
dyadic Green’s function; 



I  is the identity dyadic; and 
⊗  is the dyadic product sign. We can see that the VIE 
expresses the total field everywhere in space in terms of 
the total internal field. The latter is not known in general 
and must be found by solving the VIE either analytically or 
numerically. It is, therefore, convenient to express the scat-
tered electric field directly in terms of the incident field:

	

E r r r r

r r r E

sca

  

3

  

3

    d  

d  

INT

INT

( ) ( , )

( , )

= ′ ′

′′ ′ ′′

∫
∫

V

V

G

T

�
i

�
i iinc ,      ( ) ,′′ ∈ℜr r 3

	
(9)

where 


T  is the so-called dyadic transition operator of the 
scattering object. The substitution of Eq. (9) in Eq. (8) 
yields the following integral equation for 
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where δ( )r  is the three-dimensional delta function.
There are several exact theoretical and numerical tech-

niques for the computation of the scattered field based dir-
ectly on the differential or integral form of the Maxwell 
equations. These techniques have somewhat different 
ranges of applicability in terms of the object’s morph-
ology and its size relative to the incident wavelength 
and are reviewed in Mishchenko et al. (2000, 2002) and 
Kahnert (2003).

3.4  Far-field scattering

The structure of the electromagnetic field inside the scat-
tering object as well as in its immediate vicinity can be 
quite complex. Yet there is a tremendous simplification 
as the distance from the object increases, the scattered 
field eventually becoming a spherical outgoing wave, irre-
spective of the specific nature of the object. This universal 
behavior of the scattered field in the so-called far zone 
plays an extremely important role in many applications of 
electromagnetic scattering and thus deserves an express 
analysis. In this section, we summarize general formulas 
describing the far-field regime and discuss theoretical cri-
teria of their applicability.

A key property of the dyadic Green’s function is the 
asymptotic behavior
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where r = | |r  and r̂ r= r. By placing the origin of the 
laboratory coordinate system, O, close to the geometrical 
center of the scattering object, as shown in Fig. 3.6, and 
substituting Eqs (3) and (11) in Eq. (9), we derive
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Here, n̂ kinc inc= k1  is a unit vector in the incidence dir-
ection, ˆ ˆn rsca =  is a unit vector in the scattering direction, 
and 



A  is the scattering dyadic such that
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where 0 is a zero vector. The scattering dyadic has the 
dimension of length. It describes the scattering of a plane 
electromagnetic wave in the far zone of the object where 

Einc (r, t )

(a)

(b)

Esca (r, t ) = E (r, t ) – Einc (r, t )

Einc (r, t )

Far zone

Near zone

Figure 3.5  Scattering by a fixed object. In this case the 
object consists of three distinct particles.
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the scattered electromagnetic wave propagates away from 
the object, with its electric and magnetic field vectors 
vibrating in the plane perpendicular to the propagation 
direction and decaying inversely with distance from the 
object. The formal conditions defining the far zone are as 
follows (Mishchenko et al. 2006):

	 k r a1 1( ) ,−  	 (14)

	 r >> a,	 (15)

	
r

k a


1
2

2
,
	

(16)

where a is the radius of the smallest circumscribing sphere 
of the entire scattering object centered at O.

The main practical importance of the far-field approxi-
mation is that it allows us to treat the entire object essen-
tially as a point source of scattered radiation and reduces 
the scattered field to a simple outgoing spherical wave, 
as shown schematically in Fig. 3.5(b). Furthermore, Eq. 
(13) shows that only four out of the nine components 
of the scattering dyadic are independent in the spherical 
coordinate system centered at the origin (see Fig. 3.6). It 
is therefore possible to introduce a 2 2×  amplitude scat-
tering matrix S expressing the θ-  and φ-components  of 
the incident plane wave in the θ-  and φ-components  of 
the scattered spherical wave:
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Here E denotes a two-element column formed by the θ- 
and φ-components  of the electric field vector:
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θ ∈[ , ]0 π  is the polar (zenith) angle measured from the 
positive z-axis and φ π∈[ , )0 2  is the azimuth angle meas-
ured from the positive x-axis in the clockwise direction when 
looking in the direction of the positive z-axis (see Fig. 3.7). 
The amplitude scattering matrix has the dimension of length 
and depends on the directions of incidence and scattering 
as well as on the size, morphology, and composition of the 
scattering object and its orientation with respect to the refer-
ence frame. It also depends on the choice of the origin of the 
reference frame with respect to the object.

3.5 � Response of a 
polarization-insensitive 
far-field WCR

It is clear from the discussion in Section 3.2 that a WCR 
cannot be used in a sensible way if it is exposed to an 
electromagnetic field that is not a superposition of plane 
(or near-plane) electromagnetic waves. For example, a 
WCR having a centimeter-sized or larger objective lens 
cannot be used to characterize the near field created by 
a micrometer-sized particle. However, we have seen that 
the total field in the far zone is a superposition of the inci-
dent plane wave and an outgoing spherical scattered wave 
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Figure 3.6  Scattering in the far zone of the object.
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θ

x

yO

z

φ̂

n = θ × φˆ ˆˆ
θ̂

Figure 3.7  Right-handed spherical coordinate system.
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that becomes locally quasi-plane by the time it reaches a 
remote WCR. Therefore, a measurement with a far-zone 
WCR becomes meaningful and amenable to theoretical 
interpretation.

Consider first the measurement configuration involving 
polarization-insensitive WCRs located at a distance r from 
the origin O in the far zone of the entire scattering object, 
as shown in Fig. 3.8. The origin of the laboratory coordin-
ate system is centered at the object. According to Sections 
3.3 and 3.4, the total electromagnetic field at the location 
of a WCR is mathematically represented as a superposition 
of the incident field in the form of a plane electromagnetic 
wave propagating in the direction of the unit vector n̂inc 
and the scattered field in the form of an outgoing spherical 
wave centered at O. We remind the reader that the total 
field is the only real physical field, while the separation 
of this field into the incident and scattered components 
is notional only. We thus have for a far-zone observation 
point, ′r :

	 E r E n r E ninc inc inc inc inc  i     ,( ) exp( ),′ = ′ =0 1 0 0k � i i � 	
(19)

	

H r n r n Einc 1

0

inc inc inc   i( ) exp( ) ,′ = ′ ×
ε
µ

k1 0
� i �

	
(20)
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(21)

	

H r r E rsca 1
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sca  
exp(i

 ( )
)
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′

×ε
µ

k r

r
1

1
 ′ ′ 	 (22)

where ′ = ′r  | |r  and ′ = ′ ′ˆ .r r r  The objective lenses 
of the four WCRs shown in Fig. 3.8 are centered at the 
endpoints of the respective position vectors r r1 1= r ˆ ,
r r n2 2= =r rˆ ˆ ,inc r r3 3= r ˆ , and r r4 4= r ˆ . The distance, r, 
from the origin is assumed to be much greater than the 
diameter of the objective lenses to ensure that the part of 
the scattered wavefront (shown by the dashed curve in 
Fig.  3.8) cut out by an objective lens is essentially flat. 
Specifically, it satisfies the inequality

	

S

r2 < ∆Ω, 	 (23)

where, as before, S is the area of the objective lens and ∆Ω 
is the WCR’s acceptance solid angle defined by Eq. (2).

The optical axis of WCR 3 coincides neither with the 
respective radial direction, r̂3, nor with the incidence dir-
ection, ˆ .ninc  According to the discussion in Section 3.2, 
this implies that neither the incident plane wave nor the 
locally flat scattered wavefront can pass the {objective 
lens, diaphragm} filter, which makes the reading of WCR 
3 identically equal to zero. In other words, if the optical 
axis of a WCR does not go through the origin O and is not 
parallel to n̂inc  then the WCR records no signal.

The optical axis of WCR 4 is parallel to the inci-
dence direction but does not coincide with the respective 
radial direction, r̂4, which implies that only the incident 
plane-wave component passes the {objective lens, dia-
phragm} filter. Therefore, the time-averaged net power 
recorded by WCR 4 is given by

	 〈 〉 =W SI4
inc, 	 (24)

where

	

I inc inc 
1

2
= ε

µ
1

0
0

2| |E 	 (25)

is the nominal intensity of the incident plane-wave com-
ponent, that is computed as if the scattered spherical-wave 
component of the total field were zero.

The optical axis of WCR 1 coincides with the corre-
sponding radial direction, r̂1, but not with the incidence 
direction, n̂inc. Therefore, the {objective lens, diaphragm} 
filter of WCR 1 passes only the scattered wavefront. 
According to Section 3.2, the net time-averaged electro-
magnetic power recorded by WCR 1 is

WCR 4

S

incn̂

O

r̂1

Scattered spherical
wave

Incident plane wave

r̂3

WCR 1

WCR 2

WCR 3

Figure 3.8  The net signal recorded by a WCR depends on 
its line of sight.
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where the asterisk denotes a complex-conjugate value and
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is the nominal intensity of the scattered spherical-wave 
component, that is computed as if the incident plane-wave 
component of the total field were zero.

The computation of the electromagnetic response 
of WCR 2 oriented along the incidence direction is 
more involved because the corresponding {object-
ive lens, diaphragm} filter passes both the incident and 
the forward-scattered wavefronts. The time-averaged 
Poynting vector 〈 ′ 〉S( , )r  t  at any point ′r  of the object-
ive lens of WCR 2 is the sum of three terms:
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where
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are the Poynting vector components associated with the 
incident and the scattered wavefronts, respectively, and
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quantifies the “interaction” between the incident and 
scattered wavefronts. The resulting electromagnetic 
response is obtained by integrating the absolute value 
of the Poynting vector (28) over the objective lens 
of WCR 2.

It is convenient at this point to make use of the follow-
ing far-zone decomposition of the incident electric field 
into incoming and outgoing spherical-wave components 
centered at the origin, O:
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where δ δ θ θ δ φ φ( ) (cos cos ) ( )r r − = − ′ − ′′    is the solid-  
angle delta function. Similarly, the incident magnetic field 
is given by
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Substituting these decompositions in Eq. (31) and inte-
grating the absolute value of the Poynting vector (28) over 
the objective lens of WCR 2 yields:
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(34b)

Equations (34a) and (34b) represent the so-called optical 
theorem. The first term on the right-hand side of Eq. (34b) 
is proportional to S and is equal to the net electromagnetic 
power that would be recorded by WCR 2 in the absence of 
the scattering object. The second term is independent of S 
and describes attenuation caused by interposing the object 
between the light source and the WCR. Thus, the WCR 
centered at the object along the forward-scattering direction 
can be said to measure the nominal power of the incident 
plane wave attenuated by the interference of the incident 
and scattered wavefronts plus a relatively small contribu-
tion from the scattered wavefront. The detector centered at 
the object along any other radial direction reacts only to the 
scattered wavefront.

The ratio of minus the second term on the right-hand 
side of Eq. (34b) to the nominal intensity of the incident 
plane wave has the dimension of area and is called the 
extinction cross section, Cext .  Therefore, Eq. (34b) can 
be written as

	 〈 〉 ≈ − + −W S C I O r2 ext
inc ,( ) ( )2

	 (35)
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where

	
C

kext inc
sca inc inc  = ∗4
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2 1 0

π
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Im ( ) ( ) .[ ]
E

E n E� i 	 (36)

3.6  Response of a polarization-sensitive 
far-field WCR

We have already mentioned that interposing one or more 
optical elements following the relay lens enables a WCR 
to measure the power corresponding to particular polar-
ization components of the field impinging on the sensitive 
surface of the photodetector. Similarly, interposing one or 
more optical elements, such as polarizers and retarders, 
before the scattering object, we can generate the incident 
field with a specific state of polarization. By repeating the 
measurement for a number of different combinations and/
or orientations of the optical elements, we can, in prin-
ciple, determine the specific mathematical relationship 
between a complete set of polarization characteristics of 
the incident field and that of the field impinging on the 
objective lens of a WCR. This relationship is usually 
formulated in terms of the Stokes parameters and the 
so-called phase and extinction matrices.

Let us first consider the situation when the scattering 
direction is away from the incidence direction ( ).r n ≠ inc  
According to the previous discussion, WCR 1 in Fig. 3.8 
reacts only to the outgoing spherical wave. Therefore, 
we can express the polarization response of WCR 1 in 
terms of the Stokes column vector of the scattered wave 
as follows:

	 〈 〉 =Signal 1 I  sca scaS r( ),n 	 (37)

where ˆ ˆn rsca = 1 . Recalling Eq. (12) and the definition 
of the Stokes parameters of a transverse electromagnetic 
wave (Mishchenko et al. 2002), we have
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Similarly, the Stokes column vector of the plane incident 
wave (3) is given by
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(39)

The corresponding scattering relationship reads:

	
I Z Isca sca sca inc inc    ( ) ( , ) ,r

r
n n n  =

1
2

	 (40)

where Z( , )n n 

sca inc  is the 4 4×  Stokes phase matrix. 
Explicit formulas for the elements of the Stokes phase 
matrix in terms of the elements of the amplitude scatter-
ing matrix S( , )n n 

sca inc  are as follows (Mishchenko et al. 
2002):
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= − − +( )| | | | | | | | , 	 (46)

	 Z S S S S23 11 12 22 21  = − −∗ ∗Re ,( ) 	 (47)

	 Z S S S S24 11 12 22 21  = − +∗ ∗Im ,( ) 	 (48)

	 Z S S S S31 11 21 22 12  = − +∗ ∗Re ,( ) 	 (49)

	 Z S S S S32 11 21 22 12  = − −∗ ∗Re ,( ) 	 (50)

	 Z S S S S33 11 22 12 21  = +∗ ∗Re ,( ) 	 (51)

	 Z S S S S34 11 22 21 12  = +∗ ∗Im ,( ) 	 (52)

	 Z S S S S41 21 11 22 12  = − +∗ ∗Im ,( ) 	 (53)

	 Z S S S S42 21 11 22 12  = − −∗ ∗Im ,( ) 	 (54)
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	 Z S S S S43 22 11 12 21  = −∗ ∗Im ,( ) 	 (55)

	 Z S S S S44 22 11 12 21  = −∗ ∗Re .( ) 	 (56)

The elements of the Stokes phase matrix Z are 
real-valued and have the dimension of area. In general, 
all 16 elements of the Stokes phase matrix are non-zero. 
However, the phase matrix elements of a single particle 
are expressed in terms of only seven independent real 
numbers resulting from the four moduli | |Sij (i, j     =    1,2) 
and three differences in phase between the Sij. Therefore, 
only seven of the phase matrix elements are actually inde-
pendent, and there must be nine independent relations 
among the sixteen phase matrix elements. Furthermore, 
the specific mathematical structure of the phase matrix 
can also be used to derive many useful linear and quad-
ratic inequalities for the phase matrix elements. The most 
important of these inequalities are

	 Z11 0  ≥ 	 (57)

and

	
| | ( , , , ).Z Z i jij ≤ = 11 1 4

	 (58)

The reader is referred to Hovenier and van der Mee (2000) 
for a review of this subject and a discussion of how the 
general properties of the phase matrix can be used for test-
ing the results of theoretical computations and laboratory 
measurements.

Let us now consider the case of a polarimetric WCR 
centered at the exact forward-scattering direction (r =
n inc), that is WCR 2 in Fig. 3.8. Because now both the 
incident plane wave and the scattered outgoing spherical 
wave propagate in essentially the same direction and are 
transverse, their superposition is also a transverse wave 
propagating in the forward direction. Therefore, we can 
define the Stokes column vector of the total field for 
propagation directions ˆ ′r  very close to n̂inc  as follows:
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(59)

where the total electric field is given by

	 E r E r E r( ) ( ) ( ).′ = ′ + ′r r r  ′ ′ ′  inc sca

	 (60)

Integrating the elements of I( )′r r ′  over the objective lens 
of WCR 2 and using Eqs (21) and (32), we can derive for 
the recorded net polarized signal:
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	 = − + −   inc inc incS rI K I( ) ( ),n O 2
	 (61b)

where Z( , )n n 

inc inc  is the forward-scattering Stokes phase 
matrix and O( )r −2  is a 4 × 4 matrix with elements vanish-
ing at infinity as r −2. The elements of the 4 × 4 Stokes 
extinction matrix, K( )n inc , are expressed in terms of the 
elements of the forward-scattering amplitude matrix, 
S( , )n n 

inc inc , as follows:
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The elements of the Stokes extinction matrix have the 
dimension of area. It is clear that only seven of the sixteen 
elements are independent.

Equation (61) generalizes the optical theorem. It 
shows that the presence of the scattering object changes 
not only the total power of the electromagnetic radiation 
recorded by the WCR facing the incident wave (WCR 2 
in Fig. 3.8) but also, perhaps, its state of polarization. 
The latter phenomenon is typical of preferentially ori-
ented objects that lack perfect spherical symmetry; it is 
called dichroism and results from different attenuation 
rates for different polarization components of the inci-
dent wave. By placing WCR 2 appropriately far from the 
scatterer, we can make the contribution of the third term 
on the right-hand side of Eq. (61b) negligibly small:
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〈 〉 = −

→ ∞
Signal 2 I K I    inc inc inc

r
S ( ) .n

	 (69)

As a consequence, the extinction matrix becomes a dir-
ectly measurable quantity. In practice, such a measure-
ment can be quite difficult to make since the appropriate 
distance from the scatterer to WCR 2 depends not only on 
the scatterer itself but also on instrument characteristics 
such as its acceptance solid angle.

It is important to recognize that in many respects, the 
measurement situation depicted in Fig.  3.8 embodies 
the practical meaning of the concept of electromag-
netic scattering. Indeed, it demonstrates that in the 
absence of the object, WCR 1 would measure no signal, 
while the signal measured by WCR 2 would be given 
by S Iinc.  In the presence of the object, the readings of 
both WCRs change. The reading of WCR 1 is now pro-
portional to the Stokes column vector of the scattered 
spherical wave, while the polarization signal measured 
by WCR 2 is modified in two ways. First, the total 
measured electromagnetic power is attenuated. Second, 
the attenuation rates for the four Stokes components of 
the measured signal can, in general, be different due to 
dichroism. Thus, the differences between the readings 
of WCRs 1 and 2 in the presence of the object and in 
the absence of the object can be quantified theoretic-
ally in terms of the phase and extinction matrices. Both 
matrices depend on the object’s characteristics such as 
size, shape, refractive index, and orientation and can be 
readily computed provided that the amplitude scattering 
matrix is already known.

If the incident light is a quasi-monochromatic paral-
lel beam then the electric field amplitude, E0

inc ,  randomly 
fluctuates in time. However, these fluctuations occur 
much more slowly than the harmonic oscillations caused 
by the factor exp( )−iωt , which implies that the formalism 
of Sections 3.3 and 3.4 remains valid at any given moment 
in time. Therefore, all formulas of this section also remain 
valid provided that the Stokes column vectors of the inci-
dent and scattered light are now defined as averages of the 
right-hand sides of Eqs (38) and (39) over a sufficiently 
long period of time. In particular, using Eq. (40) in Eqs 
(37) and (61a) gives
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where 〈〈 〉〉
 denotes averaging over a time interval much 

longer than the typical period of fluctuations.

3.7  Derivative quantities

Although the phase and extinction matrices are the most 
general measurable descriptors of far-field scattering and 
are independent of the Stokes parameters of the incident 
field, several derivative quantities have also been used 
despite their potential dependence on Qinc, Uinc, and/or 
V  inc. For example, we have seen that the product of the 
extinction cross section and the intensity of the incident 
plane wave yields the total attenuation of the electromag-
netic power measured by WCR 2 in Fig. 3.8 due to the 
presence of the particle. This implies that the extinction 
cross section depends on the polarization state of the inci-
dent wave and is given by
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The product of the scattering cross section and the inten-
sity of the incident plane wave yields the nominal power of 
the scattered field (i.e. as if the incident field did not exist) 
integrated over all scattering directions. We thus have
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which means that, in general, Csca depends on the polar-
ization state as well as on the propagation direction of the 
incident wave. The absorption cross section is defined as 
the difference between the extinction and scattering cross 
sections:

	 C C Cabs
inc

ext
inc

sca
inc  ( ) ( ) ( ) .n n n  = − ≥ 0 	 (74)

All optical cross sections have the dimension of area. 
Finally, the dimensionless single-scattering albedo is 
defined as the ratio of the scattering and extinction cross 
sections:
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A particular case of the phase matrix is the scattering 
matrix defined by
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F Z( ) ( , ;
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sca sca

inc inc

0

0 0 0 	 (76)

where Θ, traditionally called the scattering angle, is the 
angle between the incidence and scattering directions. It 
is easy to see that the scattering matrix relates the Stokes 
parameters of the incident and scattered waves defined 
with respect to the same so-called scattering plane, that is 
the plane through the incidence and scattering directions.

3.8  Far-field scattering by a 
“random” object

Strictly speaking, the above far-field formalism applies only 
to scattering by a fixed object. Such a setting is realized in 
microwave analog measurements (Gustafson 2000; Vaillon 
et al. 2011). However, there are often situations in which 
the scattering object moves, rotates, and perhaps changes 
its size and/or shape during the measurement. A  typical 
example is the measurement of scattering by a single par-
ticle suspended in air or a vacuum with one of the exist-
ing levitation techniques (Davis and Schweiger 2002). The 
position of the particle within the levitator trap volume and 
its orientation are never perfectly fixed, and the particle can 
undergo random or periodic movements and can spin. The 
particle may also change its size and shape as a result of 
evaporation, sublimation, condensation, or melting. Surface 
oscillations can also change the shape of a liquid drop.

In the case of a random scattering object, Eqs (37), 
(40), (61), and (69)–(71) remain valid provided that

(1)	 the WCRs are located in the far zone of the entire vol-
ume sampled by the object during its temporal changes;

(2)	 the phase and extinction matrices entering these equa-
tions are averaged over a sufficiently long period of 
time and are given by

	 〈〈 〉〉 = 〈 〉Z Z( , ) ( , ; ) ,n n n n   

sca inc sca inc  ξ ξ 	 (77)

	 〈〈 〉〉 = 〈 〉K K( ) ( ; ) .n n 

inc inc ξ ξ 	 (78)

Here, 〈〈 〉〉  denotes averaging over a time interval much 
longer than the typical temporal scale of an object’s vari-
ability, while 〈 〉Z( , ; )n n 

sca inc ξ ξ  and 〈 〉K( ; )n inc ξ ξ  are the 
phase and extinction matrices of the object computed with 
respect to the object-centered coordinate system and aver-
aged over all object states, ξ, physically realizable during 
the measurement. The state of an object indicates collect-
ively its size, refractive index, morphology, orientation, 
etc., that is all physical characteristics except the position. 
Replacing time averaging by averaging over states relies 

on the assumption that the scattering object is sufficiently 
ergodic (Mishchenko et  al. 2006). Obviously, the time 
averages of the scattering matrix and extinction, scatter-
ing, and absorption cross sections are then given by
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while the single-scattering albedo is given by the ratio of 
the average scattering and extinction cross sections:
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3.9  Foldy equations and their far-field 
version

The general formalism described in Section 3.3 applies 
equally to a scattering object in the form of a single body 
and to a fixed multi-particle group. However, when the 
object is a cluster consisting of touching and/or separated 
distinct components then it is often convenient to use a 
modified formalism in which the total scattered field is 
explicitly represented as a vector superposition of the 
partial fields contributed by the cluster components. This 
approach is based on the system of integral so-called 
Foldy equations (FEs), which follow directly from the 
MMEs, automatically incorporate all boundary condi-
tions and the radiation condition at infinity, and rigorously 
describe the scattered electric field at any point in space.

Specifically, let us consider electromagnetic scattering 
by a fixed group of N distinct finite particles collectively 
occupying the interior region, VINT ,  according to
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where Vi  is the volume occupied by the ith component 
(see Fig.  3.4). It can be shown (Tsang and Kong 1980) 
that the solution of the VIE everywhere in space can be 
expressed as
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where the electric field, E ri ( ), “exciting” particle i is 
given by

	
E r E r E ri

j i

N

ij( ) ( ) ( );
( )

  inc exc= +
≠ =
∑

1 	 (86)

the E rij
exc( )  are “particle–particle exciting fields” given by
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and 


Ti  is the ith-particle dyadic transition operator with 
respect to the laboratory coordinate system satisfying the 
following integral equation:
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The Ui ( )r  is the ith-particle potential function given by
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where

	 m k ki i( ( )r r)  = 2 1 	 (90)

is the refractive index of particle i relative to that of the 
host medium. All position vectors originate at the com-
mon origin, O, of an arbitrarily chosen laboratory coord-
inate system. Importantly, 



Ti  is the dyadic transition 
operator of the ith-particle in the absence of all the other 
particles (compare Eqs (10) and (88)).

Although the FEs (86) and (87) can be solved numer-
ically to compute the field scattered by a finite cluster con-
sisting of arbitrarily positioned components, the solution 
becomes increasingly problematic and eventually imprac-
tical with an increasing number of cluster components 
and/or their sizes relative to the wavelength. The problem 
becomes tractable if we assume that

•	the particles forming the group are separated widely 
enough that each of them is located in the far zones of 
all the other particles;

•	the observation point is located in the far zone of any 
constituent particle (but not necessarily in the far zone 
of the entire group).

Specifically, let us assume as usual that the incident field 
is a plane electromagnetic wave given by

	 E r E n rinc inc inc  i( ) exp( ).= 0 1k � i 	 (91)

Then the FEs imply that the total electric field is still given 
by the superposition of the incident and scattered fields,

	 E r E r E r( ) ( ) ( ),  inc sca= + 	 (92)

but the scattered field now becomes
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Here, 
�
� �Ai ( , )n n′  is the far-field scattering dyadic of par-

ticle i centered at its origin, Oi (Section 3.4),
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and the vectors Eij  are found from the following system 
of equations:
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The relevant vector notation is explained in Fig. 3.9, while 
the hats denote unit vectors in respective directions. The 
linear algebraic system (95) is much simpler than the ori-
ginal system of integral equations (86)–(87).

Equations (92) and (93) show that the total field at 
any observation point located sufficiently far from any 
particle in the sparse multi-particle group is the superpos-
ition of the incident plane wave and N partial spherical 
wavelets contributed by the N particles. Each particle i is 
“excited” by the incident field as well as by the superpos-
ition of “particle–particle exciting fields,” G Rij ij( )E , each 
G Rij ij( )E  being a spherical wavelet centered at particle 
j. The observation point is not required to be in the far 
zone of the entire group. It can be anywhere in space (e.g. 
between particles i and j in Fig. 3.9) as long as it is in the 
far zones of all the particles forming the group.

Even though each ith component of the scattered field 
(92) is a transverse electromagnetic wave, the scattered 
field itself is not, in general, a transverse electromag-
netic wave. This is not surprising since Eqs (92) and (93) 
describe the near field of the multi-particle group despite 
the underlying assumption that the observation point is 
located in the far zone of any constituent particle. The 
scattered field (93) becomes a transverse electromag-
netic wave only if the observation point is located in the 



Electromagnetic scattering by particles 27

far zone of the entire group as defined by the criteria 
(14)–(16).

3.10  First-order-scattering 
approximation

Although the far-field formulas listed in Section 3.8 for 
a stochastic scattering object are attractively simple, they 
have a rather limited range of applicability. Indeed, one 
of the criteria of the far zone, Eq. (16), becomes quite 
challenging for an object significantly greater than the 
wavelength and often prohibits direct use of the far-field 
approximation. It turns out, however, that much of the 
simplicity of the far-field formalism can be preserved 
if the stochastic scattering object belongs to a particu-
lar morphological type. Specifically, in this section we 
assume that the object can be defined as a group of N dis-
tinct particles separated from each other and distributed 
throughout a volume element, V. Accordingly, the starting 
point of the analysis of electromagnetic scattering by this 
object will be the FEs discussed in the preceding section 
rather than the VIE. In addition, we assume that

•	the total number of particles forming the object is suf-
ficiently small and the average distance between them 
is sufficiently large that in the framework of the FEs, 
each particle can be assumed to be “excited” only by 
the incident field;

•	the N-particle object is observed from a distance 
much greater than any linear dimension of the volume 
element, V;

•	although the observation point is allowed to be in the 
near zone of the entire object, it is remote enough to be 

in the far zone of any of the N distinct particles forming 
the object;

•	the N particles are moving randomly and independently 
of each other throughout the volume element, V.

The prime example of an application satisfying these 
requirements is the analysis of laboratory measurements 
of light scattering by tenuous collections of natural and 
artificial small particles as discussed by Hovenier (2000) 
and Muñoz and Hovenier (2011).

Assuming that the second term on the right-hand 
side of Eq. (86) is negligibly small in comparison with 
the first term is equivalent to neglecting the vectors Eij  
in Eq. (93). Let us choose the origin O of the laboratory 
coordinate system close to the geometrical center of the 
N-particle object, assume that the incident field is the 
plane electromagnetic wave (91), and consider an obser-
vation point that is located close enough to be in the near 
zone of the entire object yet far enough to be in the far 
zone of any particle from the group, as shown in Fig. 3.10. 
Eq. (93) then yields
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Let us now quantify the electromagnetic response of the 
two remote polarimetric WCRs shown in Fig. 3.11 and hav-
ing their optical axes centered at the volume element, V. 
Both instruments are located in the near zone of the volume 
element, V, yet sufficiently far from it to be in the far zone of 
any of the N particles. This implies that the partial wavelets 
scattered by the particles become locally flat by the time 
they reach a WCR. Furthermore, although the acceptance 
solid angle, ∆Ω , of either WCR is very small, its distance, 
r, from the center of the volume element, V, is sufficiently 
large that the solid angle subtended by V as viewed from the 
WCR is smaller than ∆Ω. As a consequence, either WCR 
captures all partial wavelets scattered by the N particles 
irrespective of the particles’ locations within V, while WCR 
2 also captures the incident plane wave.

Let us first consider the response of WCR 1. According 
to Section 3.2, this instrument integrates over its objective 
lens the time-averaged Stokes column vector of the super-
position of the N near-plane wavelets propagating essen-
tially in the same direction, r̂1. Since the {objective lens, 
diaphragm} filter of WCR 1 does not pass the incident 
plane wave, it can be shown (Mishchenko et al. 2006) that 
the polarized response of WCR 1 averaged over a suffi-
ciently long period of time or, equivalently, over all par-
ticle positions is given by

O
y

z

x

Oi

Ri

ri

r

Observation
point

Oj Rj

Rij

Figure 3.9  Vector notation used in the far-field Foldy 
equations.
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where Z( , ; )r s 1  i  is the particle-centered phase matrix 
of particle i. To perform the requisite averaging over the 
individual positions of the N particles, we assume that the 
corresponding coordinate probability density functions 
are given by
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which means that the individual spatial distributions of all 
the N particles throughout the entire volume element, V, 
are mutually independent and statistically uniform. This 
implies, of course, that the average particle packing dens-
ity must be sufficiently small.

Unlike the situation with WCR 1, the {objective lens, 
diaphragm} filter of WCR 2 does pass the incident plane 
wave as well as the N partial near-plane wavelets. As a 
consequence, the integration of the resulting Stokes col-
umn vector over the entrance pupil of WCR 2 yields
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or, assuming that r is sufficiently large to make the last 
term on the right-hand side insignificant,

	
〈〈 〉〉 = −

=
∑Signal 2 I K I inc inc incS i
i

N

( ; ) ,n
1 	 (100)

where K( ; )n inc i  is the particle-centered extinction matrix 
of particle i.

Equations (97) and (100) summarize the so-called 
first-order-scattering approximation (FOSA) for the object 
in the form of a small ergodic group of sparsely distributed 
particles. Comparison of these formulas with their far-field 
counterparts, Eqs (37), (40), and (69), is quite instructive 
and shows that the polarized readings of near-field yet suf-
ficiently distant WCRs can be modeled by summing up the 
corresponding single-particle far-field readings.

The main results of the FOSA can be generalized by 
assuming that the microphysical states, ξi, of the N parti-
cles change randomly and independently of each other as 
well as independently of the particle positions. Then
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A fundamental consequence of the “additivity” of the 
extinction and phase matrices in Eqs (101) and (102) is 
that the actual random N-particle ensemble is optically 
indistinguishable from an ensemble consisting of N stat-
istically identical particles each having the same average 
extinction and phase matrices given by
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Figure 3.10  A random group of N particles sparsely 
distributed throughout a volume element, V, is observed from a 
large distance, r.

nincˆ V

r1ˆ

WCR 1

WCR 2∆Ω

Figure 3.11  Near-field measurement configuration.
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The matrices 〈 〉K( ; )n inc ξ ξ  and 〈 〉Z( , ; )r n  inc ξ ξ  can be 
thought of as being averaged over a synthetic distribu-
tion of microphysical states of one particle, pξ ξ( ), derived 
from the N individual-particle distributions, p

i iξ ξ( ) . Then 
Eqs (101) and (102) take a much simpler form:

	
〈〈 〉〉 = 〈 〉Signal 1 Z I  inc incS

r
N

2 1( , ; ) ,r n  ξ ξ
	 (104)

	 〈〈 〉〉 = − 〈 〉Signal 2 I K I inc inc incS N ( ; ) .n ξ ξ 	 (105)

Finally, Eqs (104) and (105) can be generalized to 
allow for the case of quasi-monochromatic light:

	
〈〈 〉〉 = 〈 〉 〈〈 〉〉Signal 1 Z I  inc incS

r
N

2 1( , ; ) ,r n  ξ ξ
	 (106)

	
〈〈 〉〉 = 〈〈 〉〉 − 〈 〉 〈〈 〉〉Signal 2 I K I inc inc incS N ( ; ) .n ξ ξ 	

(107)

The main attraction of the FOSA is that it obviates the 
need to solve the Maxwell equations for a statistically rep-
resentative set of sparse N-particle configurations expli-
citly and reduces this complicated (if not impractical) 
task to the much simpler problem of solving the Maxwell 
equations for only one particle followed by averaging over 
a representative distribution of the particle microphysical 
states. Furthermore, by explicitly allowing the remote 
observation point to be located in the near zone of the vol-
ume element, V, the FOSA obviates the need to satisfy the 
most demanding requirement of the far-field approxima-
tion, namely the inequality (16). The obvious implication 
of the FOSA is that the average separation between the 
particles must be appropriately large and their total num-
ber, N, must be sufficiently small. This qualitative require-
ment is quantified in Mishchenko et al. (2006, 2007).

3.11  Discrete random media

By definition, a discrete random medium (DRM) is a 
scattering object in the form of an imaginary volume, 
V, populated by a large number of particles, N, in such a 
way that the spatial distribution of the particles through-
out the volume is statistically uniform. Over time, par-
ticle positions and states change randomly, thereby 
resulting in random changes of the state of the entire 
object. Classical examples of a DRM are clouds and 
aqueous particle suspensions (Figs 3.12(a),(b),(c)). In 
many cases a particulate surface (Figs 3.12(d),(e)) can 
also be modeled as a DRM since even minute changes of 

the source-of-light–object–detector configuration dur-
ing the measurement are equivalent to multi-wavelength 
shifts in particle positions and, in essence, result in a sto-
chastic scattering object. The volume packing density of 
a DRM can vary from almost zero for a cloud to a few 
percent for a particle suspension to 5 to 50% for a par-
ticulate surface.

Given their specific morphological traits and ubiqui-
tous presence, scattering objects in the form of a DRM 
deserve a detailed study. As always, the desirable way to 
model electromagnetic scattering by a DRM is to solve the 
Maxwell equations numerically for a representative set of 
realizable states of the object and then average the relevant 
optical observables using an appropriate probability density 
function. This approach has no restrictions on the volume 
packing density of a DRM and has been gaining popular-
ity over the past several years (Mishchenko et  al. 2009, 
2010; Dlugach et  al. 2011; Mackowski and Mishchenko 
2013) because of the availability of an efficient numerically 
exact solver of the Maxwell equations called the superpos-
ition T-matrix method (Mackowski and Mishchenko 1996, 
2011). However, this methodology remains quite limited 
in terms of the number of constituent particles, N, and the 
overall size of the object. The case of a very large num-
ber of particles coupled with a large overall size of a DRM 
has to be handled analytically using the far-field FEs. This 
approach is based on the underlying assumption that the 
particle packing density is sufficiently small.

In the majority of actual applications, the detector 
of light is located in the near zone of the entire random 
particulate object, including the cases of being inside 
the object. Such near-zone measurements serve as espe-
cially instructive examples of the inherent inability of 
a detector of light to react to the Poynting vector of 
the total electromagnetic field. Indeed, let us consider 
a hypothetical detector of directional electromagnetic 
energy flow placed inside a random cloud of parti-
cles (Fig.  3.13). The sensitive surface of the detector 
is assumed to react to the instantaneous local Poynting 
vector only when the latter is directed within a nar-
row acceptance solid angle centered around the nor-
mal to the surface. However, it is clear that the local 
Poynting vector at any point, r, of the sensitive surface 
at any moment in time is not the same as it would be 
in the absence of the detector. Indeed, let us assume 
for simplicity that the particles are separated widely 
enough to satisfy the conditions of applicability of the 
far-field FEs. Then, according to Eqs (92) and (93), the 
total instantaneous electric and magnetic fields at r in 
the absence of the detector are superpositions of the 
respective incident and N partial scattered fields:
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where Ei tsca( , )r  and Hi tsca( , )r  describe an outgoing 
spherical wavelet centered at the origin of particle i. The 
corresponding local instantaneous Poynting vector is 
given by the vector product S E H( , ) ( , ) ( , )r r rt t t  = ×  
and is a rapidly oscillating function of time and spatial 
coordinates. The major side effect of the presence of the 
detector is to block the spherical wavelets generated by 
the ′N  particles located to the left of the plane through 
the sensitive surface shown schematically by the dashed 
line in Fig.  3.13. The resulting “truncated” electric and 
magnetic fields at r are now given by
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where the sums include only the contributions from 
the N N− ′  “unblocked” particles, and we assume 
that the detector blocks the incident plane wave as 
well. It is obvious that the corresponding “truncated” 

Poynting vector is not equal to the original Poynting 
vector:  ′ = ′ × ′ ≠S E H S( , ) ( , ) ( , ) ( , ).r r r rt t t t    

A fundamental advantage of a WCR over the hypo-
thetical directional meter of electromagnetic energy 
flow shown in Fig. 3.13 is that the specific measurement 
afforded by the WCR is much less affected by the WCR’s 
very presence. Indeed, by its very construct the WCR 
selects only those incoming wavefronts that are generated 
by particles residing in the narrow conical volume, ∆V

q
, 

defined by the WCR’s acceptance solid angle, ∆Ω q ,  as 
sketched in Fig. 3.14. It is obvious that placing the WCR 
inside the cloud blocks none of these wavefronts.

We may question the legitimacy of measurements 
with a WCR placed inside a cloud, since there will 
always be particles in the close proximity of the objective 
lens that do not satisfy the criterion (23). However, if the 
size of the cloud is much greater than the diameter of the 
objective lens then the majority of the partial scattered 
wavelets are contributed by remote particles and as such 
develop into near-plane wavefronts at the location of the 
WCR. Therefore, the use of the WCR appears to be jus-
tified as long as these partial wavelets dominate the total 
local field.

The theoretical modeling of the signal generated by 
the WCR is based on the above premise that the WCR 
selects only those wavelets that come from the particles 

10 µm

(c)

(b)(a)

(d)

(e)

Figure 3.12  Examples of discrete random media. (a) A terrestrial liquid-water cloud. (b) Jet-engine condensation trail clouds. 
(c) A particle suspension. (d) A fresh snow surface. (e) A powder surface composed of feldspar particles.

(d) After Peltoniemi et al. (2009).

(e) After Shkuratov et al. (2006).
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located within the “acceptance volume,” ∆Vq , (Fig. 3.14) 
and integrates the absolute value of the corresponding 
“composite” Poynting vector over the objective lens. 
Assuming for simplicity that ∆Ω q  does not subtend the 
propagation direction of the incident beam, n̂inc, we can 
conclude that the instantaneous value of the composite 
Poynting vector is given by 

l m l mt t∑ ∑ ×E H( , ) ( , ),r r  
where the indices l and m number the particles positioned 
inside the acceptance volume, ∆Vq̂. Note that since ∆Ωq  
is assumed to be very small, each term in this sum is a 
vector directed essentially along the unit vector q̂  in 
Fig. 3.14. Averaging this reading over a sufficiently long 
time interval yields the following average signal per unit 
area of the objective lens:  〈〈 〉〉∑ ∑ ×

l m l mt tE r H r( , ) ( , ) .  
This quantity can be computed analytically using 
the far-field FEs coupled with the standard assump-
tions of the microphysical theory of radiative transfer 
(Mishchenko et al. 2006) such as ergodicity of the ran-
dom N-particle ensemble, the limit N → ∞, the Twersky 
approximation, and the ladder approximation. A lengthy 
yet straightforward derivation shows that the reading of 
the polarization-insensitive WCR in Fig.  3.14 per unit 
time is given by the product

	
S I∆Ω ˆ ( , ˆ ),q r q

	 (110)

where � �I ( , )r q  is the first element of the four-element col-
umn � �I( , )r q  satisfying the following integro-differential 
equation:
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(111)

Here, n N V0 =  is the average number of particles per 
unit volume, while 〈 〉K( ; )q ξ ξ  and 〈 〉Z q( , ; )q  ′ ξ ξ  are the 
single-particle extinction and phase matrices, respectively, 
averaged over the states of all the N particles. Equation 
(111) is traditionally called the radiative-transfer equation 
(Chandrasekhar 1950), although its physical foundation 
and interpretation have undergone a radical transform-
ation over the past decade (Mishchenko 2013).

Equations (110) and (111) are quite useful in prac-
tice. Specifically, Eq. (110) implies that if the under-
lying assumptions about the particulate medium are valid 
then the WCR shown in Fig. 3.14 measures the quantity 
� �I ( , )r q  provided that the reading of the WCR is aver-

aged over a sufficiently long period of time. Therefore, 
the angular dependence of the measured function, � �I ( , ).r q  
can be analyzed by solving Eq. (111) for a representative 
range of physical models of the cloud and thereby retriev-
ing valuable macro- and microphysical information about 
the particulate object. Furthermore, it is straightforward 
to convert the WCR into a directional photopolarimeter 
capable of measuring the entire column vector, � �I( , ).r q  
This measurement has been shown to contain additional 
implicit information about particle microphysics, which 
can often be retrieved since solving Eq. (111) yields all 
four elements of � �I( , )r q  at once.

The above discussion remains valid in the case of 
quasi-monochromatic light and/or if the WCR resides 
outside the particulate object but is still in its near zone 
(Mishchenko et  al. 2006). If the distance between the 
WCR and the particulate object is much greater than the 
size of the object and the WCR is centered at the exact 
backscattering direction, ˆ ˆ ,n nsca inc= −  then Eq. (110) may 
need to be augmented by including so-called cyclical dia-
grams in the computation of the truncated Poynting vector. 

Figure 3.13  The hypothetical 
directional detector of 
electromagnetic energy flow placed 
inside a cloud of randomly moving 
particles.
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The result is the effect of coherent backscattering which 
has been demonstrated to explain, at least qualitatively, 
optical opposition phenomena observed for high-albedo 
surfaces of certain atmosphereless solar system bodies 
(Mishchenko et al. 2009; Muinonen et al. 2012).

3.12  Concluding remarks

The focus of the above discussion has been on the meas-
urement of electromagnetic scattering by particulate 
media and its theoretical interpretation as two key com-
ponents of any optical-characterization technique. We 
have shown that the physical nature of the measurement 
with a polarization-sensitive WCR is now well under-
stood and can be definitively formulated using funda-
mental physical notions of light–matter interactions. In 
certain well-defined situations, the outcome of the meas-
urement can be modeled in terms of the rigorous theory 
of electromagnetic scattering by particles and particle 
groups directly based on the frequency-domain MMEs. 
In particular, laboratory and in situ measurements with 
polarization-sensitive nephelometers for individual par-
ticles or small sparse particle groups can be adequately 
modeled using the far-field approximation or the FOSA. 
The range of applicability of either approximation is now 
well understood. The corresponding formulas in Sections 
3.6–3.8 and 3.10 involve (ensemble-averaged) phase and 
extinction matrices as well as several derivative quantities 
that can be computed with existing numerically exact solv-
ers of the Maxwell equations. Perhaps the most popular 

solvers are the classical Lorenz–Mie theory for spheric-
ally symmetric particles, the discrete dipole approxima-
tion (Draine and Flatau 1994; Yurkin and Hoekstra 2007, 
2011), the finite-difference time-domain method (Yang 
and Liou 2000), and the (superposition) T-matrix approach 
(Mishchenko et  al. 2002; Mackowski and Mishchenko 
1996, 2011) applicable to non-spherical particles.

In the case of large, sparse multi-particle objects such 
as clouds and aqueous particle suspensions, measure-
ments with near-field polarization-sensitive WCRs can 
also be modeled in the framework of an asymptotic solu-
tion of the Maxwell equations culminating in Eqs (110) 
and (111). Recent research has served to replace the old 
phenomenological theory of radiative transfer and dir-
ectional radiometry by a microphysical approach firmly 
rooted in electromagnetic theory, thereby making this 
discipline a legitimate branch of physical optics. There 
are several efficient numerical techniques for solving the 
integro-differential radiative transfer equation (111) or its 
integral counterpart (Hansen and Travis 1974; Lenoble 
1985; Hovenier et al. 2004), while the ensemble-averaged 
single-particle phase and extinction matrices can be com-
puted using the above-mentioned solvers of the Maxwell 
equations. The incorporation of the effect of coherent 
backscattering is also possible (Muinonen 2004; Muinonen 
et al. 2012) but requires considerably more computer time.

Solving the Maxwell equations for densely packed 
multi-particle objects such as particulate surfaces remains 
a challenging problem (Tishkovets et  al. 2011) and is 
often replaced by the asymptotic sparse-medium solution 

∆Vq

q̂

ˆ̂

Figure 3.14  A WCR placed 
inside a cloud of randomly moving 
particles.
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based on the theory of radiative transfer and coherent 
backscattering. However, the latter may not be applic-
able to packing densities exceeding approximately 5% 
(Muinonen et al. 2012; Mishchenko et al. 2013), and so 
extreme caution is required in analyses of measurements 
for particulate media known (or suspected) to be densely 
packed. Simple heuristic modeling approaches such as the 
Hapke model (Hapke 2012) have also been used owing to 
their ability to fit virtually any experimental curve via the 
adjustment of several free model parameters. However, 
such models are not rooted in fundamental physics and 
cannot be part of a substantive optical-characterization 
technique (Mishchenko et al. 2011b).
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