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a b s t r a c t

The equations for frequency-domain multiple scattering are derived for a scalar or
electromagnetic plane wave incident on a collection of particles at known positions,
and in the time-domain for a plane wave pulse incident on the same collection of
particles. The calculation is carried out for five different combinations of wave types and
particle types of increasing geometrical complexity. The results are used to illustrate and
discuss a number of physical and mathematical characteristics of multiple scattering in
the frequency- and time-domains. We argue that frequency-domain multiple scattering is
a purely mathematical construct since there is no temporal sequencing information in the
frequency-domain equations and since the multi-particle path information can be
dispelled by writing the equations in another mathematical form. However, multiple
scattering becomes a definite physical phenomenon in the time-domain when the
collection of particles is illuminated by an appropriately short localized pulse.

& 2015 Elsevier Ltd. All rights reserved.
(i)

(ii)
1. Introduction

The subject of this tutorial is the physical and mathema-
tical interpretation of the equations of multiple scattering of
waves in the frequency- and time-domains. Martin (see Sec.
1.1 of [1]) has correctly remarked that “multiple scattering”
may mean different things to different scientists. We should
add that the meaning of the term “multiple scattering” can
also vary depending on the particular context in which it
appears. More often than not, this has to do with the fact
that although physics describes actual natural phenomena,
it does so using the abstract language of mathematics. It is
therefore important to delineate the situations when multi-
ple scattering represents a real physical process and those
when it emerges as a purely mathematical construct.

In the frequency-domain, a monochromatic plane wave

ation is incident
on a collection of scattering particles at known fixed
positions. Five attributes of multiple scattering of waves
in the frequency-domain have recently been described in
[2–5] and pp. 6–9, 47, 65–66 of [6] in order to clarify a

num
ber of common misconceptions. They are as follows.

If one wishes to discuss wave scattering by a collection
of many particles in terms of multiple scattering, the
so-called compact form of the pertinent equations can
be expanded, purely mathematically, as a particular
infinite series of terms known as the expanded form of
the equations [7]. This series has been called the
multiple-scattering point of view [8], an order-of-
scattering expansion [9–11], or a multi-path expansion

of the total wave (see [7] and pp. 765–766 of [12]).
The multiple-scattering point of view in the frequency-
domain with the incident wave being scattered sequen-
tially by one, two, three, or more particles before reaching
the observation point does not refer to an actual physical
phenomenon. It is only a purely mathematical expansion

of the total wave. This is because in the frequency-domain
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all the mutual excitations occur simultaneously and are

not temporally discrete and ordered events.
The scattered wave leaving particle i to be rescattered
by particle j does not propagate only in the specific
direction from i to j as is the case for a multiply-

scattered projectile particle.
For frequency-domain scattering in general, the scat-
tering equations are consistent with the point of view
that the wave incident on particle j is not transformed
into or replaced by the scattered wave. Thus the cause
of scattering at particle j is not the incident field, but
rather the presence of an object with physical proper-

ties different from that of the external medium.
The form of the total field in the exterior medium
makes it clear that both the incident and scattered
fields, considered individually, are purely mathema-
tical entities rather than actual physical objects. The
only actual physical object is the total field, either in
the presence of or in the absence of the scattering
particle. The scattered field is defined to be the
difference between the total field in the exterior

region with and without the scatterer present.
To demonstrate that the situation can be profoundly
different in the time-domain, in the body of this tutorial we
describe exactly soluble time-domain multiple scattering
scenarios involving an incident narrow Gaussian plane wave
pulse. We obtain the solutions for five fixed (deterministic)
scattering objects of increasing geometric complexity and
analyze them using four different mathematical
approaches.1 The examples considered here are used to
revisit, and refine where necessary, the above frequency-
domain statements (i)–(v) formulated for an incident beam
of infinite temporal duration. They are also used to extend
some of the statements when one considers time-domain
scattering of a temporally-short incident pulse. The specific
selection of the five scattering scenarios of increasing com-
plexity is intended to maximize the pedagogical value of our
discussion for the reader.

We start with the simple examples of one-dimensional
scattering, and then isotropic scattering of scalar waves in
three dimensions. Then we progress to the more compli-
cated and realistic situations of particles of finite size,
arbitrary shape and internal composition, and incident
electromagnetic waves rather than scalar waves. As the
examples become more elaborate and complicated, the
mathematics and notation needed to fully and accurately
describe them become more elaborate and complicated as
well. This is why we consider the simplest geometries first,
in order to avoid the complexity of the notation from
obscuring the patterns that occur in the equations and the
points we are trying to illustrate.

In spite of the increased complexity as we progress
from example to example, certain time-domain multiple-
tering phenomena occur in exactly the same way time

We note that stochastic scattering objects in the form of a group of
cles located at statistically random positions involve a number of
s that will not be discussed here. Moving scatterers will also not be
dered, since their analysis lies in the realm of dynamic light
ering.
after time, i.e. they persist. Specifically, scattering of a
temporally-short pulse results in a temporal succession of
distinct individual scattered pulses in a one-to-one corre-
spondence with the different multi-particle paths encoun-
tered in the frequency-domain. This result is obtained by
first separating out all the rapidly-varying wave number-
dependent phases in the terms of the expanded form of
the frequency-domain multiple scattering equations. The
mathematical details of this separation turn out to be
different for the different examples considered. The result-
ing temporal succession of pulses obtained in the time-
domain is not valid for only the simplest of examples, but
persists as the geometrical complexity of the system
increases. As a result, the pulse sequence has the effect
of elevating multiple scattering from being an abstract
mathematical entity in the frequency-domain to an actual
physical phenomenon in the time-domain.

2. General considerations

Before describing the five multiple scattering scenarios
in detail, it is instructive to discuss the definition of a
number of terms used throughout this tutorial. The first of
these, as in statement (v) of Section 1, is the difference
between purely mathematical entities and actual physical
objects. In Lorenz–Mie scattering a linearly polarized
monochromatic electromagnetic plane wave having infi-
nite transverse extent and infinite temporal duration,
angular frequency ω, wavelength λ, and wave-number
k¼2π/λ is incident on a single spherical particle of radius
a and refractive index N whose center is at the origin of
coordinates. The scalar radiation potential (see Sec. 9.21 of
[13]) of the total wave exterior to the particle satisfies the
scalar wave equation subject to the appropriate boundary
conditions, and is standardly chosen to have the form

ψ total krð Þexp � iωtð Þ ¼ ψbeam krð Þexp –iωtð Þþψ scatt krð Þexp –iωtð Þ;
ð1Þ

where the electromagnetic fields of the incident and
scattered waves are obtained by vector differentiation of
ψbeam and ψscatt, respectively. In Eq. (1), r is the position
vector, t is time, and i¼(–1)1/2. The motivation of
the assumption that the incident wave is present in the
entirety of the exterior region is due to the fact that the
portion of it that is transversely distant from the scattering
particle passes from upstream locations to downstream
locations without ever directly encountering the particle
or being diffracted by it. It was stated in [2–6] that the only
wave with a definite physical existence in this situation is
ψtotal, and the decomposition of ψtotal into the sum of ψbeam
and ψscatt is a purely mathematical construction.

This is an instance of a more fundamental problem: if a
wave ψtotal is decomposed into the sum of two hypothetical
parts ψ1 and ψ2,

ψ total ¼ ψ1þψ2; ð2Þ
when is such a decomposition purely an abstract mathe-
matical construction and when do the two parts have a
definite physical existence? The answer depends crucially
on the details of the experimental configuration and the

attributes of the two hypothetical parts. If an experiment
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can be performed that filters out one of the parts and
simultaneously measures the other at a single instant of
time, and obtains the expected answer for the properties
of the remaining part in the absence of the filtered part,
then one may justifiably claim that each of the parts has an
independent physical existence. If such an experiment
cannot be performed, or if the results do not correspond
to the presumed properties of the hypothetical parts, then
one can claim that the decomposition is purely a mathe-
matical construction.

We illustrate this point of view with the following
simple example. Consider a beam exiting a laser and
expanded by a pair of lenses. We assume that the
expanded laser beam in the spatial region of interest can
be modeled by a plane wave whose electric field is

Etotal r; tð Þ ¼ E0ux exp ikz–iωtð Þ; ð3Þ
where ux is a unit vector in the positive x direction. One
can mathematically write this field as

Etotal r; tð Þ ¼ E1ux exp ikz–iωtð ÞþE2ux exp ikz–iωtð Þ; ð4Þ
where

E1 ¼ E0=2; ð5aÞ

E2 ¼ E0=2: ð5bÞ
Both hypothetical component beams have exactly the same
frequency, phase, direction of travel, and polarization. There
is no difference in any of these attributes that can be used to
filter one of the components out while retaining the other.
So one would say that the decomposition of Eqs. (4) and (5)
is purely mathematical for this geometry.

Now consider the same total beam with the same
decomposition, but occurring in the context of a different
geometry. An original expanded laser beam is passed
through an interferometer with equal length arms. The E1
beam has traversed arm 1 of the interferometer, and the E2
beam has traversed arm 2. The total recombined beam in
the spatial region of interest is Etotal(r,t) of Eq. (3). There is
now a difference between the two identical-looking com-
ponents in this new experiment. Although they continue to
have the same frequency, phase, direction of travel, and
polarization, they have different histories. Blocking arm 1
results in detecting only the second component, while
blocking arm 2 results in detecting only the first component.
The results of the arm-blocking experiments will always
record the time-average intensity (1/4) (E20/2μ0c), where μ0 is
the permeability of free space and c is the corresponding
speed of light, agreeing with the postulated decomposition
of Eqs. (5a) and (5b). Due to the details of this new
geometrical configuration, the two component beams in
the spatial region of interest now have an independent
physical reality. However, the postulated decomposition of
Eq. (4) for the interferometer geometry with

E1 ¼ 3E0=4; ð6aÞ

E2 ¼ E0=4 ð6bÞ
is purely a mathematical decomposition because arm-
blocking experiments will never record the component

energies (9/16) (E20/2μ0c) or (1/16) (E

2
0/2μ0c).
However, the arm-blocking experiments described here,
and filtering experiments in general, are in some sense
incomplete. A particular boundary value problem for the
wave equation has been posed, and in the spatial region of
interest, its solution is ψtotal. Even if it is physically comprised
of a number of components, the fact that ψtotal is the actual
solution to the specific frequency-domain boundary value
problem that was posed gives it a degree of primacy over
the individual components. This is because if the energy of
each of the individual components, ψn

1ψ1 or ψ
n

2ψ2 where the
asterisk denotes complex conjugation, is separately recorded
in filtering experiments, the sum of these energies will not
be equal to the energy contained in ψtotal,

ψn

1ψ1þψn

2ψ2aψn

totalψ total: ð7Þ
Since the filtering experiments described here delete either
ψ1 or ψ2, they cannot record the energy content of the
interference of the two component waves ψn

1ψ2þψn

2ψ1,
which is an integral contribution to the energy content of
ψtotal.

The way in which this point of view applies to Lorenz–
Mie scattering is that the electromagnetic waves derived
from ψbeam and ψscatt of Eq. (1) almost always have different
directions of travel or different polarizations. The differ-
ences in these features imply the possibility that an
experiment can be performed that filters out one or the
other component wave and measures some of the features
of the remaining component. For example, a far-zone
detector in a Lorenz–Mie scattering experiment is placed
at the polar angle θp0¼1501. Since the sensitive face of the
detector (e.g. the eye of the observer) points toward the
scattering particle and away from the propagation of
the incident beam (e.g. the incoming plane wave strikes
the back of the observer's head), only the scattered wave
will be detected. If the detector were instead rotated in
place so that its sensitive face now faces the incoming
beam and the scattered wave strikes the back side of the
detector, only the incident beam will be detected. Simi-
larly, if a polarizing filter is placed in front of a suitably
positioned detector so as to filter out the linearly polarized
incident beam, the recorded signal is due to the portion of
the scattered wave having the orthogonal polarization. The
recorded energy of the scattered wave for this filtering
experiment has been shown to agree with the predictions
of Lorenz–Mie theory. This separation of the incident and
scattered waves, however, is not always possible. As was
pointed out in [14], if a plane wave is incident on a totally
opaque sphere, the incident and scattered waves at off-
axis positions immediately behind the particle have the
same direction of travel and polarization, but are 1801 out
of phase with each other. Their destructive interference
causes the so-called deep shadow region immediately
behind the particle (see Fig. 2 of [14] and Fig. 14 of [15]).
The components of the total wave are not physically
separable in this shadow region.

As a refinement to statement (v) of Section 1, one can
infer that for the decomposition of the total wave in the
exterior region into the incident beam and scattered wave
as in Eq. (1), each of these components can be said to have
an independent physical existence almost everywhere

exterior to the particle. If the total wave were decomposed
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into the sum of two or more components in any one of a
number of differing ways that are not realized in various
filtering experiments, the decomposition would remain
purely mathematical in nature. An additional corollary to
statement (v) is that the total wave enjoys a degree of
primacy over the two component waves since it is the
solution of the posed electromagnetic boundary value
problem, and as such, filtering experiments cannot access
the cross-term energy components of the total wave.

We next revisit statement (ii) of Section 1 as to whether
multiple scattering in the frequency-domain is an actual
physical process, or whether it is a purely mathematical
entity. Approaching this from a historical perspective, the
study of multiple scattering of waves began in earnest in
the second half of the 1940s and the early 1950s
[7–10,16,17]. The original compact form of the integral
equations describing scattering of the incident beam in the
frequency-domain was iterated to obtain an infinite series,
or extended form of the equations, assuming the interac-
tion of the incident wave with the particles was weak
enough so that the iteration series converged. The terms of
the extended form contained differing numbers of ordered
single-scattering events, which we will call multi-particle
paths. From a mathematical point of view, we claim that
multiple scattering in the frequency-domain is a mathe-
matical construct and does not correspond to a real
physical phenomenon. This is because the multiple-
scattering interpretation suggested by the expanded form
of the equations can be transformed away or hidden by
using a different but mathematically equivalent form of
the equations, i.e. the compact form. For it to be a real
phenomenon the signature of multiple scattering as a
temporally ordered sequence of individual single-
scattering events must be fully and equally present no
matter which mathematically equivalent method is used
to write the equations. The same conclusion can be arrived
at from a more physical argument. Since an incident beam
in the frequency-domain has infinite temporal duration, it
is always traveling past and washing over the scattering
particles, creating scattered waves. As a result, all of the
scatterings and rescatterings that can occur, are always
occurring, and are always spatially interfering with each
other. Thus, we claim that frequency-domain multiple
scattering is not a real physical process because it does
not include the temporal sequencing necessary to fully
characterize multiple scattering. That is the prerogative of
time-domain scattering.

Although the multi-particle path interpretation of
frequency-domain multiple scattering is a purely mathema-
tical construct, it is a very suggestive and fruitful one. In the
context of the example described in Section 4, it forms the
basis of diffusing wave spectroscopy for the dynamic light
scattering characterization of concentrated colloidal suspen-
sions in the deep multiple scattering limit [18,19] and the
interaction of sound waves with the bubble cloud present in
the wake of a submarine [16]. In the context of the example of
Section 7 it is also used to derive the equation of radiative
transfer for a sparse collection of scatterers as an approxima-
tion, beginning from exact electromagnetic equations (see Sec.
14.7 of [20], and [21]). It also sets the stage for multiple

scattering in the time-domain (see [22] and Sec. 11.2 of [23]),
where subject to certain geometrical conditions, when one
explicitly keeps track of the rapidly-varying portion of the
phase of the scattered light, scattering of a temporally-short
pulse results in a temporal succession of scattered pulses that
are in a one-to-one correspondence with the different multi-
particle paths in the frequency-domain. This temporal
sequence of scattered pulses cannot be hidden or transformed
away by writing the solution to the multiple scattering
equations in a different form or by solving the original time-
dependent differential equation using a different method. Our
extension to statement (ii) of Section 1 is that this persistent
feature of time-domain multiple scattering raises it above
being purely a mathematical abstraction obtained by writing
the solution to the problem in a particular form. It becomes a
3. Transmission and reflection of a normally incident
wave by a slab having two parallel interfaces

The frequency-domain multiple scattering equations of
the five examples described in Sections 3–7 are all well-
known. Our emphasis in obtaining these equations will be
on explicitly factoring out the rapidly-varying portion of
the phase of each of the multi-particle paths of the
expanded form so as to smoothly lead into the time-
domain version of the example. Consider first the one-
dimensional example where a coherent monochromatic
plane wave ψ(z, t) with wavelength λ, wave-number
k1¼2π/λ, and angular frequency ω, is propagating in the
þz direction for zo0. It is incident on an infinitely wide
slab of homogeneous material with the known endpoints
z¼0 and z¼L, parameterized by a well potential V(z) of
constant strength –V0 with V040. The external medium
for zo0 is denoted as medium 1, the well region as region
2, and the external medium for z4L as region 3. The 12
interface separates regions 1 and 2 and the 23 interface
separates regions 2 and 3. A percentage of the incident
wave is reflected by the well back into region 1, and part is
transmitted through it into region 3. The wave-number of
the wave in the well region is taken to be k2, and it is again
k1 in region 3. This geometry describes a number of
different types of waves, including a normally incident
linearly polarized electromagnetic wave whose electric
and magnetic field vectors point in the þx and þy
directions, respectively. We analyze this simple one-
dimensional example in detail because it illustrates many
important features of multiple scattering in both the
frequency- and time-domains, as was noted in [24,25].

The time evolution of an electromagnetic wave for this
geometry satisfies the one-dimensional classical wave
equation

∂2ψ
∂z2

¼N2ðzÞ
c2

∂2ψ
∂t2

; ð8Þ

where ψ(z, t) is the electric field strength, N(z) is the refractive
index of the medium, and c is the speed of light in the
exterior medium. The constant refractive index of region 2
relative to that of the external medium is N2, and the

resulting effective well strength in region 2 is (see Eq. (1.9)



J.A. Lock, M.I. Mishchenko / Journal of Quantitative Spectroscopy & Radiative Transfer 162 (2015) 221–240 225
of [26])

–V0 ¼ –k21ð N2
2–1Þ: ð9Þ

Substituting a plane wave for ψ(z, t) into Eq. (8), the
dispersion relation for the waves is

ω¼ ck1 ¼ ck2=N2: ð10Þ
The relation between k1 and k2 in Eq. (10) is only slightly
nonlinear since N2 for dielectric materials such as water
[27] or glass (see p. 463, Table 23I of [28]) only weakly
depends on k1 in the visible and near infra-red regions.
This slight nonlinearity will hereafter be ignored. The wave
amplitude in region j will be denoted by ψj(z, t) for j¼1, 2,
3. Since the wave is assumed to be monochromatic,

ψ j z; tð Þ ¼ ψ j zð Þexp –iωtð Þ; ð11Þ

and the time-independent wave equation arising from Eq.
(8) becomes

d2ψ j

dz2
þk2j ψ j zð Þ ¼ 0; ð12Þ

subject to the boundary conditions that the tangential
components of the electric and magnetic fields are con-
tinuous at the 12 and 23 interfaces, which is equivalent to
the continuity of ψ and dψ/dz.

We assume that a monochromatic plane wave with
amplitude A is incident on the 12 interface from the left in
region 1. The standard solution to this problem, with the
exp(–iωt) dependence of each term temporarily left impli-
cit, is

ψ1 k1; zð Þ ¼ A exp ik1zð ÞþB exp –ik1zð Þ; ð13aÞ

ψ2 k1; zð Þ ¼ C cos k2zð ÞþD sin k2zð Þ; ð13bÞ

ψ3 k1; zð Þ ¼ E exp ik1zð Þ: ð13cÞ
The second term in Eq. (13a) is interpreted as the reflected
wave, the two terms in Eq. (13b) are Fabry–Perot standing
waves in the well region, and Eq. (13c) is the transmitted
wave. If instead one wanted to emphasize the presence of
traveling waves in region 2, one could write

ψ2 k1; zð Þ ¼ C0 exp ik2zð ÞþD0 exp –ik2zð Þ; ð14aÞ
where

C ¼ ðC 0 þD0Þ=2; ð14bÞ

D¼ ðC0–D0Þ= 2ið Þ: ð14cÞ
It should be noted that since the implicit time depen-

dence in each term of Eqs. (13a)–(13c) and (14a) is
assumed to be exp(–iωt), all the time-dependent effects
of retardation (see Sec. 10.2.1 of [29]) are contained in the
as-of-yet unknown coefficients B, C, D, and E. It should also
be noted that the standard form of the solution in Eqs.
(13a) and (13c) differs from that of Eq. (1) in Lorenz–Mie
theory. This is motivated by the fact that since both the
incident plane wave and the well region in this example
are of infinite transverse extent, the only way a portion of
the incident wave can get from zo0 upstream with
respect to the well to z4L downstream is by going

through it.
By applying the four boundary conditions at z¼0 and
z¼L, the four unknown coefficients B, C, D, and E can be
evaluated to give

B¼ iAðk22–k21Þ sin k2Lð Þ=G; ð15aÞ

C ¼ 2Ak1k2 exp ik2Lð Þ=G; ð15bÞ

D¼ 2iAk21 exp ik2Lð Þ=G; ð15cÞ

E¼ 2Ak1k2 exp –ik1Lð Þ=G; ð15dÞ
where

G¼ 2k1k2 cos k2Lð Þ� iðk21þk22Þ sin k2Lð Þ: ð15eÞ
The problem has now been solved. This form of the
solution, i.e. the compact form, is the most practical form
the solution can take if one is interested in numerically
calculating the percentage of the incoming wave intensity
that is either transmitted or reflected,

T ¼ EnE=ðAnAÞ; ð16aÞ

R¼ BnB=ðAnAÞ: ð16bÞ
Although Eqs. (15a)–(15e) provide a convenient and

useful solution to the original differential equation (12)
subject to the boundary conditions at z¼0 and z¼L, they
give no clue as to the physical mechanism or mechanisms
responsible for producing the observed transmitted or
reflected wave intensity. In particular, the transmitted
intensity is found to have an enhancement or resonance
when 2N2L is equal to an integer number of wavelengths,
while the reflected intensity has a resonance when 2N2L is
equal to a half-integer number of wavelengths (see Sec. 6.8
of [23]). These resonances result from the action of a
significant physical mechanism. In order to suggest,
though not yet prove, such a mechanism, Eqs. (15a)–
(15e) can be rewritten in an expanded form that is not
especially well-suited for numerical evaluation of Eqs.
(16a) and (16b). Defining

t12 ¼ 2k1= k2þk1ð Þ; ð17aÞ

t21 ¼ 2k2= k2þk1ð Þ; ð17bÞ

r121 ¼ – k2–k1ð Þ= k2þk1ð Þ; ð17cÞ

r212 ¼ k2–k1ð Þ= k2þk1ð Þ; ð17dÞ
it can be shown that since |r212|o1, Eqs. (13a)–(13c) with
the coefficients of Eqs. (15a)–(15d) may be written as a
converging geometric series,

ψ1 k1; zð Þ ¼ A exp ik1zð ÞþA exp –ik1zð Þ

�
(
r121þt21

X1
n ¼ 0

exp ik2Lð Þr212 exp ik2Lð Þr212ð Þ� �n" #

�exp ik2Lð Þr212 exp ik2Lð Þt12
)
; ð18aÞ

ψ2 k1; zð Þ ¼ A exp ik2zð Þ
X1
n ¼ 0

r212 exp ik2Lð Þr212 exp ik2Lð Þ� �n( )
t12

� �
þA exp –ik2 z–Lð Þ
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�
X1
n ¼ 0

r212 exp ik2Lð Þr212exp ik2Lð Þ� �n( )
r212

� exp ik2Lð Þt12; ð18bÞ

ψ3 k1; zð Þ ¼ A exp ik1 z–Lð Þ� �
t21

�
X1
n ¼ 0

exp ik2Lð Þr212exp ik2Lð Þr212
� �n( )

exp ik2Lð Þt12:

ð18cÞ
This representation of the coefficients B, C0, D0, and E as an
infinite series is not unique. The coefficients could have been
rewritten in a very large number of different, but mathema-
tically equivalent, ways. What makes the particular series
representation of Eqs. (18a)–(18c) special is that it suggests,
though does not yet prove, the physical mechanism respon-
sible for understanding the observed amount of transmission
and reflection of Eqs. (16a) and (16b). The mechanism is
suggested in Fig. 1. If a wave in region 1 were incident from
the left on a single 12 interface, the Fresnel coefficient for the
transmitted wave amplitude into region 2 is t12 as given by
Eq. (17a), and the wave amplitude reflected back into region 1
is r121 as given by Eq. (17c). Similarly, if a wave in region 2
were incident on a single 12 interface from the right or a
single 23 interface from the left, the Fresnel coefficient for the
transmitted wave amplitude into region 1 or region 3 is t21 as
given by Eq. (17b), and the wave amplitude reflected back
into region 2 is r212 as given by Eq. (17d). The suggested,
though not yet proven, multiple-scattering interpretation of
Eq. (18c) for transmission is that, reading the factors in Eq.
(18c) from right to left, the incident wave is first partially
transmitted from region 1 into region 2. It then traverses the
well region acquiring the phase exp(ik2L). It then partially
reflects back and forth n times inside region 2 losing
amplitude but acquiring more phase each time, and is finally
partially transmitted from region 2 into region 3. Once in
region 3 the transmitted wave travels the additional distance
z�L, acquiring the phase exp[ik1(z�L)] before arriving at the
location z. The k-dependent phase of each multiple-scattering
transmission path is equal to the optical path length that a
geometrical light ray would have traversed, reflecting back
and forth n times between the interfaces before exiting in the

forward direction. The amplitudes of the individual
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Fig. 1. Multiple-scattering paths associated with the reflected, interior,
and transmitted waves of Eqs. (18a)–(18c), showing the phase advance,
and transmission and reflection amplitude of each equivalent ray path.
transmission paths are then superposed and interfere to
produce the total transmitted amplitude at z. The multi-
path interpretation for the reflected wave of Eq. (18a) and the
waves in the well region of Eq. (18b) is similar, again reading
the factors from right to left. The k-dependent phase of each
reflected path is again equal to the optical path length a ray
would have traversed before exiting the interfaces in the
backward direction. The amplitudes of the individual reflec-
tion paths are again superposed and interfere to produce the
total reflected amplitude at z. The multi-interaction path
interpretation of the solution is encoded in the k-dependent
phase of each term. The transmission resonances mentioned
above are then interpreted as being due to constructive
interference of the successive transmitted rays, and the
reflection resonances are due to constructive interference of
the r121 reflected ray (the prompt reflection) and the first
reflected ray having an r212 factor (the first delayed
reflection).

The expanded form of the solution requires two addi-
tional comments. First, the interaction of an incoming
wave with one of the interfaces is presumed to be
independent of its interaction with the other interface. It
does not depend on whether the other interface exists or
not, or how far away it is. As pointed out in [17], if the
details of the interaction of the wave with one of
the interfaces depended in some way on the details of
the second interface, the situation would belong to the
realm of many-body theory rather than multiple scatter-
ing. Second, although the original differential equation
(12) is in instantaneous form because all of its terms
and the imposition of the boundary conditions are eval-
uated at the single time t, the expanded solution is an
explicit representation of all the retardation effects that
were hidden in the compact form of the solution (13a)–
(13c).

The full physical implications of multiple scattering
become apparent if a temporally-short pulse were incident
on the well region, rather than a single monochromatic
wave of infinite temporal duration. We assume that the
incident plane wave pulse in region 1 is Gaussian in z, has
unit height, amplitude 1/e half-width w0, dominant wave-
number k0, and that the pulse's peak passes the origin at
t¼0 in the absence of the two interfaces,

ψ inc z; tð Þ ¼ exp ik0 z–ctð Þ� �
exp½– z–ctð Þ2=w2

0�: ð19Þ
The Fourier spectrum of the pulse at t¼0 is

A k1;0ð Þ ¼
Z 1

�1
dzψ inc z;0ð Þexp –ik1zð Þ

¼ π1=2w0 exp½ k1–k0ð Þ2w2
0=4�: ð20Þ

For t40 the spectrum is A(k1,0) exp[–iω(k1)t], where ω(k1)
in the external regions is given by Eq. (10).

When the pulse is incident on the well region, the time
dependence of the transmitted and reflected wave can be
obtained using numerical finite-difference time-domain
methods on the original partial differential equation (8)
[30]. This method is well-suited for waves with a nonlinear
dispersion relation, such as quantum mechanical
waves or water waves. An alternative approach that has
the pedagogic virtue of being exactly analytically soluble

for waves with a linear dispersion relation and an incident
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Fig. 2. Sequence of distinct transmitted pulses of Eq. (23b) when
w0oN2L.
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Gaussian pulse is to multiply the monochromatic
frequency-domain solution by the time-dependent spec-
trum function of the pulse, and then take the inverse
Fourier transform with respect to k1 (see Sec. 11.2 of [23]
and Sec. 15.8 of [20]). For example, we assume that the
pulse of Eq. (19) in region 1 is incident on the well region
from the left. Then

ψ ref z; tð Þ ¼
Z 1

�1

dk1
2π

ψ ref k1; zð Þ A k1;0ð Þexp –iω k1ð Þt� �� �
exp ik1 –zð Þ� �

;

ð21aÞ

ψ trans z; tð Þ ¼
Z 1

�1

dk1
2π

ψ3 k1; zð Þ A k1;0ð Þexp –iω k1ð Þt� �� �
exp ik1zð Þ;

ð21bÞ
where ψref is the reflected portion of ψ1. Again ignoring the
weak wavelength dependence of the Fresnel transmission
and reflection coefficients,

t12 ¼ 2= N2þ1ð Þ; ð22aÞ

t21 ¼ 2N2= N2þ1ð Þ; ð22bÞ

r212 ¼ N2–1ð Þ= N2þ1ð Þ; ð22cÞ

r121 ¼ – N2–1ð Þ= N2þ1ð Þ ð22dÞ
are constants. The integral of the compact form (13a)–
(13c) and (15a)–(15e) cannot be performed analytically
because of the nonlinearity in k1 of the denominator of the
coefficients B and E. However, substituting Eqs. (18a) and
(18c) for the expanded form, the Gaussian spectrum
function (20), and exp(–ikct) corresponding to the linear
dispersion relation (10) into Eqs. (21a) and (21b), the
inverse Fourier transform can be performed analytically,
giving the reflected wave as

ψ ref z; tð Þ ¼ r121 exp –ik0 zþctð Þ� �
exp – zþctð Þ2=w2

0

h i
þ

X1
n ¼ 1

t21 r212ð Þ2n–1t12 exp ik0 zþctþ2nN2Lð Þ� �
�exp – zþctþ2nN2Lð Þ2=w2

0

h i
ð23aÞ

and the transmitted wave as

ψ trans z; tð Þ ¼
X1
n ¼ 0

t21 r212ð Þ2nt12

�exp ik0 z–L–ctþ 2nþ1ð ÞN2L½ �� �
�exp – z–L–ctþ 2nþ1ð ÞN2L½ �2=w2

0

n o
: ð23bÞ

Eqs. (21a) and (21b) are equally valid for other spectrum
functions, but the integrals involved may not be analyti-
cally soluble, opposite to the case for the incident Gaussian
plane wave pulse (19).

Both the reflected wave (23a) and the transmitted wave
(23b) are an infinite sequence of evenly-delayed Gaussian
pulses of decreasing height resulting from the increasing
number of internal reflection factors r212. This is pictorially
illustrated for the transmitted wave in Fig. 2. An observer
at z4L detects the peak of the n-th transmitted pulse at
the time
t ¼ z–Lð Þ=cþ 2nþ1ð ÞN2L=c; ð24aÞ
and an observer at zo0 detects the peak of the n-th
reflected pulse at

t ¼ –zð Þ=cþ2nN2L=c: ð24bÞ
These time delays are exactly the time a ray would take to
traverse the optical length of each multi-particle path in
the expanded form of the frequency-domain problem. In
the context of acoustics, the analog of Eqs. (23a) and (23b)
in region 2, obtained from Eq. (18b), is familiar as the
series of echoes one hears after clapping one's hands in a
large, empty auditorium.

What the inverse Fourier transform (21a) and (21b) does
is to essentially read the complicated spatial interference
pattern of all the multi-particle paths in the frequency
domain solution, and separate them into different time-
delayed signals. Each transmitted pulse has a different overall
phase with respect to the others, and would continue to
spatially interfere with them if the incident pulse is suitably
long and L is sufficiently small, i.e. w04N2L. However, it will
not spatially overlap with them and a sequence of distinct
transmitted pulses will result if the incident pulse is suitably
short and L is sufficiently large, i.e. w0oN2L. The same is true
for the sequence of reflected pulses. A spatial analogy to this
is a laser beam diagonally incident on a dielectric block
having parallel interfaces. If the beam is wide and the angle of
incidence on the block is near-normal, the different trans-
mitted beams spatially overlap and interfere. But if the beam
is narrow and the angle of incidence is steep, the transmitted
beams no longer spatially overlap (see Fig. 4.55 of [31]). As
long as w0oN2L, the temporal sequence of distinct, non-
interfering scattered pulses cannot be transformed away by
writing the solution in a different form or by solving the
original time-dependent differential equation using a differ-
ent method. Their persistence is the hallmark of multiple
scattering being a real physical process unfolding in time.

4. Isotropic scattering of a scalar wave by a collection of
point-particles

This example is more complicated than the example of
Section 3 because it is three-dimensional. It is, however,
the simplest three-dimensional example of frequency-
domain multiple scattering since the boundary conditions
are applied only at the point-locations of the scattering
particles (see [16] and pp. 765–766 of [12]). In spite of this
example's geometric simplicity and lack of notational
complexity, its solution fully illustrates the significant

features of time-domain multiple scattering in three
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dimensions. It is also the starting point in the derivation of
the equations of diffusing wave spectroscopy [18,19].

Consider a collection of point-particles labeled by the
subscript j, where 1r jrN (not to be confused with the
refractive index N(z), N, or N2 in the example of Section 3)
at the known fixed positions rj0 with respect to the origin.
The coherent incident beam is a monochromatic scalar
plane wave of wavelength λ, wave-vector kinc, angular
frequency ω, and amplitude ψ0:

ψbeam rp0; t
� �¼ ψ0exp ikinc Urp0–iωt

� �
; ð25Þ

where p is an arbitrary point in space whose position with
respect to the origin is rp0. The radially outwardly-
propagating spherical wave ψ j

scatt created by the interac-
tion of the incident beam with the point-particle j is

ψ j
scattðrp0; tÞ ¼ �expðikrpjÞ

krpj
bjψ j

incðrj0; tÞ; ð26Þ

where rpj is the position of point p with respect to the
particle's point position. The form of the outgoing wave of
Eq. (26) is valid both in the near-zone and far-zone. This will
not be the case for themore complicated examples of the next
few sections in which near-zone fields slowly evolve into far-
zone fields. The right-most factor in Eq. (26) is the incident
wave evaluated at the particle's point position, the middle
factor is the dimensionless complex scattering amplitude –b j,
and the left-most factor is the dependence of the outgoing
scattered spherical wave evaluated at p. The scattering ampli-
tude contains an external minus sign here in order to conform
to the notation of the examples of the next two sections. Also,
the scattering amplitude –b j for point particles will not
depend on k since there is no other quantity having the units
of length describing the particle which can be combined with
k in order to make the result dimensionless. The relation
between the wave incident on j and the wave scattered by j is
in general most conveniently written in the coordinate system
centered on j. In Eq. (26), however, one encounters no
ambiguity by writing it in the coordinate system centered
on the origin because (i) the scattering object is a point-
particle and (ii) the scattered wave is isotropic, i.e. there is no
angle dependence to transform from one coordinate system
to another.

We wish to express the dominant rapidly-varying k-
dependent phase of the outgoing scattered wave with
respect to origin's coordinate system. This is done in the
following way. If the point p is sufficiently far from particle
j so that rp0brj0 and 2rp0bkr2j0 (i.e., the distance between
p and j is in the Fraunhofer zone rather than in the closer
Fresnel zone), one has

krpj ¼ k rp0–rj0
�� ��� k rp0–uscatt Urj0

� �
; ð27Þ

where uscatt is a unit vector given by

uscatt � rp0=rp0: ð28Þ

Similarly we define the scattered wave-vector to the point
p in the origin's coordinate system as

kscatt � kuscatt : ð29Þ

The far-zone limit of the total wave, which is the sum of

the incident beam plus the scattered wave as in Eq. (1),
then becomes for plane wave incidence

ψ total rp0; t
� �

-ψ0 exp ikinc Urp0–iωt
� �

�expðikrp0Þ
krp0

exp iðkinc–kscattÞUrj0
� �

�b jψ0 exp –iωtð Þ: ð30Þ

The second k-dependent phase in the second term of
Eq. (30) arises from evaluating the incident plane wave
at the position of particle j, and the third phase comes
from the far-zone limit of the wave scattered by j. The
quantity kinc�kscatt is often referred to as the scattered
momentum transfer. As was mentioned in regard to Eq.
(1), the specific form chosen for the total wave of Eq. (30)
implies that the incident beam is not converted into the
scattered wave by its interaction with the particle. Rather,
the scattered wave is added to the incident beam every-
where in space.

For the case where there are N scattering particles, the
total wave at rp0 is the sum of the incident beam plus the
wave scattered by each of the particles. Temporarily
leaving the time dependence exp(–iωt) of each term
implicit, we have

ψ total rp0
� �¼ ψbeam rp0

� �þ XN
j ¼ 1

ψ j
scattðrp0Þ: ð31Þ

The total wave in the far-zone for plane wave incidence is
then

ψ total rp0
� �

-ψ0 exp ikinc Urp0
� �

�expðikrp0Þ
krp0

XN
j ¼ 1

expð–ikscatt Urj0Þb jψ j
incðrj0Þ:

ð32Þ

In addition, the wave incident on j is the sum of the
incident beam and the waves scattered by all the other
particles ia j,

ψ j
incðrj0Þ ¼ ψbeam rj0

� �
–
Xj
N

i ¼ 1

expðikrjiÞ
krji

biψ i
incðri0Þ; ð33Þ

where rji¼rij is the distance between particles j and i,
which plays the role of the distance L between the 12 and
23 interfaces in the example of Section 3. The sum

Pj
i

denotes that the term i¼ j is not included in the sum over i.
Again, the right-most factor in the sum is the wave
incident at the point-position of i, the middle factor is
the dimensionless scattering amplitude of i, and the left-
most factor is the dependence of the outgoing wave
created at i evaluated at the point-position of j. Eq. (33)
is a set of N algebraic equations coupled in particle
number, that along with Eq. (32) are the compact form
of the scattering equations.

In order to emphasize the idea of multi-particle paths
in the frequency-domain, we again express the dominant
k-dependent phase of each of the terms in Eqs. (32) and
(33), considered in the far-zone, with respect to the
origin's coordinate system. Using� � � � � �� �

exp ikrji ¼ exp ikji Urji ¼ exp ikji U rj0–ri0 ; ð34Þ
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the wave incident on j of Eq. (33) becomes

ψ j
incðrj0Þ ¼ ψ0 expðikinc Urj0Þ

�
Xj
N

i ¼ 1

1
krji

bi exp ikji U rj0–ri0
� �� �

ψ i
incðri0Þ: ð35Þ

We assume the scattering amplitude bi is small enough and
the optical interparticle distance krji is large enough so that
iteration of Eq. (35) converges. The convergence criterion
will be made more precise in Eq. (40) below. Then iterating
Eq. (35) for plane wave incidence, and substituting the result
into Eq. (32), we obtain the expanded form of the total wave
in the far-zone

ψ total rp0
� �

-ψ0 exp ikinc Urp0
� �

�expðikrp0Þ
krp0

XN
j ¼ 1

b j exp i kinc–kscattð ÞUrj0
� �

ψ0

þexpðikrp0Þ
krp0

XN
j ¼ 1

Xj
N

i ¼ 1

b j exp i kji–kscatt
� �

Urj0
� �

� 1
krji

bi exp i kinc–kji
� �

Uri0
� �

ψ0

�expðikrp0Þ
krp0

XN
j ¼ 1

Xj
N

i ¼ 1

Xi
N

m ¼ 1

b j exp i kji–kscatt
� �

Urj0
� �

� 1
krji

bi exp i kim–kji
� �

Uri0
� � 1

krim
bm

�exp i kinc–kimð ÞUrm0
� �

ψ0þ… ð36Þ
The multi-particle paths implied in this version of the
solution can be seen by reading the factors in each line of

Eq. (36) corresponding to single, double, and triple
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Fig. 3. Multiple-scattering paths of the second, third, and fourth terms of
Eq. (36), corresponding to (a) single-scattering, (b) double-scattering, and
(c) triple-scattering.
scattering, from right to left and comparing with Fig. 3a–c.
The k-dependent phase of each term corresponds exactly to
the optical length of each multiple-scattering path traversed
by a ray.

In order to obtain an explicit solution to the compact
form equations that can be discussed in detail, we consider
the case of only two scattering particles i and j (see [10]
and pp. 765–766 of [12]). Eq. (35) now reduces to a set of
two coupled linear algebraic equations whose solution is

ψ j
incðrj0Þ ¼ fexp ikinc Urj0

� �
– krji
� �–1bi exp ikji Urj0

� �
� exp½i kinc–kji

� �
Uri0�gψ0=G; ð37aÞ

ψ i
incðri0Þ ¼ fexp ikinc Uri0ð Þ– krij

� �–1bj exp ikij Uri0
� �

� exp½i kinc–kji
� �

Urj0�gψ0=G ð37bÞ

with

G¼ 1� bib j

ðkrjiÞ2
exp i kji–kij

� �
Urj0

� �
exp i kij–kji

� �
Uri0

� �
: ð38Þ

The total wave in the far-zone is then

ψ rp0
� �

-ψ0 exp ikinc Urp0
� �

�expðikrp0Þ
krp0

expð–ikscatt Urj0Þb jψ j
incðrj0Þ

h
þexpð–ikscatt Uri0Þbiψ i

incðri0Þ
i
: ð39Þ

Substituting Eqs. (37a), (37b), and (38) into Eq. (39), one
obtains the compact form of the far-zone total wave. This
is a convenient form of the solution if one wanted to
numerically compute the scattered intensity at some set of
polar and azimuth angles θp0 and φp0. We assume that the
scattering amplitude of each particle is sufficiently small
and that the two particles are sufficiently far apart so that

bibj

ðkrjiÞ2
o1; ð40Þ

the wave scattered from j to i and then from i back to j is
weaker than the wave initially incident on j, i.e. multiple
scattering is not an amplifier of the wave. In these
circumstances the 1/G factor can be expanded as a geo-
metric series. This is an analogy to the expansion of the
denominator of Eqs. (15a)–(15d) in the one-dimensional
example of Section 3, and also to the Debye series expan-
sion of Lorenz–Mie theory where each partial wave scat-
tering amplitude is re-expressed as a sum of an infinite
number of terms interpreted in the ajbλ limit as diffrac-
tion, external reflection, and transmission following q�1
internal reflections with qZ1 describing coherent multi-
ple scattering inside a single particle [32–34]. The
expanded form of Eq. (39) is then

ψ rp0
� �

-ψ0exp ikinc Urp0
� �

�expðikrp0Þ
krp0

bjexp –ikscatt Urj0
� �

�
(X1

n ¼ 0

	
exp ikji Urj0

� �
krji
� �–1biexp i kij–kji

� �
Uri0

� �

� krij
� �–1bjexp –ikij Urj0

� �
n)
exp ikinc Urj0

� �
ψ0



J.A. Lock, M.I. Mishchenko / Journal of Quantitative Spectroscopy & Radiative Transfer 162 (2015) 221–240230
þexpðikrp0Þ
krp0

b jexp i kji–kscatt
� �

Urj0
� �

�
(X1

n ¼ 0

"
krji
� �–1biexp i kij–kji

� �
Uri0

� �
krij
� �–1b j

�exp i kji–kij
� �

Urj0
� �#n)

� krji
� �–1biexp i kinc–kji

� �
Uri0

� �
ψ0

�expðikrp0Þ
krp0

biexp –ikscatt Uri0ð Þ
(X1

n ¼ 0

"
exp ikij Uri0

� �
krij
� �–1

�bjexp i kji–kij
� �

Urj0
� �

krji
� �–1biexp –ikji Uri0

� �#n)

�exp ikinc Uri0ð Þ ψ0

þexpðikrp0Þ
krp0

biexp i kij–kscatt
� �

Uri0
� �

�
(X1

n ¼ 0

"
krij
� �–1bjexp i kji–kij

� �
Urj0

� �
krji
� �–1bi

�exp i kij–kji
� �

Uri0
� �#n)

� krij
� �–1bjexp i kinc–kij

� �
Urj0

� �
ψ0: ð41Þ

The first term of Eq. (41) is the incident wave at the
position of the far-zone detector. The second term may be
interpreted using the multi-particle path point of view.
Reading the factors from right to left, an incident wave
strikes particle j and creates a scattered wave that propagates
radially outward from j in all directions. It either reaches the
detector directly (n¼0), or it can scatter back and forth nZ1
times between particles i and j. A new radially outgoing
scattered wave is created at each interaction, and eventually
the wave created at particle j reaches the detector as well.
This is pictorially illustrated in Fig. 4a. The third term may be

interpreted as the incident wave striking particle i and
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Fig. 4. Multiple-scattering paths of the (a) second, (b) third, (c) fourth,
and (d) fifth terms of Eqs. (41) for n¼1 for scattering by two point-
particles i and j.
creating a scattered wave that propagates radially outward
in all directions and is then scattered by particle j. The new
wave propagating outward from j in all directions either
reaches the detector directly (n¼0), or it can scatter back and
forth nZ1 times between particles i and j. Again a new
radially outgoing scattered wave is created at each interac-
tion, and eventually the wave created at particle j reaches the
detector as well, as is illustrated in Fig. 4b. The interpretation
of the fourth term is similar to that of the second, except that
the incident wave is first scattered by particle i, the radially
outgoing wave from i scatters back and forth between
particles j and i, and eventually the wave created at i reaches
the detector, as is illustrated in Fig. 4c. The interpretation of
the fifth term is similar to that of the third term, except that
the incident wave is first scattered by particle j. The radially
outgoing wave from j propagates in all directions and is
scattered at particle i. The scattered wave created there
scatters back and forth between particles j and i, and
eventually the radially outgoing wave from i reaches the
detector, as is illustrated in Fig. 4d. The k-dependent phase of
each of the terms again corresponds exactly to the optical
length of each of the multi-particle paths involving the two
scattering particles traversed by a ray. All the waves reaching
the detector superpose there, and their interference pro-
duces a complicated intensity pattern at the detector plane. If
the particles were moving as a function of time due to e.g.
Brownian motion, the interference pattern produced at the
detector plane would also change as a function of time. This
change is the quantity measured in autocorrelation experi-
ments in dynamic light scattering. It should also be men-
tioned that if the procedure of Eqs. (36) and (41) is applied to
N42 scattering particles, the number of multi-particle paths
quickly becomes very large as a function of N (see [35] for
the analogous situation for scattering by a coated sphere).

Now consider the time-domain situation where a short
time duration pulse, such as the Gaussian plane wave pulse of
Eq. (19), is incident on particles i and j. The time-domain
scattered wave is again obtained by multiplying Eq. (36) or
Eq. (41) by the spectrum function of the incident plane wave
pulse of Eq. (20), and by exp(–ikct) corresponding to the
presumed linear dispersion relation of scalar waves in the
external medium, and then performing the one-dimensional
inverse Fourier transform with respect to k. We assume that
the spectrum function of Eq. (20) is sufficiently narrow so
that all the slowly varying k-dependence, such as the factors
of 1/k in Eq. (41), can be approximately evaluated at k0, and
the integral over only the dominant k-dependent phase terms
remains. The inverse Fourier transform of the compact form
cannot be obtained analytically because of the k-dependence
of Eq. (38). But when Eq. (38) is expanded into an infinite
geometric series as in Eq. (41), the inverse Fourier transform
can be analytically evaluated term by term. The second term
of Eq. (41) gives rise to a sequence of scattered Gaussian
pulses whose center arrives at the detector at

t ¼ rp0þuinc Urj0�uscatt Urj0
� �

=cþ2nrji=c: ð42aÞ

The third term gives rise to a sequence of scattered pulses
detected at

� �

t ¼ rp0þuinc Uri0�uscatt Urj0 =cþ 2nþ1ð Þrji=c; ð42bÞ
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the fourth term gives a pulse sequence at

t ¼ rp0þuinc Uri0�uscatt Uri0
� �

=cþ2nrji=c; ð42cÞ
and the fifth term gives

t ¼ rp0þuinc Urj0�uscatt Uri0
� �

=cþ 2nþ1ð Þrji=c: ð42dÞ
These delay times again are exactly the time a ray would take
to traverse each of the frequency-domain multi-particle paths
to the detector. In each case the temporal pulse separation
within a sequence is

Δt ¼ 2rji=c: ð43Þ
As long as w0orji the pulses do not spatially overlap and the
complicated former interference pattern at the detector plane
in the frequency-domain now is four sets of non-overlapping
temporal pulse sequences. This is the signature of time-
domain multiple scattering being a real physical process for
this system. If the slow k-dependence, such as the increasing
number of 1/k factors for higher order terms, cannot be
closely approximated by its value at k0, it can be Taylor series
expanded about k0, with the even terms of the expansion
producing a distortion of the shape and a gradual spreading
of the scattered pulses from the original Gaussian shape (see
Sec. 7.4 of [36] and p. 67 of [37]). The distortion and spreading
is expected to grow as n increases in Eq. (41). In the context of
time-domain scattering by a single particle, however, it was
found that this effect produced only a small broadening of the
Debye series time-domain trajectories [38]. As an aside, it
would be of interest to determine how Eqs. (42a)–(42d) could
be used to determine ri0 and rj0 from experimental data,
essentially performing a tomographic reconstruction of the
scatterer configuration from the details of the observed pulse
sequence.

It should be emphasized again that at each interaction
of a wave with either particle i or j, a new scattered
spherical wave is created that propagates radially outward
in all directions from the particle. If it has propagated
outward from j, sooner or later both particle i and the far-
zone detector will be washed over by this spherical wave.
The detector will then record the presence of the wave. But
at particle i a new radially outgoing spherical wave will be
created, and the resulting waves incident on the detector
at different times will be recorded as the pulse sequence.
Thus the multiple-scattering signal received at the detec-
tor is not analogous to that of a projectile particle bouncing
back and forth between a number of fixed targets, as
occurs for example in a pinball machine (see p. 29, Fig. 2.3
of [39]). Rather, the multiple scattering of waves is more
analogous to a relay race in which a baton is passed from
one runner to the next throughout the race. In this case
the “baton” is the information that an incident pulse has
washed over the particles. For example, in the fourth term
of Eq. (36), the information about the incident pulse was
encoded at the first scattering event into the amplitude
and shape of the radially outgoing spherical wave created
at particle m. When that wave washed over particle i, it
passed the information on to the new radially outgoing
spherical wave originating at i. When that wave washed
over particle j, it again passed the information on to the
new radially outgoing spherical wave originating at j. The

detector reads the information carried by this last wave.
5. Scattering of a scalar wave by a collection of spherical
particles of finite size

We now add a new level of complexity to the situation.
The N scattering particles will no longer be fixed point-
particles, but will be fixed homogeneous spheres of radius a j.
A consequence of this is that the boundary conditions for the
wave equation must be satisfied at every point on the surface
of the spherical particles rather than only at the point-
positions as in the previous example. Further, we assume
for the time-domain calculation that the particles are not in
contact or near-contact with each other, but are spaced by at
least a few diameters. The calculation of multiple scattering
will proceed in a manner analogous to that of Section 4, but
now it will contain the additional complexity of translating
various quantities of interest from one coordinate system to
another. We first consider frequency-domain scattering of an
incident arbitrary monochromatic scalar wave beam of wave-
number k as a function of the coordinate rp0 with respect to a
fixed origin. In order to take advantage of the spherical
symmetry of the scatterers, the amplitude of the coherent
beam is expressed as a sum of partial waves and azimuthal
modes,

ψbeam rp0; t
� �¼ X

n0 ;m0

ψ0Bm0 ;n0 jn0 ðkrp0ÞPm0
n0

ðcos θp0Þ

�exp im0φp0
� �

exp � iωtð Þ; ð44Þ

where, as before, the angles θp0 and φp0 are the spherical
coordinate angles with respect to the origin, jn are spherical
Bessel functions, Pm

n are associated Legendre functions, Bm0 ;n0

are the dimensionless shape coefficients of the incident beam
with respect to the origin's coordinate system, and

P
n0 ;m0

is
the double sum over partial waves n0 and azimuthal modes
m0 for 0rn0o1 and –n0rm0rn0. If the incident scalar
beam is a plane wave traveling in the þz direction,

ψbeam rp0; t
� �¼ ψ0exp ikinc Urp0� iωt

� � ð45Þ
with

kinc ¼ kuz; ð46Þ
then the shape coefficients of this beam are

Bm0 ;n0 ¼ in0 2n0þ1ð Þδm0 ;0 � ðPWÞm0 ;n0
; ð47Þ

where δmn is the Kronecker delta.
Particle j has its center at the position rj0 with respect

to the origin. Since the solutions of the scalar Helmholtz
equation with respect to a given coordinate system form a
complete set of functions, any function with respect to the
origin can be written in terms of the solutions of the scalar
Helmholtz equation with respect to a coordinate system
centered on particle j whose axes are parallel to those of
the origin's coordinate system. In particular,

jn0
ðkrp0ÞPm0

n0
ðcos θp0Þexpðim0φp0Þ

¼
X
nj ;mj

Jm0 ;n0 ;mj ;nj ðrj0Þ jnj
ðkrpjÞ

�Pmj
nj
ðcos θpjÞexpðimjφpjÞ; ð48Þ

where Jm0 ;n0;mj ;nj
ðrj0Þ are a set of translation coefficients for

scalar standing waves expressed in spherical coordinates

[40–42]. Thus the incident beam of Eq. (44) can be written
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with respect to the coordinate system centered on particle
j as

ψbeam rpj; t
� �¼ X

nj ;mj

Bmj ;njψ0 jnj ðkrpjÞP
mj
nj
ðcos θpjÞ

�exp imjφpj
� �

exp � iωtð Þ; ð49Þ

where the new shape coefficients Bmj ;nj describe the beam
with respect to the coordinate system centered on j. They
are related to the original beam shape coefficients by

Bmj ;nj ¼
X
n0 ;m0

Bm0 ;n0 Jm0 ;n0 ;mj ;nj ðrj0Þ: ð50Þ

In the coordinate system centered on particle j, the plane
wave of Eqs. (44)–(47) is given by

ψbeam rpj; t
� �¼ ψ0exp ikinc U rpjþrj0

� �� iωt
� �

¼ ψ0expðikinc Urj0Þ
X
nj ;mj

ðPWÞmj ;nj
jnj ðkrpjÞ

�Pmj
nj ðcos θpjÞexpðimjφpjÞexp � iωtð Þ ð51Þ

since exp(ikinc � rpj) has the same functional form in the
coordinate system of j as that exp(ikinc � rp0) had in the
coordinate system centered on the origin.

The reason why the incident beam must be trans-
formed from the coordinate system centered on the origin
to the coordinate system centered on particle j is because
when expressed as a sum over partial waves and azi-
muthal modes, the relation between the beam incident on
j and the wave scattered by j is most naturally and
conveniently described in the coordinate system centered
on j. One has

ψ j
scattðrpj; tÞ ¼ �

X
nj ;mj

bjnj
ψ0Bmj ;njh

ð1Þ
nj
ðkrpjÞ

�Pmj
nj ðcos θpjÞexpðimjφpjÞexp � iωtð Þ; ð52Þ

where hð1Þnj
are outgoing spherical Hankel functions and bjnj

are the dimensionless partial wave scattering amplitudes
of particle j if its center had been at the origin and a plane
wave were incident on it. The partial wave scattering
amplitudes are a function of kaj (see Sec. 9.22 of [13]).

Eq. (52) requires a few comments. The specific form of
bjnj

results from matching the boundary conditions over
the surface of particle j. For isotropic scattering in Eq. (26),
the feature of the incident beam that the wave scattered
by j directly depended on was ψ j

incðrj0; tÞ. But when particle
j has radius aj40, the wave scattered by j directly depends
on the shape coefficients Bmj ;nj of the incident beam [43].
Also since the particles have radius aj40, the outgoing
scattered wave of Eq. (52) is no longer isotropic, but
depends on θpj and φpj. The isotropic scattering of Section
4 is the nj¼0, mj¼0 limit of Eq. (52).

If the detector is in the far-zone of particle j and is
sufficiently far from the origin so that rp0brj0 and
2rp0bkr2j0 then it is in the origin-centered far-zone of
particle j as well, and we have [44–46]

hð1Þnj
ðkrpjÞ-ð� iÞnj þ1expðikrpjÞ

krpj
; ð53aÞ

krpj � krp0�kuscatt Urj0; ð53bÞ
θpj � θp0; ð53cÞ
φpj � φp0: ð53dÞ

For plane wave incidence and with the exp(–iωt) time
dependence temporarily left implicit, the total wave in the
origin-centered far-zone becomes

ψ total rp0
� �

-ψ0exp ikinc Urp0
� �

�expðikrp0Þ
krp0

exp i kinc�kscattÞUrj0
� ��

�
X
nj ;mj

bjnjψ0ðPWÞmj ;nj
ð� iÞnj þ1

�Pmj
nj
ðcos θp0Þexpðimjφp0Þ: ð54Þ

Again the second k-dependent phase in the second term
arises from evaluating the incident plane wave at the
center of particle j, and the third k-dependent phase arises
from the origin-centered far-zone limit of the wave scat-
tered by j.

As was the case in Eq. (31) of Section 4, when a beam is
incident on a collection of N particles, the total wave at the
detector is the sum of the incident beam plus the wave
scattered by each of the particles. In the origin-centered
far-zone this becomes

ψ total rp0
� �

-ψ0exp ikinc Urp0
� �

�expðikrp0Þ
krp0

XN
j ¼ 1

expð� ikscatt Urj0Þ

�
X
nj ;mj

bjnjψ0Bmj ;nj ð� iÞnj þ1

�Pmj
nj
ðcos θp0Þexpðimjφp0Þ: ð55Þ

Similarly, the total wave incident on particle j is the sum of
the incident plane wave and the waves scattered by each
of the other particles ia j. However, according to Eq. (52)
the wave scattered by i must be transformed from the
coordinate system centered on i to the coordinate system
centered on j so that its interaction with j can be expressed
in terms of partial waves and azimuthal modes. This is
accomplished using a second set of Helmholtz solution
translation coefficients [40–42]

hð1Þni
ðkrpiÞPmi

ni ðcos θpiÞexpðimiφpiÞ
¼

X
nj ;mj

Hmi ;ni ;mj ;nj ðrjiÞ jnj ðkrpjÞ

�Pmj
nj ðcos θpjÞexp imjφpj

� �
; ð56Þ

which is valid as long as rpjorji. This is always true for the
wave scattered by i and incident on j because rpj is
evaluated on the surface of j where the boundary condi-
tions are imposed. Using Eq. (56), the field scattered by
particle i expressed in terms of the coordinate system
centered on j becomes

ψ i
scattðrpjÞ ¼ �

X
nj ;mj

X
ni ;mi

bini
ψ0Bmi ;niHmi ;ni ;mj ;nj ðrjiÞ

" #

�jnj ðkrpjÞP
mj
nj
ðcos θpjÞexpðimjφpjÞ: ð57Þ

In order to obtain the shape coefficients of the total wave
incident on particle j, we add to Eq. (57) the shape
coefficients of Eq. (51) for an incident plane wave

expressed in j's coordinate system, giving the set of
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coupled algebraic equations

Bmj ;nj ¼ expðikinc Urj0ÞðPWÞmj ;nj

�
Xj
N

i ¼ 1

X
ni ;mi

biniBmi ;niHmi ;ni ;mj ;nj ðrjiÞ: ð58Þ

The shape coefficients are now coupled with respect to
particle number, partial wave number, and azimuthal
mode number. The fact that the coupled equations are
algebraic in form results from our use of partial wave
expansions that take advantage of the spherical symmetry
of the scatterers. This will not be the case in Section 7
when we consider scatterers of arbitrary shape. Eqs. (55)
and (58) are the compact form of the multiple-scattering
equations for this situation. As was the case in Eq. (35) for
point-particles, if Eq. (58) were iterated, one would obtain
the equations in expanded form.

In order to separate out the dominant rapidly-varying k-
dependent phase of each of the terms in Eqs. (55) and (58) so
as to emphasize the multi-particle path interpretation in the
frequency-domain, the collection of particles in question
must be tenuous, such as water droplets in a cloud, rather
than being touching or close-packed as would be the case for
aggregated systems. Geometrically, the length of a vector
from any point in particle j to any point in another particle i
must differ by only a small percentage of their center-to-
center distance, and the difference must also be small
compared to the wavelength. If the particles are large and
are touching, the percentage difference is quite large, and the
approximation of Eq. (59) below will not be valid. Analyti-
cally, this geometrical argument is equivalent to the follow-
ing. The explicit form of Hmi ;ni ;mj ;nj ðrjiÞ contains a sum over q,
where the triangle inequality for the decomposition of the
product of representations of the rotation group gives |nj�ni|
rqrnjþni. Each term of the sum over q contains a number
of factors multiplied together, including hð1Þq ðkrjiÞ. When
krjibqþ1/2b1, or equivalently when the separation
between the centers of the two spheres is much larger than
when they are touching, rjibajþai, the outgoing spherical
Hankel function has the far-zone limit

hð1Þ
q ðkrjiÞ- � ið Þqþ1expðikrjiÞ

krji
¼ � ið Þqþ1expðikji UrjiÞ

krji

¼ � ið Þqþ1exp½ikji U ðrj0�ri0Þ�
krji

: ð59Þ

In order to obtain a more precise estimate of the value of rji
for which this is valid for particles large with respect to the
wavelength, we use Debye's asymptotic expansion of Bessel
and Neumann functions near the transition region (see Sec.
9.3 of [47]). The approximation of Eq. (59) is then found to be
reasonably accurate for

rji42 ajþai
� �

; ð60Þ

or a volume fraction fo0.01. For particles small compared to
λ, the volume fraction can be somewhat higher [48].

In order to illustrate the importance of these rapidly-
varying k-dependent phases for the multi-particle path
interpretation in the frequency-domain, we consider the
analog of one of the terms described in the example of

Section 4. As was the case in Eq. (40), we again assume
that the partial wave scattering amplitudes are small
enough and the distance between particles is large enough
so that the iteration series of Eq. (58) converges. This is
expected to be true as long as morphology-dependent
resonances of the spheres are not excited [24,25,49]. In
that situation, a resonance in the partial wave nj of particle
j may feed a substantial fraction of its energy into a
neighboring sphere i, causing it to resonate in the partial
wave ni. If a substantial fraction of the energy of the
resonance of sphere i feeds back into the resonance of
sphere j, a positive feedback loop can be set up whose
continuing amplification can cause the iteration series to
diverge for those partial waves. This is the analog of Eq.
(40) being violated for point-particle scattering. Assuming
that this is not the case and the iteration series converges,
the second order iteration of Eq. (58), when substituted
into Eq. (55), is interpreted as the incident beam being
scattered by particle m. The scattered outgoing spherical
wave created there washes over particle i creating a new
scattered wave. This new outgoing spherical wave washes
over particle j, and the scattered wave created at j is
recorded by the detector at point p. This m–i–j path
contains the dominant rapidly-varying k-dependent
phases

exp i kji�kscatt
� �

Urj0
� �

exp i kim�kji
� �

Uri0
� �

exp i kinc�kimð ÞUrm0
� �

:

ð61Þ
The fifth phase in Eq. (61) results from the incident beam
evaluated at the position of particle m, the third and sixth
phases result from the translation coefficient from m to i,
the first and fourth phases result from the translation
coefficients from i to j, and the second phase results from
the far-zone limit of the wave scattered by j. In addition,
there is slowly varying k-dependence in the 1/k factors
and in the partial wave scattering amplitudes.

Instead of a plane wave of infinite temporal extent, let us
now consider the case of a temporally-short Gaussian plane
wave pulse incident on the collection of particles that are all in
the far-zones of each other, as was specified in Eq. (60). This
m–i–j path term is multiplied by the pulse spectrum function
of Eq. (20) and exp(–ikct) corresponding to a linear dispersion
relation for the scalar waves in the external medium. It is then
inverse Fourier transformed with respect to k, and gives rise
to a multiply-scattered pulse. The center of this pulse arrives
at the detector at the time

t ¼ rp0þuinc Urm0þrimþrji�uscatt Urj0
� �

=c: ð62Þ
Again each multi-particle path in frequency-domain multiple
scattering is associated with a multiply-scattered pulse in
time-domain multiple scattering. If the pulses are sufficiently
narrow and the separation between the particles is sufficiently
great, a sequence of temporally non-overlapping pulses is
recorded by the detector. If the rapidly-varying k-dependent
phases in the Debye series decomposition of the partial wave
scattering amplitudes for each individual scattering were
explicitly considered as well, each pulse in the sequence
described above would contain a number of closely-spaced
sub-pulses corresponding to diffraction, external reflection,
transmission, etc. within each particle. These would act as a
fine-structure superimposed on the results of Eq. (62).

After a suitably large number of single particle interactions,
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the time-delayed fine-structure of a scattered pulse corre-
sponding to many internal reflections will start to overlap the
prompt portion of the following pulse. But this will likely be a
background effect since the strengths of the pulses corre-
sponding to a large number of single-particle scatterings are
small compared with that of pulses corresponding to only a
few single-particle scatterings.

6. Scattering of an electromagnetic wave by a collection
of spherical particles of finite size

We now add yet another level of complexity to the
situation. The incident beam is no longer a scalar wave.
Rather, it is an electromagnetic wave with a specified
polarization state. The consequence of this is that one
must now keep track of the transverse electric (TE) and
transverse magnetic (TM) linear polarization components
of the scattered light, and polarization-preserving and
polarization-changing scattering amplitudes. Calculation
of multiple scattering will proceed in a manner analogous
to that of Section 5, but now there will be two sets of beam
shape coefficients, rather than only one, and four sets of
translation coefficients, rather than only two. The basis set
of functions that the incident and scattered fields will be
expanded in terms of are the dimensionless vector sphe-
rical wave functions MðKÞ

m;nðkrÞ and NðKÞ
m;nðkrÞ (see [50] and

Appendix C of [51]), where K¼1 indicates that the radial
dependence is a spherical Bessel function and K¼3 indi-
cates that it is an outgoing spherical Hankel function. An
arbitrary coherent incident beam in the coordinate system
centered at the origin is

Ebeam rp0; t
� �¼ E0

X
n0 ;m0

½pm0 ;n0
Nð1Þ

m0 ;n0
ðkrp0Þ;

þqm0 ;n0
Mð1Þ

m0 ;n0
ðkrp0Þ�expð� iωtÞ; ð63aÞ

cBbeam rp0; t
� �¼ E0

X
n0 ;m0

½qm0 ;n0N
ð1Þ
m0 ;n0 ðkrp0Þ

þpm0 ;n0M
ð1Þ
m0 ;n0 ðkrp0Þ�expð� iωtÞ; ð63bÞ

where pm0 ;n0
and qm0 ;n0

are the dimensionless TM and TE
shape coefficients of the beam, and

P
n0 ;m0

is now the
double sum over 1rn0o1 and –n0rm0rn0 since the
n0¼m0¼0 term of Section 5 does not occur for electro-
magnetic scattering. If the incident beam is an x-polarized
plane wave traveling in the þz direction, the shape
coefficients with respect to the origin's coordinate system
simplify to

pm0 ;n0
¼ qm0 ;n0 ¼ � in0 2n0þ1

2n0ðn0þ1Þδm0 ;71 � ðPWÞm0 ;n0
: ð64Þ

In analogy to Section 5, a vector spherical wave func-
tion with respect to a coordinate system centered on the
origin can be written as a sum over vector spherical wave
functions with respect to a coordinate system centered on
particle j. In particular

Mð1Þ
m0 ;n0

ðkrp0Þ ¼
X
nj ;mj

½AJ
m0 ;n0 ;mj ;nj

ðrj0ÞMð1Þ
mj ;nj

ðkrpjÞ

þB J ðr ÞNð1Þ ðkr Þ�; ð65aÞ
m0 ;n0 ;mj ;nj j0 mj ;nj pj
Nð1Þ
m0 ;n0

ðkrp0Þ ¼
X
nj ;mj

½B J
m0 ;n0 ;mj ;nj

ðrj0ÞMð1Þ
mj ;nj

ðkrpjÞ

þA J
m0 ;n0 ;mj ;nj

ðrj0ÞNð1Þ
mj ;nj

ðkrpjÞ�; ð65bÞ

where AJ
m0 ;n0;mj ;nj

ðrj0Þ and B J
m0 ;n0 ;mj ;nj

ðrj0Þ are vector spherical
wave function translation coefficients [40–42]. The inci-
dent beam of Eqs. (63a) and (63b) can be written in terms
of the coordinate system centered on particle j as

Ebeam rpj; t
� �¼ E0

X
nj ;mj

½pmj ;njN
ð1Þ
mj ;nj

ðkrpjÞ

þqmj ;nj
Mð1Þ

mj ;nj
ðkrpjÞ�expð� iωtÞ; ð66aÞ

cBbeam rpj; t
� �¼ E0

X
nj ;mj

½qmj ;nj
Nð1Þ

mj ;nj
ðkrpjÞ

þpmj ;nj
Mð1Þ

mj ;nj ðkrpjÞ�expð� iωtÞ; ð66bÞ

where

qmj ;nj
¼

X
n0 ;m0

½qm0 ;n0
AJ
m0 ;n0;mj ;nj ðrj0Þ

þpm0 ;n0
B J
m0 ;n0 ;mj ;nj

ðrj0Þ�; ð67aÞ

pmj ;nj
¼

X
n0 ;m0

½qm0 ;n0
B J
m0 ;n0 ;mj ;nj

ðrj0Þ

þpm0 ;n0
A J
m0 ;n0;mj ;nj

ðrj0Þ�: ð67bÞ

The coefficients of the plane wave of Eq. (64) with respect
to the coordinate system centered on particle j are

pmj ;nj
¼ qmj ;nj

¼ expðikinc Urj0ÞðPWÞmj ;nj
: ð68Þ

Again, scattering of the electromagnetic beam by the
spherical particle j is most naturally and conveniently
described when both the incident beam and the scattered
fields are written in terms of the coordinate system
centered on j,

Ej
scattðrpj; tÞ ¼ �

X
nj ;mj

½a j
njpmj ;nj

Nð3Þ
mj ;nj ðkrpjÞ

þb j
nj
qmj ;nj

Mð3Þ
mj ;nj

ðkrpjÞ�expð� iωtÞ; ð69aÞ

cB j
scattðrpj; tÞ ¼ �

X
nj ;mj

½a j
nj
pmj ;njM

ð3Þ
mj ;nj

ðkrpjÞ

þb j
nj qmj ;nj

Nð3Þ
mj ;nj

ðkrpjÞ�expð� iωtÞ; ð69bÞ

where a j
nj

and b j
nj are the Lorenz–Mie theory dimension-

less TM and TE partial wave scattering amplitudes of
particle j if the center of the particle were at the origin
and an x-polarized plane wave traveling in the þz direc-
tion were incident on it (see Sec. 9.22 of Ref. [13]). Again
the fields scattered by j directly depend on the shape
coefficients of the fields incident on j [43].

The total field in the exterior region is again the sum of
the incident beam fields and the fields scattered by
particle j [44–46]. For an x-polarized incident plane wave
propagating in the þz direction, using Eqs. (69a) and (69b)
and temporarily leaving the exp(–iωt) time dependence
implicit, one obtains in the origin-centered far-zone of j

Etotal rp0
� �

-uxE0exp ikinc Urp0
� �

�exp i k �kð ÞUr� �

inc scatt j0
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�
X
nj ;mj

ajnj ðPWÞmj ;nj
Nð3Þ

mj ;nj ðkrp0Þ
h

þb j
nj
ðPWÞmj ;njM

ð3Þ
mj ;nj

ðkrp0Þ
i
E0; ð70aÞ

cBtotal rp0
� �

-uyE0exp ikinc Urp0
� �

�exp i kinc�kscattð ÞUrj0
� �

�
X
nj ;mj

a j
nj ðPWÞmj ;nj

Mð3Þ
mj ;nj ðkrp0Þ

h

þb j
nj
ðPWÞmj ;njN

ð3Þ
mj ;nj

ðkrp0Þ
i
E0: ð70bÞ

For an electromagnetic plane wave incident on a
collection of N particles, the total far-zone fields are

Etotal rp0
� �

-uxE0exp ikinc Urp0
� �

�
XN
j ¼ 1

expð� ikscatt Urj0Þ

�
X
nj ;mj

a j
njpmj ;nj

Nð3Þ
mj ;nj ðkrp0Þþb j

nj qmj ;nj
Mð3Þ

mj ;nj
ðkrp0Þ

h i
E0;

ð71aÞ

cBtotal rp0
� �

-uyE0exp ikinc Urp0
� �

�
XN
j ¼ 1

expð� ikscatt Urj0Þ

�
X
nj ;mj

a j
nj
pmj ;nj

Mð3Þ
mj ;nj

ðkrp0Þþb j
nj
qmj ;njN

ð3Þ
mj ;nj

ðkrp0Þ
h i

E0:

ð71bÞ
Similarly, the total fields incident on particle j are the sum
of the incident beam fields and the fields scattered by each
of the other particles ia j. Transforming the fields scat-
tered by particle i from the coordinate system centered on
i to the coordinate system centered on j is accomplished
using a second set of vector spherical wave function
translation coefficients [40–42]

Mð3Þ
mi ;ni ðkrpiÞ ¼

X
nj ;mj

½AH
mi ;ni ;mj ;nj ðrjiÞM

ð1Þ
mj ;nj ðkrpjÞ

þBH
mi ;ni ;mj ;nj

ðrjiÞNð1Þ
mj ;nj

ðkrpjÞ�; ð72aÞ

Nð3Þ
mi ;ni ðkrpiÞ ¼

X
nj ;mj

½BH
mi ;ni ;mj ;nj

ðrjiÞMð1Þ
mj ;nj

ðkrpjÞ

þAH
mi ;ni ;mj ;nj ðrjiÞN

ð1Þ
mj ;nj

ðkrpjÞ� ð72bÞ
as long as rpjorji, which is always the case here, for the reason
mentioned in Section 5. The shape coefficients of the total
fields incident on particle j expressed in the coordinate system
centered on j for plane wave incidence are then given by

pmj ;nj ¼ expðikinc Urj0ÞðPWÞmj ;nj

�
Xj
N

i ¼ 1

X
ni ;mi

ainipmi ;ni
AH
mi ;ni ;mj ;nj ðrjiÞ

h

þbini qmi ;ni
BH
mi ;ni ;mj ;nj

ðrjiÞ
i
; ð73aÞ

qmj ;nj ¼ expðikinc Urj0ÞðPWÞmj ;nj

�
Xj
N X

ainipmi ;ni
BH
mi ;ni ;mj ;nj

ðrjiÞ
h

i ¼ 1 ni ;mi
þbini qmi ;ni
AH
mi ;ni ;mj ;nj ðrjiÞ

i
: ð73bÞ

These form a very large set of algebraic equations, now
coupled in particle number, partial wave number, azi-
muthal mode number, and polarization state. Eqs. (71a),
(71b), (73a), and (73b) are the compact form of the
fundamental equations for frequency-domain multiple
scattering of a monochromatic electromagnetic plane wave
by a collection of spherical particles at known positions
[25,52]. They are the analog of Eqs. (32) and (33) for point-
particle scattering and Eqs. (55) and (58) for scattering of
scalar waves by spheres, and may be easily generalized to
shaped-beam incidence. When Eqs. (73a) and (73b) are
iterated and substituted into Eqs. (71a) and (71b), one
obtains the expanded form of the total scattered fields [11].

Now consider the time-domain situation with a Gaussian
electromagnetic pulse analogous to Eq. (19) incident on the
collection of particles. The vector spherical wave function
translation coefficients AH

mi ;ni ;mj ;nj
ðrjiÞ and BH

mi ;ni ;mj ;nj
ðrjiÞ are

again sums over q, where |nj�ni|rqrnjþni, of a product of
a number of factors including hð1Þq ðkrjiÞ. For krjibqþ1/2, this
outgoing spherical Hankel function has the far-zone limit of
Eq. (53a), producing exactly the same dominant rapidly-
varying k-dependent phase factors as encountered in
the geometrically simpler examples of Sections 4 and 5.
The expanded form of the scattered fields is multiplied
by the spectrum function of the incident pulse (20) and by
exp(–ikct) corresponding to the linear dispersion relation for
electromagnetic waves in the external medium. The result is
then inverse Fourier transformed with respect to k, and the
same sequence of time-delayed multiply-scattered pulses as
in Sections 4 and 5 is generated. In addition, the rapidly-
varying k-dependent phase factors contained in the Debye
series decomposition of the partial wave scattering ampli-
tudes ajnj

and bjnj will produce fine-structure observed for each
of the pulses that will eventually lead to gradual broadening.
Thus the pulse sequences occur for electromagnetic scattering
in exactly the same way they did for scalar wave scattering,
and with the exception of the Debye series fine-structure
7. Scattering of a scalar wave by a collection of particles
of finite size and arbitrary shape and composition

The partial wave sums in the examples of Sections 5
and 6 took advantage of the spherical symmetry of all the
scattering particles in order to obtain the sets of coupled
algebraic equations of the shape coefficients of Eqs. (58),
(73a), and (73b) that were iterated to produce the multi-
particle paths in the frequency-domain. If the scattering
particles have more complicated shapes, the symmetry is
lost and another approach must be taken to obtain the
appropriate coupled algebraic equations. In this example
we use the T-matrix formalism (see for example Secs. 19.3
and 19.14 of [53] for details concerning the T-matrix in
quantum mechanical scattering), and for simplicity we
examine scattering of a scalar wave obeying a time-
dependent Schrödinger-like equation as in Eq. (75) given
below. The advantages of this alternative approach are that

(i) it is applicable to particles of all shapes, including
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spheres, and (ii) one does not need to transform various
equations back and forth between different coordinate
systems using sets of complicated translation coefficients.
The drawback is that without taking advantage of sphe-
rical symmetry as was done in Sections 5 and 6, it will be
much more difficult to obtain a suitable set of coupled
algebraic equations for iteration. As was the case in the
examples of Sections 4–6, we first describe scattering by a
single particle which we call j, after which we describe
multiple scattering by N particles with 1r jrN.

Particle j has arbitrary shape (which may or may not be
a sphere), volume vj, and arbitrary inhomogeneous inter-
nal composition which is represented by the well potential
Vjðr0j0Þ, where r0j0 is the position of an arbitrary point inside
particle j with respect to the origin. The geometric center
of j is located at the known position rj0. Assuming mono-
chromatic plane wave incidence, the total wave is again
assumed to have the form

ψ total rp0; t
� �¼ ψ total rp0

� �
exp � iωtð Þ: ð74Þ

The time dependence will again temporarily be left impli-
cit. Upon inserting Eq. (74) into the time-dependent wave
equation, the resulting time-independent Schrödinger-like
equation is

∇2ψ rp0
� �þCV rp0

� �
ψ rp0
� �¼ k2ψ rp0

� �
; ð75Þ

where C is a constant of proportionality whose value
depends on the type of scalar wave considered. Eq. (75)
can be Fourier transformed, formally solved, and then
inverse Fourier transformed to give an integral equation,
known as the Lippmann–Schwinger equation (see Sec.
11.4.1 of [37]), that is equivalent to the original differential
equation,

ψ total rp0
� �¼ ψ0exp ikinc Urp0

� �
� C
4π

Z
vj
d3r0j0

expðikr0pjÞ
r0pj

Vjðr0j0Þψ totalðr0j0Þ; ð76Þ

where r0pj is the position of the point p with respect to an
arbitrary location inside j. The advantage of the integral
equation formalism over the original differential equation
formalism is that the boundary conditions are incorpo-
rated into the equation itself rather than having to be
imposed separately after the most general solution of the
differential equation has been obtained. The disadvantage
is that one has to now deal with an integral equation,
which is usually less familiar than is the original differ-
ential equation.

Our goal is to rewrite Eq. (76) in a form that hides the
fact that it is an integral equation for as long as possible,
and then isolates the integral equation nature into a
hopefully easily controlled or easily calculable quantity.
Decomposing the total wave into the sum of an incident
plane wave and the wave scattered by particle j,

ψ total rp0
� �¼ ψ0exp ikinc Urp0

� �þψ j
scattðrp0Þ; ð77Þ

the scattered wave can be written as

ψ j
scattðrp0Þ ¼ � C

4π

Z
vj
d3r0j0

Z
vj
d3r00j0

expðikr0pjÞ
r0pj

�Tjðr0j0; r00j0Þψ0exp ikinc Ur00j0
� �

ð78Þ
where r0j0 and r00j0 are two different arbitrary locations
inside j with respect to the origin, and Tjðr0j0; r00j0Þ is the
single-particle transition operator or T-matrix for scatter-
ing by particle j. The T-matrix is the solution of the
following equation:

Tjðr0j0; r00j0Þ ¼ Vjðr0j0Þδðr0j0�r00j0Þ

� C
4π

Vjðr0j0Þ
Z
vj
d3r000j0

�
expðikjr0j0�r000j0jÞ

jr0j0�r000j0j
Tjðr000j0; r00j0Þ; ð79Þ

where δ(r) is the three-dimensional delta function. Although
Eq. (78) now has the form of a double volume integral to be
evaluated, the fact that the original Eq. (76) is an integral
equation is reflected in the fact that Eq. (79) is an integral
equation in T j. Physically Eq. (79), when iterated with V jC/
4π being small enough so that the iteration series converges,
describes coherent multiple scattering inside particle j,
beginning at the point r00j0 and ending at r0j0. The single-
particle T-matrix is said to be nonlocal or non-diagonal in
coordinate space (see p. 520 of [23]) because the scattering
interaction it describes does not occur at a single point
inside j, but depends on both r0j0 and r00j0. The first term in Eq.
(79), when integrated, describes single-scattering by the
well potential V j at r0j0 which is local, or diagonal in
coordinate space, since r00j0¼r0j0. The nonlocality is contained
in the second term, which is the interior multiple-scattering
series.

For the far-zone point p with respect to the origin such
that rp0br0j0 and 2rp0bkr02j0, one has

kr0pj � krp0 � kuscatt Ur0j0: ð80Þ

Further, expressing an arbitrary position inside j with respect
to the origin in terms of rj0 and ρ0j, the arbitrary position
inside j with respect to the geometric center of j, we have

r0j0 ¼ rj0þρ0j; ð81aÞ

r00j0 ¼ rj0þρ00j : ð81bÞ

The far-zone limit of Eq. (78) then becomes

ψ j
scattðrp0Þ-

C
4π

expðikrp0Þ
rp0

exp i kinc�kscattð ÞUrj0
� �

ψ0

�
Z
vj
d3ρ0j

Z
vj
d3ρ00j expð� ikscatt Uρ0jÞ

�Tjðr0j0; r00j0Þexpðikinc Uρ00j Þ: ð82Þ

Since only kscatt and kinc remain after the two integrations in
the second term of Eq. (82) are performed over the volume of
the particle, we can define

f j kscatt ;kinc;Ω
j

� �
� C
4π

Z
vj
d3ρ0j

Z
vj
d3ρ00j expð� ikscatt Uρ0jÞ

�Tjðr0j0; r00j0Þexpðikinc Uρ00j Þ; ð83Þ

where Ω j denotes the orientation of particle j with respect to
the kinc direction. As a result, the far-zone limit is then

ψ j
scattðrp0Þ-

expðikrp0Þ
rp0

f j kscatt ;kinc;Ω
j

� �
�exp i k �kð ÞUr� �

ψ : ð84Þ
inc scatt j0 0
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The form of Eq. (84) suggests that Eq. (83) is the far-zone
single-particle scattering amplitude as a function of the
scattering angles θp0 and φp0 with respect to the origin's
coordinate system. Theoretically, f j is obtained by first using
the explicit form of the T-matrix for the specific well
potential of interest, and then performing all the integrals
contained in the internal multiple-scattering series. This is a
daunting job if the particle has an irregular shape or is
inhomogeneous. Since the directions of kinc and kscatt are
fixed in the origin's coordinate system, the scattering
amplitude at the fixed far-zone detector will change as the
particle's orientation Ω j changes if particle j has an irregular
shape. If the particle is spherical, then the scattering
amplitude will be independent of Ω j, but it will still be
nonlocal. This is the price to be paid for no longer having
enough symmetry to be able to use the partial wave
approach as in the examples of Sections 5 and 6. As a result,
the entirety of the complicated nature of the scattering
pattern as a function of orientation is contained in the
complex function f j. Part of this complicated nature can be
accessed experimentally since the measured scattered
intensity for a given particle orientation is proportional to
|f j|2. This measurement determines the amplitude of f j, but
leaves its phase undetermined.

For scattering of an incident monochromatic plane
wave by N particles, the Lippmann–Schwinger equation
now becomes

ψ total rp0
� �¼ ψ0exp ikinc Urp0

� �
� C
4π

XN
j ¼ 1

Z
vj
d3r0j0

expðikr0pjÞ
r0pj

Vjðr0j0Þψ totalðr0j0Þ; ð85Þ

assuming that the general scattering object of Eq. (76) has
been decomposed into the N distinct (i.e. non-overlapping)
scattering particles. It has been shown [17] that this
integral equation is equivalent to

ψ total rp0
� �¼ ψ0exp ikinc Urp0

� �
� C
4π

XN
j ¼ 1

Z
vj
d3r0j0

Z
vj
d3r00j0

expðikr0pjÞ
r0pj

�Tjðr0j0; r00j0Þψ j
incðr00j0Þ; ð86Þ

where ψ j
inc is the wave incident on particle j evaluated at

the arbitrary position r00j0 inside j, and T j is the single-
particle T-matrix of Eq. (79). Written in this way, Eq. (86)
looks like a double volume integral to be evaluated, rather
than explicitly taking the form of an integral equation. The
integral equation nature is hidden both in T j, which was
discussed above, and in ψ j

inc. Specifically, ψ
j
incðr00j0Þ is the

sum of the incident plane wave and the wave scattered by
all the other particles,

ψ j
incðr00j0Þ ¼ ψ0expðikinc Ur00j0Þþ

Xj
N

i ¼ 1

ψ i
scattðr00j0Þ ð87Þ

where ψ i
scattðr00j0Þ is the scattered wave created at particle i

and evaluated at the arbitrary position r00j0 inside particle j.
This scattered wave has been shown to have the form [17]

ψ i
scattðr00j0Þ ¼ � C

4π

Z
d3r0i0

Z
d3r00i0

expðikjr00j0�r0i0jÞ
jr00 �r0 j
vi vi j0 i0
�Tiðr0i0; r00i0Þψ i
incðr00i0Þ: ð88Þ

Eqs. (86)–(88) are known as the Foldy–Lax equations
[8,16], and are considered as the fundamental equations
in compact form for the multiple scattering of waves by
particles at known positions and having arbitrary proper-
ties. If Eq. (88) is substituted into Eq. (87) one obtains a set
of coupled integral equations for the ψ j

incðr00j0Þ, the solution
of which can then be inserted into Eq. (86). If on the other
hand Eq. (87) is substituted into Eq. (88), one obtains a set
of coupled integral equations for the ψ i

scattðr00j0Þ.
Taking this second point of view and using Eq. (81b)

along with

r0i0 ¼ ri0þρ0i; ð89aÞ

r00i0 ¼ ri0þρ00i ; ð89bÞ
the set of coupled integral equations for ψ i

scattðr00j0Þ becomes

ψ i
scattðr00j0Þ ¼ � C

4πrji
exp ikji U rj0�ri0

� �� �
�expðikinc Uri0Þ

Z
vi
d3ρ0i

Z
vi
d3ρ00i

�exp � ikji U ðρ0i�ρ00j Þ
h i

Tiðr0i0; r00i0Þexpðikinc Uρ00i Þψ0

� C
4πrji

Xi
N

m ¼ 1

exp ikji U rj0�ri0
� �� �Z

vi
d3ρ0i

Z
vi
d3ρ00i

�exp½� ikji U ðρ0i�ρ00j Þ�Tiðr0i0; r00i0Þψm
scattðr00i0Þ: ð90Þ

Our goal is to convert these coupled integral equations into
a set of coupled algebraic equations, which can be numeri-
cally solved much more easily. This is accomplished in the
following way. Let new functions ξiscattðr00j0Þ and ξmscattðr00i0Þ be
defined by

ψ i
scattðr00j0Þ � exp½ðikji Uðrjiþρ00j Þ�ξiscattðr00j0Þ; ð91aÞ

ψm
scattðr00i0Þ � exp½ðikim U ðrimþρ00i Þ�ξmscattðr00i0Þ: ð91bÞ

Substituting Eqs. (91a) and (91b) into Eq. (90) one obtains

ξiscattðr00j0Þ ¼ � C
4πrji

expðikinc Uri0Þ
Z
vi
d3ρ0i

Z
vi
d3ρ00i

� expð� ikji Uρ0iÞTiðr0i0; r00i0Þexpðikinc Uρ00i Þ

� C
4πrji

Xi
N

m ¼ 1

exp½iðkim U ri0�rm0Þð �
Z
vi
d3ρ0i

�
Z
vi
d3ρ00i expð� ikji Uρ0iÞTiðr0i0; r00i0Þ

�expðikim Uρ00i Þξmscattðr00i0Þ: ð92Þ
One notices that the right hand side of Eq. (92) does not
depend on ρ00j . Thus ξ

i
scattðr00j0Þ must only be a function of rj0

and not of ρ00j (see Eq. (81b)). Similarly, if this equation
were instead written for ξmscattðr00i0Þ, again the right hand
side of the equation would only be a function of ri0 and
would not depend on ρ00i (see Eq. (89b)). As a result,
ξmscattðri0Þ can be moved outside the integral over ρ00i in the
second term of Eq. (92). Then using the definition of the
far-zone single-particle scattering amplitude of Eq. (83) in
order to hide the last remnant of the integral equation

nature of the situation, Eq. (92) simplifies to
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ξiscattðrj0Þ ¼
1
rji
exp ikinc Uri0ð Þf i kji;kinc;Ω

i
� �

ψ0

þ 1
rji

Xi
N

m ¼ 1

exp ikim U ri0�rm0Þð ��
�f j kji;kim;Ω

i
� �

ξmscattðri0Þ: ð93Þ

This is the desired set of coupled algebraic equations,
assuming all the particles are in the far-zone of each other
and the single-particle scattering amplitudes f j are known
[21]. The only remnant of the original integral equations
lies in the relation of f i to the integral equation (79) for the
single-particle T-matrix. Once these coupled algebraic
equations are solved by iteration and inserted into Eqs.
(91a) and (91b), then into Eq. (87), and finally into Eq. (86),
one obtains the expanded form for the total wave at any
point in space with respect to the origin. For scattering by
a collection of homogeneous spheres, the single-particle
scattering amplitude f j(kscatt, kinc) may be explicitly writ-
ten as a sum over partial waves, so that the coupled
algebraic equations of Eq. (93) reduce to coupled partial
wave beam shape coefficients as in Eq. (58) of Section 5.

If one is interested in far-zone scattering, Eq. (86) and
(87) substantially simplify. Using Eq. (83) and

kr0pj � krp0�kup0 Ur0j0 ¼ krp0�kup0 Urj0�kup0 Uρ0j; ð94Þ

Eq. (86) becomes

ψ total rp0
� �¼ ψ0exp ikinc Urp0

� �
þexpðikrp0Þ

rp0

XN
j ¼ 1

exp i kinc�kscattÞUrj0
� ��

�f j kscatt ;kinc;Ω
j

� �
ψ0

þexpðikrp0Þ
rp0

XN
j ¼ 1

exp i kinc�kscattÞUrj0
� ��

�
Xj
N

i ¼ 1

exp � ikji Uri0
� �

f j kscatt ;kji;Ω
j

� �
ξiscattðrj0Þ:

ð95Þ
As was the case in the examples of Sections 4–6, all the
dominant k-dependent phases have now been explicitly
separated out in Eqs. (93) and (95). These phases separated
out straightforwardly in the examples of Sections 3 and 4. But
some of them were implicit in the translation coefficients in
the examples of Sections 5 and 6. Here some of them rely on
the introduction of the subsidiary functions of Eqs. (91a) and
(91b). Although the phases may always be separated out, the
details of the separation are seen to depend on the differing
mathematical approaches taken in the different examples. In
order to obtain the time-domain equations, the iterated
version of Eqs. (93) and (95) are multiplied by the spectrum
function of an incident pulse of Eq. (20) and exp(–ikct)
corresponding to a linear dispersion relation in the external
medium. The result is then inverse Fourier transformed with
respect to k, and one obtains exactly the same temporal
sequence of pulses that occurred for the earlier examples.

If one were interested in scattering of an electromagnetic
wave by a collection of particles of finite size and arbitrary
shape and composition, the situation is most conveniently

described using the dyadic formalism. The derivation of the
scattering formulas is treated completely in Chapter 6 of [6],
and no further elaboration on the method is required here.
In time-domain scattering with an incident Gaussian pulse
for this example, the same k-dependent phases can be
explicitly separated out and the same time-dependent pulse
8. Conclusions

In this tutorial, we examined the multiple scattering
equations for a scalar (or electromagnetic) plane wave or
plane wave pulse incident on a collection of particles at
known positions. In one example the particles were all
infinitesimally small. In another they were all spheres, and
in yet another they all had arbitrary shape and internal
composition. As a prelude to these calculations we also
considered the one-dimensional example of a plane wave or
plane wave pulse normally incident on a block of nonabsorp-
tive material having two flat parallel faces. In each of these
examples the multiple scattering equations were derived
using different mathematical approaches which were tailored
to the differing symmetry character of the situations. There
are certain features of multiple scattering that differ from
example to example, depending on the specific nature of the
incident beam and scattering particles. The most obvious of
these is the need to keep track of the polarization state of
multiply-scattered electromagnetic waves, which is not an
issue for scalar waves. Similarly, the sharp forward peaking of
diffractive scattering by a single particle whose radius is much
larger than the wavelength results in forward peaking of the
light multiply-scattered by a collection of large particles. On
the other hand, isotropic scattering by a single point-particle
results in nearly isotropic multiple scattering by a collection of
point-particles.

From a comparison of the multiple scattering equations
for the different examples we considered, we made a number
of general statements concerning frequency-domain multiple
scattering. First, even in the context of single scattering, since
the total wave is the exact solution of the appropriate wave
equation boundary value problem that has been posed, it has
a definite physical existence and has an undeniable degree of
primacy over the incident beam and scattered wave of which
it is composed. However, since the incident beam and
scattered wave have attributes such as direction of travel or
polarization state that differ from each other at most scatter-
ing angles, the difference can be exploited to filter out one of
the components so that all or a portion of the energy content
of the remaining component can be measured. In this way
the incident beam and scattered wave, individually, are
endowed with a level of physical significance that transcends
the infinite number of other possible purely mathematical
decompositions of the total wave.

Second, frequency-domain multiple scattering is a steady
state situation resulting from the infinite temporal duration of
the incident wave. Thus all the scatterings and rescatterings
that can occur are always occurring. There is no time
dependence for one scattering to occur first, the next scatter-
ing to occur at a later time, the third scattering to occur at yet

a later time, etc. In addition, although the multiple scattering
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equations when written in expanded form can be interpreted
as a complete collection of multi-particle paths that is
suggestive of multiple scattering, the presence of the multi-
particle paths is obscured when the equations are written in
their compact form. As a result of the lack of temporal
information in the frequency-domain equations and the
ability to transform away the multi-particle path interpreta-
tion by using another form of the equations, we conclude that
frequency-domain multiple scattering is purely a mathema-
tical abstraction.

On the other hand, there are certain features of time-
domain multiple scattering which occur in the same way, or
persist, no matter what type of beam or particle is considered.
When the collection of particles is tenuous rather than close-
packed, and the scattering interaction is sufficiently weak so
that the iteration series converges, scattering of a temporally-
short pulse results in a temporal succession of distinct
individual scattered pulses in a one-to-one correspondence
with the different multi-particle paths in the frequency-
domain. This temporal succession was found to persist for all
the different examples we considered in this tutorial, and the
individual time-delayed pulses in the sequence are readily
measurable. Mathematically, the expanded solution to the
multiple scattering equations in the time domain under these
conditions would appear to be the only form of the solution
there is, once the inverse Fourier transform involved has been
evaluated either analytically or numerically. Since the pulse
train cannot be transformed away by writing the solution to
the scattering equations in a different form, when a localized
pulse is incident on the collection of particles, time-domain

multiple scattering becomes a definite physical phenomenon.
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