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Morphology-dependent resonances of spherical droplets
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We use the recently extended superposition T-matrix method to study the behavior of a sharp Lorenz—Mie reso-
nance upon filling a spherical micrometer-sized droplet with tens and hundreds of randomly positioned micro-
scopic inclusions. We show that as the number of inclusions increases, the extinction cross-section peak and
the sharp asymmetry-parameter minimum become suppressed, widen, and move toward smaller droplet size
parameters, while ratios of diagonal elements of the scattering matrix exhibit sharp angular features indica-
tive of a distinctly nonspherical particle. Our results highlight the limitedness of the concept of an effective

refractive index of an inhomogeneous spherical particle.
(290.0290) Scattering; (260.5740) Resonance; (290.4020) Mie theory; (290.4210) Multiple scattering;

OCIS codes:
(290.5850) Scattering, particles.
http://dx.doi.org/10.1364/0L.39.001701

Micrometer-sized droplets with numerous microscopic
inclusions represent an important morphological type
of scattering objects [1-9] as well as a great modeling
challenge. Until a few months ago, computations of
electromagnetic scattering by such particles had to
rely on the simplest model of a droplet with only one
such as various effective-medium theories (EMTSs)
[11], the Monte Carlo ray-tracing technique [12,13], and
the degenerate perturbation method [9]. The recent
extension of the superposition 7-matrix method
(STMM) to arbitrarily clustered and nested spherical do-
mains [14] is a major breakthrough that makes possible
numerically exact computations of electromagnetic
scattering for realistically large droplets with hundreds
of inclusions. Hence, the primary objectives of this
Letter are to report representative STMM results and
analyze the effects of multiple randomly positioned
inclusions on the scattering properties of a microm-
eter-sized spherical droplet. As a secondary objective,
we use our numerical data to discuss and illustrate
the inherent limitedness of the concept of an effective
refractive index.

The STMM has three key qualities that make it ideal for
this study. First, it is a direct computer solver of the
frequency-domain macroscopic Maxwell equations and
as such involves no approximations. Second, it is highly
accurate and thus can be used to study the finest details
of electromagnetic scattering patterns unattainable with
other techniques [15,16]. Third, the analytical orientation
averaging procedure serves as an extremely efficient and
accurate means of modeling the statistically uniform dis-
tribution of inclusions inside the spherical host. Indeed,
the brute-force way to suppress modeling “noise” re-
quires averaging over tens or hundreds of thousands
of discrete realizations of the droplet interior. With the
STMM, one can use just one quasi-random configuration
of the inclusions because subsequent analytical averag-
ing over all orientations of this configuration captures,
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in essence, an infinite continuous set of realizations
and yields noise-free curves unambiguously revealing
the actual effects of random internal inhomogeneity
(cf. [17]). We will demonstrate later that the results thus
obtained are virtually independent of the initial set of
positions of the inclusions provided that they are chosen
using a “sufficiently random” coordinate-generation
procedure.

Perhaps the most striking trait of electromagnetic scat-
tering by a homogeneous, perfectly spherical droplet is
the existence of morphology-dependent resonances
(MDRs) [18-20]. The black solid curves in Figs. 1(a)
and 1(b) show the extinction cross section and asymme-
try parameter, respectively, as functions of the droplet
size parameter X = 2zR/A computed at a wavelength
of 2 = 0.55 pm for a homogeneous spherical droplet with
a varying radius R and a fixed refractive index of
mg = 1.31. Both curves reveal a narrow Lorenz—Mie
MDR centered at the size parameter X, ~ 32.5832
(Ryes =~ 2.85218 pm). It is well known that such sharp res-
onances are very fragile and are easily destroyed by
minute deviations of the droplet shape from that of a
perfect sphere [21,22]. It is, therefore, quite interesting
to examine the behavior of this MDR upon filling the drop
with an increasing number N of randomly positioned
spherical inclusions.

The color solid curves in Figs. 1(a) and 1(b) show the
orientation-averaged STMM results for N = 10,30, ...,
300 randomly positioned inclusions having a fixed size
parameter x =1 (corresponding to a radius of r =
0.08754 pm) and a fixed refractive index m; = 1.55.
The initial quasi-random configuration of N nonoverlap-
ping inclusions was created using a simple random-
number coordinate generator. It is quite obvious that
there are three major effects of increasing N: the Lorenz—
Mie MDR becomes increasingly suppressed, widens, and
moves toward smaller values of the droplet size
parameter. For comparison, the dotted curves depict the
results of computations based on the Maxwell-Garnett
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(a), (b) Extinction cross section and asymmetry parameter for a spherical droplet with N randomly positioned inclusions.

(c)-(f) As in (a), (b) but for ratios of the elements of the Stokes scattering matrix.

effective-medium approximation (MGA) [11]. Since the
size parameter of the inclusions is kept constant, the
MGA refractive index varies as the droplet size param-
eter increases from 32.483 to 32.683. To plot the dotted
curves in Figs. 1(a) and 1(b), we computed the MGA
refractive index for droplet size parameters X €
[32.483,32.683] in steps of 0.001. The Bruggeman-
approximation (BA) results are virtually identical to
the MGA ones and thus are not shown.

The first effect of increasing N in Figs. 1(a) and 1(b) is
consistent with the results of laboratory measurements
reported in [4]. It is in fact remarkable that as small a vol-
ume fraction of the inclusions as 0.87% (for N = 300)
serves to reduce the height of the extinction peak (rela-
tive to its right-hand wing) by a factor exceeding two. The
third effect is qualitatively consistent with the MGA
trend. However, the MGA obviously overstates the rate

of the effective refractive index change with increasing
N and, more importantly, does not predict the very
suppression of the MDR by the inclusions.

To illustrate the invariance of the STMM results with
respect to the choice of the initial configuration of the
inclusions, we plot in Fig. 2 the asymmetry parameter
computed by averaging over orientations of two different
initial configurations shown in Fig. 3 and obtained by
running the random-number coordinate generator twice.
It is seen indeed that the resulting curves are hardly
distinguishable even for the relatively small number of
inclusions N = 30 and can be expected to be even closer
for larger values of N (see, e.g., the bottom panels in
Fig. 12 of [23]).

The angular distribution and the polarization state of
the scattered light are typically described in terms of
the normalized Stokes scattering matrix
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Fig. 2. Asymmetry parameter computed for two different
realizations of the initial configuration of 30 inclusions.

a1(®) b1(®) 0 0

_ (@) a®) 0 0

FO = | 70" o @ be |t D
0 0 -0:(0) ay(®)

where O € [0°,180°] is the angle between the incidence
and scattering directions [20]. The (1,1) element of
F(®) is the conventional phase function satisfying the
normalization condition

1 [~
5 / d® sin Oa,(®) = 1. @)
0

Two unique properties of a homogeneous, perfectly
spherical particle are the identities

a3(®)/a1(®) =1 and a3(®)/ay(®)=1. 6))

It is obvious that any EMT always reproduces these iden-
tities provided that the surface of the host is perfectly
spherical.

Figures 1(c) and 1(d) show the results of STMM com-
putations of the ratios a3 (®)/a,(®) and a3(0®) /a,(®) for a
spherical droplet with different numbers of inclusions.
The specific size parameters of the host droplet corre-
spond to the maxima in the respective extinction curves
in Fig. 1(a). First and foremost, the data in Figs. 1(c) and
1(d) reveal fundamental violations of the identities (3),
thereby further illustrating the limitedness of the concept
of effective refractive index. Second, increasing N serves
to strengthen the sharp extrema in the a,(®)/a;(®) and
a3(0)/a,(®) curves, whereas its effect in Figs. 1(a) and
1(b) was just the opposite. The origin of the remarkable
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Fig. 3. Two different realizations of the initial configuration of
30 inclusions used in Fig. 2.
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stability of the locations of the numerous sharp extrema
in Figs. 1(c) and 1(d) with increasing N is not immedi-
ately obvious to us. All in all, our results imply that mea-
surements of the ratios ay(0®)/a;(®) and a3(0)/a,(®) can
be extremely sensitive indicators of the presence of in-
clusions in otherwise spherical droplets.

In Fig. 1(e), the ratio as(®)/a;(®) is plotted for X =
32.583 corresponding to the location of the Lorenz—
Mie MDR for a homogeneous droplet. Comparison with
Fig. 1(c) shows an obvious reduction in the depths of the
sharp minima. Furthermore, the deepest minima are no
longer caused by the droplet with N = 300 inclusions.
This behavior of the ratio a,(®)/a,(®) is quite intriguing
and may not have a straightforward qualitative explana-
tion. It does appear to imply, however, that the sharp an-
gular features in Figs. 1(c) and 1(d) are caused by strong
interactions of the individual inclusions with a quasi-
homogeneous spherical host droplet characterized by
a “resonance effective refractive index” that is somewhat
greater than 1.31 but smaller than that predicted by the
MGA. This conjecture may be corroborated by Fig. 1(f)
which seems to imply that the alleged interactions
become even weaker for the droplet size parameter
X = 32.683 corresponding to the right-hand wing of
the Lorenz-Mie resonance.

In summary, our numerically exact STMM results re-
veal several profound effects of microscopic inclusions
on a narrow Lorenz-Mie MDR of a micrometer-sized
spherical droplet. The suppression of the extinction
cross section and asymmetry-parameter resonances with
increasing N and their shift toward smaller droplet size
parameters can be understood, at least qualitatively. The
deviations of the ratios ay(®)/a;(®) and a3(®)/a,(O)
from unity are also consistent with the droplet inhomo-
geneity lacking spherically symmetric structure. How-
ever, the cause of the specific traits of the sharp
angular extrema revealed by these ratios and their
dependence on the droplet size parameter may not
necessarily be obvious.

Chylek et al. [11] state explicitly that EMTs are ad hoc
approximations based on heuristic shortcuts and are not
derived explicitly from the macroscopic Maxwell equa-
tions. As a consequence, the accuracy of such derived
effective refractive indices and the precise conditions
for their permissible use are often difficult to assess.
Our STMM results represent the first morphologically rel-
evant test of EMTs based on a direct numerically exact
solution of the Maxwell equations. It is evident that the
MGA and BA have largely failed this particular test. How-
ever, this does not necessarily mean that EMTs cannot
perform better in situations less demanding than compu-
tations for perfectly spherical host droplets in the vicinity
of a sharp Lorenz—Mie resonance.

We thank Steven Hill for providing his computer pro-
gram for the calculation of Lorenz—Mie MDR locations
and widths [24]. This material is based upon work sup-
ported by the NASA Remote Sensing Theory Program
managed by Lucia Tsaoussi and the NASA Radiation
Sciences Program managed by Hal Maring. The majority
of numerical results were obtained with the “Discover”
supercomputer at the NASA Center for Climate
Simulation.
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