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particles

Jacqueline Lenoble, Michael I. Mishchenko, and Maurice Herman

The Earth’s atmosphere absorbs, scatters, and emits electromagnetic radiation. Although 
air molecules are the primary actors in these processes, aerosol particles are also present 

-
stitutes the very physical basis of aerosol remote sensing. Whenever clouds are present, 

-
pact. Therefore, in aerosol remote sensing, one often has to limit observations to cloudless 
conditions and screen cloudy pixels.

In the solar part of the spectrum, molecular absorption is mostly limited to ultraviolet 
(UV; ozone) and near-infrared (near-IR; carbon dioxide, water vapor) wavelengths and is 
characterized by strong and narrow oxygen bands. A brief description of atmospheric mo-
lecular absorption is presented in Section 2.2. Shortwave aerosol remote sensing is usually 
performed outside the absorption bands, but some instruments also have channels captur-
ing absorption bands with the objective of quantifying gaseous components.

Absorption in the longwave terrestrial spectrum, both by molecules and aerosols, is 
accompanied by emission, according to Kirchhoff’s law. This subject will be addressed in 
Chapter 9. 

polarization phenomena; the same formalism will be used throughout this book. Section 
2.5 deals with Rayleigh molecular scattering, Section 2.6 summarizes the theory of scatter-
ing by spherical particles (the Lorenz–Mie theory), and Section 2.7 addresses the scattering 
by nonspherical particles. Finally, in Section 2.8, we discuss the main traits of single-scat-
tering and absorption characteristics of spherical and nonspherical aerosols. 
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Solar radiation at very short wavelengths is strongly absorbed in the upper atmosphere, 
mainly by oxygen in the Schumann–Runge and Herzberg bands (Greenblatt et al., 1990), 
and, therefore, is not very useful for remote sensing. At wavelengths above 250 nm, the 
ozone absorption becomes dominant, in the Hartley and Huggins bands, and limits the 
ability to observe the solar spectrum at the Earth’s surface around 300 nm. Figure 2.1 
depicts the absorption cross-section of ozone in the UV region. The Hartley and Huggins 
bands do not yield a line structure, but rather cause small oscillations superposed on the 
continuum. Numerous measurements of the ozone absorption have been performed over 
the past decades (Vigroux, 1953; Molina and Molina, 1986; Paur and Bass, 1985; Burrows 
et al., 1999b), especially in the Huggins bands, and have demonstrated the absorption to be 
strongly temperature dependent. Remote sensing in the UV can be used to retrieve simulta-
neously aerosols and ozone, as, e.g., with TOMS and OMI instruments (see Chapters 7 and 
8). In the visible, ozone causes the much weaker Chappuis absorption band which is not 
temperature dependent (Amuroso et al., 1990), as shown in Figure 2.2. This band is used in 
remote sensing with SAGE and similar occultation instruments (see Chapter 8). 

Minor gaseous constituents, such as NO
2
, NO

3
, OClO, and SO

2
, also cause some ab-

sorption bands in the UV and visible parts of the spectrum, thereby facilitating remote 

Ozone UV absorption cross section ×10–20 (cm2) at 230 K.
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sensing of these gases. The oxygen molecule causes a few narrow bands in the visible and 
near-IR, the most important bands being centered at 690 and 760 nm. Measurements of the 
760-nm band, called the A band, are used in remote sensing of cloud top heights (Fischer 
and Grassl, 1991).

In the near-IR, besides the strong-absorption bands due to H
2
O and CO

2
 (see the spec-

troscopic data banks HITRAN at www.cfa.harvard.edu/hitran, and GEISA at ether.ipsl.
jussieu.fr), several species cause absorption bands also used for remote sensing. However, 
this topic is beyond the scope of our discussion of aerosol remote sensing. 

–2); 
for simplicity it is called intensity I in this chapter, without considering its distribution in 
directions; I takes generally the name of irradiance, when received on a surface. In Chapter 

L (Wm–2sr–1), used in radiative transfer analysis.
ds inside the atmosphere 

or any other medium composed of sparsely distributed scatterers (Figure 2.3a). A paral-

  Ozone visible absorption cross section ×10–20 (cm2).

http://www.cfa.harvard.edu/hitran
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lel beam of monochromatic radiation incident from above perpendicularly to this layer is 
characterized by its intensity I (Wm–2) at the entrance surface of the layer and an intensity I 
+ dI at the exit surface. According to the microphysical theory of radiative transfer (Mish-
chenko et al., 2006), dI is proportional to the product of I and ds:

   (2.1)

where 
e
 (m–1

the scattering medium is composed of spherically symmetric and/or randomly oriented 
nonspherical particles. Preferential orientation of nonspherical particles requires the intro-

(Mishchenko et al., 2006). 
The cumulative extinction is generally due to two different physical phenomena: ab-

sorption, wherein the radiative energy is transformed into another form of energy (e.g., via 
heating and photochemical reactions), and scattering, wherein a part of the incident light 

-

a s
:

     (2.2) 

To characterize a molecule or a particle, one generally uses the extinction, absorption, and 
scattering cross-sections (

e
, 

a
, and

s
) expressed in m2. The extinction, absorption, and 

ds

s

s

1

s

(a) (b)

s
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-
tions by the number of molecules or particles per unit volume. The fractional contribution 
of scattering to the total extinction is given by the single-scattering albedo (SSA):

  (2.3)

s
1
 and s

2
 (Figure 2.3b), the integration of 

Eq. (2.1) yields

   (2.4)

where

  (2.5)

is the optical thickness of the layer and exp(–
e 
) is its optical transmittivity. Of course 

e 

can be decomposed into the sum of the absorption, 
a
, and scattering, 

s
, optical thickness-

es. Quite often the subscript “e” is omitted when implicit from the context. Equation (2.4) 
is known as Bouguer-Beer’s exponential extinction law and, strictly speaking, applies only 
to monochromatic radiation. However, it can also be applied to narrow wavelength inter-
vals over which the intensity and the extinction vary slowly. This is the case for scattering 
(both molecular and aerosol), aerosol absorption, and ozone absorption, but not for gaseous 
line absorption.

In the atmosphere, the optical depth is traditionally measured along a vertical path and 
is equal to the optical thickness of the atmospheric layer above a given altitude. The total 
optical thickness of the atmosphere corresponds to the optical depth at the surface level.

unpolarized incident light (e.g., sunlight), the phase function p( ) expresses this probabil-
ity as a function of the scattering angle [0, ], i.e., the angle between the incidence and 

directions). The amount of monochromatic radiative power scattered by an elementary vol-
ume dV of the scattering medium into a solid angle  around the direction  is given by

  (2.6)

where is measured in W. The conservation of energy implies that p( ) is normalized to 
4  when integrated over all scattering directions. As before, we assume that the scatter-
ing medium is composed of spherically symmetric and/or randomly oriented nonspherical 
particles. 
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It is customary and convenient to expand the phase function in a series of Legendre 
polynomials P

l
 :

 

 (2.7)

where 

 
; (2.8)

the upper summation limit L is 2 for molecules and increases rapidly as the particle size 
exceeds the incident wavelength (Section 2.8). The normalization of the phase function 
implies that 

0 
= 1.

 . (2.9)

A useful analytical representation of the phase function is the Henyey–Greenstein function 
(Henyey and Greenstein, 1941)

 
; (2.10)

  Electromagnetic scattering.
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As stated above, the number of terms in the expansion (2.7) increases rapidly for large 
particles, when the phase function exhibits a very strong forward peak (see Section 2.8). 
Therefore, a useful approximation is to write the phase function as the sum of a delta-func-
tion term and a much smoother phase-function component: 

 , (2.11)

where  can be expanded into series of Legendre polynomials with many fewer terms 
than . Physically, this approximation implies that the radiation scattered in the forward 
peak is simply transmitted; the constant f
forward peak is truncated (Potter, 1970).

on a molecule or a particle. In order to account for this phenomenon appropriately, espe-
cially when one has to deal with two or more successive scattering events (see Chapter 3), 

A time-harmonic plane electromagnetic wave propagating in the direction of the wave 
vector k is characterized by two orthogonal components E

l
 and E

r
 of its complex electric 

vector  E(r, t) = Eexp(  – ik · r) k), 
where t is time, r is the position vector of the observation point, is the angular frequency, 
and i

–
–1. The subscripts “l ” and “r” denote the components parallel and perpendicular 

to a reference plane, respectively (Figure 2.5). 
Because of high frequency of the time-harmonic oscillations, traditional optical instru-

wave. Instead, optical instruments usually measure quantities that have the dimension of 
E

l
E*

l
,
 
E

r
E*

r
,
 
E

r
E*

l
, and E

l
E*

r
, where 

the asterisk denotes a complex-conjugate value. In particular, the real-valued Stokes pa-
rameters I, Q, U, and V of the plane wave (Stokes, 1852; Chandrasekhar, 1950) form a 
so-called Stokes column vector I

  (2.12)

where E
l0
 and E

r0
 are the amplitudes of the complex time-harmonic components E

l
 and E

r
, 

2.4  Polarization and scattering matrix
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respectively;  is the retardation in the phase of E
l
 
 
relative to that of E

r
; c is the speed of 

light in a vacuum; and 
0 
the dielectric constant of a vacuum. All four Stokes parameters 

have the dimension of the scalar quantity I (Wm–2). If the Stokes vector is associated with 
radiance, the Stokes parameters are in Wm–2sr–1.

A plane electromagnetic wave is the simplest type of elec tromagnetic radiation and is 
well represented by a perfectly monochromatic and perfectly parallel laser beam. Let us 
consider an arbitrary point within such a beam. It is straightforward to demonstrate (see, 
e.g., Mishchenko et al., 2002, 2006) that during each time interval 2  the end-point of 

E(r,t)] describes an ellipse in the wave plane. The sum of 
the squares of the semi-axes of this ellipse, multiplied by 

0
c/2, yields the total intensity of 

the wave I. The ratio of the semi-axes, the orientation of the  ellipse, and the sense in which 
the electric vector rotates (clockwise or counter-clockwise, when looking in the direction 
of propagation) can be derived from the other three Stokes parameters of the wave, Q, U, 
and V
Stokes identity

  (2.13)

Quasi-monochromatic beams of light are encountered much more often than perfectly 
monochromatic beams and, in general, are described by E(r,t) = E(t)exp( k·r), where 

E(t) around its mean 
value occur much more slowly than the harmonic oscillations of the time factor exp(  
albeit still too fast to be detected by an actual optical detector of electromagnetic energy 

average of the right-hand side of Eq. (2.12) over a time interval much longer than 2 :

k

E

r

E

l

Reference plane

 k and E
l
.  

The wave plane goes through the vectors E
r
 and E

l
.
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 (2.14)

These average Stokes parameters contain all practically available information on the quasi-
monochromatic parallel beam (Chandrasekhar, 1950; Mishchenko et al., 2006). I is the 
total intensity of the beam considered in the previous section. The other three Stokes pa-
rameters have the same dimension as I (Wm–2) and satisfy the inequality

  (2.15)

In general, the end-point of the vector Re[E(r, t)] of a quasi-monochromatic beam does 
-

lipse with a “preferential orientation”, “preferential elon gation”, and “preferential handed-
ness”. Equation (2.15) implies that a quasi-monochro matic beam can be partially polarized 
and even unpolarized. The latter means that the temporal behavior of Re[E(r, t)] is com-
pletely “erratic”, so that there is no “prefer ential ellipse”. This is, for example, the case for 
the extraterrestrial solar radiation.  

When two or more quasi-monochromatic beams propagating in the same direction are 
mixed incoherently, which means that there is no permanent phase relation between the 
separate beams, then the Stokes column vector of the mixture is equal to the sum of the 
Stokes column vectors of the individual beams:

  (2.16)

where n numbers the beams. According to Eqs (2.15) and (2.16), it is always possible 
mathematically to decompose any quasi-monochromatic beam into two incoherent parts, 
one unpolarized, with a Stokes column vector

 

2.4  Polarization and scattering matrix
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and one fully polarized, with a Stokes column vector 

 

Thus, the intensity of the fully polarized component is (Q2 + U2 + V2)½, and so the degree of 

 
 (2.17)

The parameters of the “preferential ellipse” of a parallel quasi-monochro matic beam of 
light can be viewed as quantitative descriptors of the asymmetry in the di rectional distribu-
tion and/or rotation direction distribution of the vector Re[E(r,t)] in the wave plane. For 
example, a common type of polarization encountered in natural conditions is partial or full 
linear polarization, which implies that the Stokes parameter V is negligibly small. This type 
of polarization is often described by the total intensity, degree of linear polarization, and 
angle 

The degree of linear polarization is given by

  (2.18)

the second and third Stokes parameters are given by

  (2.19)

and the orientation angle is given by

 
 (2.20)

In general, the parameter V
beam. However, V is usually very small in the atmosphere and is often neglected, the po-
larization being considered (partially) linear.

respect to a reference plane containing the direction of light propagation (Figure 2.5). If the 
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reference plane is rotated about the direction of propagation then the Stokes parameters are 

 < 2  in the anti-clockwise direction when looking 
in the direction of propagation. Then the new Stokes column vector is given by 

  (2.21)

where 

 

 (2.22)

is the Stokes rotation matrix for angle .

Upon choosing the reference axes parallel and perpendicular to the scattering plane for 
both the incident and scattered radiation, Eq. (2.6) is replaced by

   (2.23)

where 

  (2.24)

is the 4×4 so-called normalized Stokes scattering matrix such that F11( ) = p( ). For an 
ensemble of randomly oriented particles each of which has a plane of symmetry and/or 
for an ensemble containing an equal number of particles and their mirror counterparts in 

six independent elements:

  (2.25)

2.4  Polarization and scattering matrix
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with

  (2.26)

   (2.27)

   (2.28)

-
cal particles:

  (2.29)

  (2.30)

Several recipes can be used to check the physical correctness of the elements of a scatter-
ing matrix found as the outcome of laboratory measurements or theoretical computations 
(Hovenier and van der Mee, 2000).

A useful expansion of the elements of the scattering matrix in so-called generalized 

follows:

  (2.31)

Aerosol Remote Sensing
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where

 
 (2.32a)

 
 (2.32b)

The Pl
mn

(x) are the generalized spherical functions introduced by Gel’fand and Shapiro 
(1956); they reduce to the usual Legendre polynomials P

l
 for m = n = 0. The Pl

m
 are the 

identical to Eq. (2.7). An alternative form of Eq. (2.31) can be found in Mishchenko et al. 
(2002, 2006), and Hovenier et al. (2004). 

Lord Rayleigh (1889). He assumed that the incident electromagnetic wave induces an elec-
tric dipole moment at the same frequency in the molecule. This dipole emits, according to 
the classical electromagnetic theory, at the same wavelength. For incident natural radiation, 
the radiation scattered at 90° must be completely polarized, with vibrations of the 

-

on, a correction for the molecular anisotropy was introduced by Cabannes (1929) in order 
to explain why the degree of polarization is not 100% at 90°. The depolarization factor 
d
vector at 90°. It has been measured several times, but is still subject to uncertainty, 
leading to an uncertainty of about 2% in the so-called King factor (6+3d)/(6–7d) appearing 
in Eq. (2.33) below.

 
,
 

(2.33)  

where  is the wavelength, k = |k| is the wave number, m
s 
is the refractive index for 

2
 at a pressure of 1013.25 hPa and a 

temperature of 15°C), N is the molecular density, and N
s
 is the same quantity in standard 

conditions. The m
s 
is also subject to some uncertainty and slightly depends on the wave-

length. Bodhaine et al. (1999) carefully analyzed the data available for computing the mo-

s,R
 = 

s,R
/N:

2.5  Molecular scattering: Rayleigh theory
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 (2.34)

The corresponding Rayleigh scattering matrix is as follows:

 

 (2.35)

where

  (2.36)

 

  (2.37)

The complete theory of electromagnetic scattering by an individual spherical particle was 
-

torical perspective on this seminal development). Detailed accounts of the Lorenz–Mie 
theory can be found in Stratton (1941), van de Hulst (1957), Bohren and Huffman (1983), 

-
tion of elementary solutions of the vector wave equation in spherical coordinates called 

particle surface.
Consider an isolated homogeneous spherical particle, having a radius r, illuminated by 

ρ 

2006) are given by

 

 (2.38a)
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   (2.38b)

where S
1 
and S

2
 are complex functions of the scattering angle given by the following se-

ries:

 

 (2.39a)

 

 
(2.39b)

a
n
 correspond to magnetic oscillations, while the b

n
 cor-

respond to electric oscillations. They are determined from the boundary conditions at the 
particle surface and depend on the complex refractive index of the particle relative to the 
surrounding medium m and on the particle size parameter x = kr. 

n
max

 in the series (2.39) is of the order of 
2x+3; the same number is necessary in the expansions (2.31). Therefore, the practical ap-
plication of the Lorenz–Mie theory for particles larger than the wavelength was delayed 

accurate Lorenz–Mie codes are publicly available on the Internet (see, e.g., ftp://ftp.giss.
nasa.gov/pub/crmim/spher.f).

show that the non-zero elements of the normalized Lorenz–Mie scattering matrix are as 
follows:

 

 (2.40a)

 

 (2.40b)

 

 (2.40c)

 

 (2.40d)

2.6  Lorenz–Mie theory

ftp://ftp.giss
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where 
s
 is the corresponding scattering cross section. The latter is often expressed in 

Q
s
 as follows:

  (2.41)

with

 

  (2.42)

Similarly, the extinction cross section is represented as

  (2.43)

 

 (2.44)

where, as before, Re stands for the real part. If the particle absorbs radiation (i.e., the rela-
tive refractive index m has a non-zero imaginary part) then the extinction cross section 
is greater than the scattering cross section; otherwise they are equal. The extinction and 

only on the ratio of the particle size to the wavelength rather than on r and  separately 
provided that the relative refractive index m is wavelength-independent (see Section 3.5 of 
Mishchenko et al., 2006). The normalized Stokes scattering matrix F
is another scale-invariant quantity. 

For a polydisperse ensemble of spherical particles, the average scattering and the extinc-
tion cross sections are given by 

 

 (2.45a)

 

 (2.45b)

where n(r)dr is the fraction of particles with radii between r and r+dr normalized such 
that

 

 (2.46)
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The corresponding formula for the ensemble-averaged elements of the normalized scatter-
ing matrix is as follows:

 

 (2.47)

Although spherical (or nearly spherical) aerosols do exist (e.g., Figure 2.6a), many aerosol 
types exhibit complex particle morphologies (e.g., Figures 2.6b–d), thereby rendering the 
Lorenz–Mie theory potentially inapplicable. The optical properties of such nonspherical 
and/or heterogeneous particles must be either computed using an advanced theory of elec-

2.7  Nonspherical particles: Theory and measurements

(a)

(b)

500 nm

0.5

200 nm

(c)

10 μm

10 μm

(d)

μm

2.7

  Examples of aerosol-particle morphologies. (a) Sub-micrometer-sized quasi-spherical 
ammonium sulphate and dust aerosols (after Weinzierl et al., 2009). (b) A soot aggregate (after Li 
et al., 2003). (c) Sahara-desert soil particles (after Weinzierl et al., 2009). (d) Dry sea-salt particles 
(after Chamaillard et al., 2003).
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tromagnetic scattering or measured experimentally, both approaches having their strengths, 
weaknesses, and limitations. In this section, we provide a brief summary of the existing 
theoretical and experimental techniques for the determination of single-particle scattering 
and absorption characteristics. Detailed information and further references can be found 
in the books by Mishchenko et al. (2000, 2002) and Babenko et al. (2003) as well as in the 
review by Kahnert (2003). 

The majority of the existing exact theoretical approaches belong to one of two broad cate-

of the Maxwell equations or the vector wave equation in the frequency or in the time 
domain, whereas integral equation methods are based on the volume or surface integral 
counterparts of the Maxwell equations. 

The classical example of a differential equation method is the Lorenz–Mie theory dis-
cussed in the preceding section. By implementing a recursive procedure, one can general-
ize the Lorenz–Mie solution to deal with concentric multilayer spheres. 

Like the Lorenz–Mie theory, the separation of variables method (SVM) for homoge-

are assumed to vary in time according to the same factor exp( ). The SVM is based on 
solving the electromagnetic scattering problem in spheroidal coordinates by means of ex-

-
mined by applying the appropriate boundary conditions. Unfortunately, the vector spheroi-
dal wave functions are not orthogonal on the surface of a spheroid. Therefore, this proce-

has to be truncated and solved numerically. The main limitation of the SVM is that it can be 
applied only to spheroidal scatterers, whereas its primary advantages are the applicability 
to spheroids with extreme aspect ratios and the ability to produce accurate benchmarks. 

-
tion subject to the standard boundary conditions. The scattering object is intentionally im-

the cells and are initially unknown. Using the boundary conditions, the differential equa-

is solved using the standard Gaussian elimination or one of the preconditioned iterative 

in order to limit the number of unknowns. Therefore, one has to impose approximate ab-
sorbing boundary conditions at the outer boundary of the computational domain, thereby 

-
cal analogs of the outward-propagating wave to exit the domain almost as if the domain 
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particles and is simple in terms of its concept and practical implementation. However, FEM 

scatterer itself. This makes the technique rather slow and limits particle size parameters to 

boundary conditions limit the accuracy of the method.

yields the solution of the electromagnetic scattering problem in the time domain by directly 

so that they constrain computational errors and ensure numerical stability of the algorithm. 

requires the imposition of absorbing boundary conditions as a model of scattering in the 
open space. Representing a scattering object with curved boundaries using rectangular grid 
cells causes a staircasing effect and increases numerical errors, especially for particles with 

a special near-zone to far-zone transformation must be implemented in order to compute 
-

tages as the FEM and shares its limitations in terms of accuracy and size parameter range.
The interaction of an incident plane electromagnetic wave with an arbitrary particle can 

also be described fully by the frequency-domain so-called volume integral equation (VIE). 

-
mated by partitioning the interior region into a large number N of small cubical cells with 

index within each cell are constant. The resulting system of N linear algebraic equations for 
the N

-
sion of the VIE method is known as the method of moments (MOM). The simple approach 

elimination is not practical for particle size parameters exceeding unity. The conjugate gra-

size parameters and reduces computer memory requirements substantially. The traditional 
drawback of using a preconditioned iterative technique is that computations must be re-
peated anew for each illumination direction. 

Another version of the VIE technique is the so-called discrete dipole approximation 
(DDA). Whereas the MOM deals with the actual
DDA exploits the concept of exciting 
number N of elementary polarizable units called dipoles. The form of the electromagnetic 

scattered by all the other dipoles. This allows one to form a system of N linear equations 
for the N N dipoles. The numerical solution of the DDA matrix equation 
is then used to compute the N -

2.7  Nonspherical particles: Theory and measurements
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however, it has been demonstrated since that the DDA can be derived from the VIE and 
thus is closely related to the MOM. 

The main advantages of the MOM and the DDA are that they automatically satisfy 
-

to the scatterer volume, thereby resulting in fewer unknowns than the differential equa-
tion methods. However, the numerical accuracy of the MOM and DDA is relatively low 
and improves rather slowly with increasing N, whereas the computer time grows rapidly 
with increasing size parameter. Another disadvantage of these techniques is the need to 
repeat the entire calculation for each new direction of incidence. Further information on 
the MOM and the DDA and their applications can be found in the recent review by Yurkin 
and Hoekstra (2007). 

The classical Lorenz–Mie solution can be extended to a cluster of non-overlapping 
spheres by using the translation addition theorem for the participating VSWFs. The total 

origins at the individual sphere centers. The orthogonality of the VSWFs in the sphere 
boundary conditions is exploited by applying the translation addition theorem wherein a 
VSWF centered at one sphere origin is re-expanded about another sphere origin. This pro-

Alternatively, the numerical inversion of the cluster matrix equation yields sphere-cen-
tered transition matrices (or T -

into a single expansion centered at a single origin inside the cluster. This procedure yields 
the cluster T -

(Mackowski and Mishchenko, 1996). 
This so-called superposition method (SM) has been extended to spheres with one or 

more eccentrically positioned spherical inclusions as well as to clusters of spheroids in an 

capable of producing very accurate numerical results. 
The T

T matrix 

if known, can be used to compute any scattering characteristic of the particle. The TMM was 
initially developed by Waterman (1971) for single homogeneous objects, but has since been 
generalized to deal with multilayered scatterers and arbitrary clusters of nonspherical parti-
cles. For a homogeneous or concentrically layered sphere, all TMM formulas reduce to 
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those of the Lorenz–Mie theory. In the case of a cluster composed of spherical components, 
the TMM reduces to the multisphere SM mentioned above. 

The T matrix for single homogeneous and multilayered scatterers is usually computed 
using the so-called extended boundary condition method (EBCM) applicable to any parti-

-
ies of revolution. Special procedures have been developed to improve the numerical stabil-
ity of EBCM computations for large size parameters and/or extreme aspect ratios. More 
recent work has demonstrated the practical applicability of the EBCM to particles without 

the T matrix for a cluster of particles is based on the assumption that the T matrices of all 
components are known and is based on the use of the translation addition theorem for the 
VSWFs. 

symmetry is the main drawback of the TMM. The main advantages of the TMM are high 
accuracy and speed coupled with applicability to particles with equivalent-sphere size pa-
rameters exceeding 200. There are several semi-analytical orientation averaging proce-
dures that make TMM computations for randomly oriented particles as fast as those for a 

Figure 2.7 shows examples of particles that can be treated using various implementations 
of the TMM. A representative collection of public-domain T-matrix computer programs has 
been available at http://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html since 1996 
and has been used in more than 780 peer-reviewed publications. These programs have been 

2.7  Nonspherical particles: Theory and measurements

Spheroids

Circular cylinders

Chebyshev particles

Cluster of spheres

Polyhedral particles

Superellipsoids

Osculating spheres

Sphere cut by plane

  Types of particles that can be treated with the T-matrix method.

http://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html
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(Wiscombe and Mugnai, 1986), osculating spheres, spheres cut by a plane, and clusters 
of spherical particles with touching or separated components. In all cases, the scattering 
object in question can be randomly or preferentially oriented. The EBCM-based programs 
have been thoroughly tested against the SVM for spheroids. The very high numerical accu-
racy of the 
accurate decimals which can be used for testing other numerically-exact and approximate 

T-
matrix codes is unparalleled, especially in computations for randomly oriented particles. 

The SVM, SM, and TMM are the only methods that can yield very accurate results for 
particles comparable to and larger than a wavelength. The analytical orientation averaging 

with moderate aspect ratios. Particles with larger aspect ratios can be treated with the SVM 
and an iterative EBCM. Computations for anisotropic objects and homogeneous and inho-

-
niques such as the FEM, FDTDM, MOM, and DDA. All these techniques are conceptu-
ally simple, can be easily implemented, and have comparable performance characteristics. 

accuracy and by stricter practical limitations on the range of size parameters and/or refrac-
tive indices. A comprehensive collection of computer programs based on various exact 
numerical techniques is available at http://www.scattport.org/.

The practical importance of approximate theories of electromagnetic scattering dimin-

become applicable to a wider range of problems. However, at least one approximation, the 
geometrical optics method (GOM), is not likely to become obsolete in the near future since 
its accuracy often improves as the particle size parameter grows, whereas all numerically-
exact theoretical techniques for nonspherical particles become inapplicable whenever the 
size parameter exceeds a certain threshold. The GOM is a phenomenological approach to 
the computation of electromagnetic scattering by an arbitrarily shaped particle with a size 
much greater than the wavelength of the incident light. It is based on the assumption that 
the incident plane wave can be represented as a collection of “independent (or incoherent) 
parallel rays”. The history of each ray impinging on the particle boundary is traced indi-

and partially refracted into the particle. The refracted ray may emerge after an inside–out 

absorption inside the particle. Each internal ray is traced until its intensity decreases below 
a prescribed cutoff value. Varying the polarization state of the incident rays, sampling all 

-
tive Stokes parameters of the emerging rays yields a quantitative representation of the 
particle’s scattering properties in terms of the ray-tracing scattering matrix. The ray-trac-
ing extinction cross section does not depend on the polarization state of the incident light 
and is equal to the geometrical area G of the particle projection on the plane perpendicular 

front by eliminating a part that has the shape and size of the geometrical projection of the 

the Fraunhofer pattern caused by diffraction of the incident wave on the particle projection. 
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Since the particle size is assumed to be much greater than the incident wavelength, the dif-

at the exact forward-scattering direction. 
The main advantage of the GOM is its applicability to essentially any particle shape. How-

in terms of the smallest size parameter must be examined thoroughly by comparing GOM 
results with numerically-exact solutions of the Maxwell equations. Such comparisons with 
Lorenz–Mie and T-matrix results have demonstrated that although the main geometrical op-
tics features can be reproduced qualitatively by particles with size parameters less than 100, 
obtaining good quantitative accuracy in GOM computations of the scattering matrix requires 
size parameters exceeding a few hundred. Even then, the GOM fails to reproduce scattering 
features caused by various interference effects. 

The so-called physical optics or Kirchhoff approximation (KA) has been developed 
with the purpose of improving the GOM performance (see, e.g., P. Yang and Liou, 2006). 

-
-

mately using Fresnel’s formulas and the standard ray-tracing procedure. The KA partially 
preserves the phase information and reproduces some physical optics effects ignored com-
pletely by the simple GOM. 

The majority of existing laboratory measurement techniques fall into two basic catego-
ries: 

micron to several hundred microns; 

of sensitive detectors of electromagnetic energy, diverse sources of radiation, and high-
quality optical elements. They usually involve less expensive and more portable instru-

-
cal characteristics and composition. Microwave scattering experiments often require more 
cumbersome and expensive instrumentation and large stationary measurement facilities, 
but allow almost full control over the scattering object.

Traditional detectors of electromagnetic energy in the visible and near-infrared spectral 
regions are polarization-insensitive, which means that the detector response is determined 

that in order to measure all 16 elements of the scattering matrix, one must use optical ele-

and controllable way. Figure 2.8 depicts the scheme of a modern laboratory setup used to 

-
nates particles contained in the scattering chamber. Light scattered by the particles at an 

2.7  Nonspherical particles: Theory and measurements
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angle  relative to the incidence direction passes a quarter-wave plate and a polarization 
analyzer, after which its intensity is measured by a detector. The transformation Mueller 
matrices of the polarizer, modulator, quarter-wave plate, and analyzer depend on their ori-
entation with respect to the scattering plane and can be varied precisely. Because the detec-

-
ments with different orientations of the optical components with respect to the scattering 
plane are necessary for the full determination of the scattering matrix. This procedure must 

scattering matrix, perhaps with the exception of near-forward and/or near-backward direc-
tions. This laboratory technique has been used to accumulate a large and representative set 

by Muñoz and Volten, 2006 and references therein)  
In accordance with the above-mentioned electromagnetic scale invariance rule (see Sec-

tion 3.5 of Mishchenko et al., 2006), the main idea of the microwave analog technique 
is to manufacture a centimeter-sized scattering object with desired shape and refractive 

the result to visible or near-infrared wavelengths by keeping the ratio of the object size 

radiation from a transmitting conical horn antenna passes through a collimating lens and a 

  Schematic view of a laboratory scattering setup based on measurements of visible or near-
infrared light (after Hovenier, 2000).
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-
cle model. The scattered wave passes through another polarizer and lens and is measured 
by a receiving horn antenna. Positioning the receiver end of the setup at different scattering 
angles yields information on the angular distribution of the scattered radiation. By varying 
the orientations of the two polarizers, one can measure all 16 elements of the scattering 
matrix. 

The review by Hansen and Travis (1974) and monographs by Mishchenko et al. (2000, 
2002) provide a detailed discussion of extinction, scattering, and absorption properties of 
aerosol particles having diverse morphologies and compositions. Plentiful information on 
light scattering by nonspherical and morphologically complex particles can also be found 
in several special issues of the Journal of Quantitative Spectroscopy and Radiative Transfer 
(Hovenier, 1996; Lumme, 1998; Mishchenko et al., 1999b, 2008; Videen et al., 2001, 2004; 
Kolokolova et al., 2003; Wriedt, 2004; Moreno et al., 2006; Voshchinnikov and Videen, 
2007; Horvath, 2009; Hough, 2009). Therefore, the limited purpose of the several illustra-
tive examples given in this section is to highlight the most typical traits of the single-scat-
tering patterns caused by small particles.

-
rameter x for monodisperse spheres with three real-valued relative refractive indices. Each 
curve exhibits a succession of major low-frequency maxima and minima with a super-
imposed high-frequency ripple consisting of sharp, irregularly spaced extrema many of 
which are super-narrow spike-like features. The major maxima and minima are called the 
“interference structure” since they are usually interpreted as being the result of interfer-
ence of light diffracted and transmitted by the particle. Unlike the interference structure, 
the so-called morphology-dependent resonances (MDRs) forming the ripple are caused by 

a
n
 and b

n

values. The interference structure and the MDRs are typical attributes of all scattering 
characteristics of nonabsorbing monodisperse spheres. 

Irrespective of m
size parameters (i.e., as x approaches zero). Indeed, it is well known that for nonabsorbing 
particles much smaller than the wavelength, 

 

 
(2.48)

-
cle size becomes much greater than the wavelength, Q

e
 tends to the asymptotic geometri-

cal-optics value 2, with equal contributions from the rays striking the particle surface and 
the light diffracted by the particle projection. Figure 2.9 also demonstrates that for nonab-
sorbing particles with size parameters of order one, the extinction cross section can exceed 

2.8  Illustrative theoretical and laboratory results
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effective size parameters x

eff
 ranging from 0 to 30. The vertical axis scale applies to the curve with b 
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the particle geometrical cross section by more than a factor of 5.
For absorbing particles, extinction in the Rayleigh limit of size parameters is dominated 

by absorption and varies as the inverse wavelength:

  (2.49)

The MDRs rapidly weaken and then vanish with increasing absorption, as Figure 2.10 
demonstrates. Increasing the imaginary part of the relative refractive index Im(m) beyond 
0.001 starts to affect and eventually suppresses most of the interference structure as well. 

x
less pronounced, even at Im(m) = 0.1. 

A very similar smoothing effect on the interference structure and MDRs is caused by 
particle polydispersity. Figure 2.11 shows the results of Lorenz–Mie computations for the 
gamma distribution of particle radii 

  
(2.50)
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with the effective variance (width) b increasing from 0 (which corresponds to monodis-
perse particles) to 0.2 (which corresponds to a moderately wide size distribution). The 

average area of the particle geometrical projection and is plotted against the effective size 
x

eff
 = ka. It is seen that increasing the width of the size distribution 

(see Figure 2.12) initially suppresses the MDRs and then eliminates the interference struc-
ture. Interestingly, as narrow a dispersion of sizes as that corresponding to b = 0.01 washes 

to much larger values of b, but eventually fades away too. 

l
 entering the expansion (2.7) on par-

ticle physical characteristics, Figure 2.13 depicts them versus l for two polydispersions of 
spherical particles, each described by the gamma distribution (2.50). For both polydisper-
sions, the relative refractive index is m = 1.5 and the effective variance is b = 0.2. The ef-
fective size parameter x

eff

Figure 2.14 visualizes the four non-zero independent elements of the normalized Stokes 
scattering matrix (2.29) for each polydispersion. Figure 2.13 reveals the typical behavior of 

l
 with increasing index l

decay to absolute values below a meaningful numerical threshold. The greater the particle 

the slower their decay. This trend is largely explained by the rapid growth of the height of 
the forward-scattering peak in the phase function p( ) = F

11
( ) (as well as in the element  

F
33

( )) with increasing x
eff

 (see Figure 2.14).

phase functions in Figure 2.14 are qualitatively similar. The same is largely true of the 
ratio F

43
( )/F

11
( F

33
( )/F

11
( ) and 

–F
12

( )/F
11

( ) (the latter represents the degree of linear polarization of singly scattered 
light for unpolarized incident light) reveal a strong dependence on the effective size pa-
rameter. Indeed, at certain scattering angles these ratios can differ not just in magnitude but 
even in sign. Figure 2.15 demonstrates the equally strong dependence of the ratio –F

12
( )/

F
11

( ) on the relative refractive index. These results illustrate well why measurements of 
polarization contain much more information on particle microphysics than measurements 
of intensity only (e.g., Mishchenko et al., 2010 and references therein). 

The dependence of all scattering and absorption characteristics on particle microphysi-
cal properties can become much more intricate for nonspherical and/or morphologically 
complex particles, particularly those having a preferred orientation. This is especially true 
of the interference structure and MDRs, which now strongly depend on the particle orienta-
tion with respect to the incidence and scattering directions and on the polarization state of 
the incident light. However, averaging over orientations reinforces the effect of averaging 
over sizes and extinguishes many resonance features, thereby making scattering patterns 
for randomly oriented, polydisperse nonspherical particles even smoother than those for 

-
guish spherical and randomly oriented nonspherical particles based on qualitative differ-
ences in their scattering patterns. 

quantitative
As an example, Figure 2.16 contrasts the elements of the normalized Stokes scattering 

2.8  Illustrative theoretical and laboratory results
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matrix for polydisperse spheres and surface-equivalent, randomly oriented spheroids with 
a relative refractive index m = 1.53 + i0.008. The left-hand top diagram shows the corre-

= 0° to  ~ 15°– 20°;

nonsphere > sphere      from  ~ 15°–20° to  ~ 35°;

nonsphere < sphere      from  ~ 35° to  ~ 85°; (2.51)

nonsphere >> sphere      from  ~ 85° to  ~ 150°;

nonsphere << sphere      from  ~150° to  = 180°.

particle shape and relative refractive index, the enhanced side-scattering and suppressed 
backscattering appear to be rather typical characteristics of nonspherical particles. 

The degree of linear polarization for unpolarized incident light, –F
12

( )/F
11

( ), tends 
to be positive at scattering angles around 120° for the spheroids, but is negative at most scat-
tering angles for the surface-equivalent spheres. Whereas F

22
( )/F

11
( )  1 for spherical 

particles, the F
22

( )/F
11

(

 

 (2.52)

Similarly, F
33

( )/F
11

( )  F
44

( )/F
11

( ) for spherically symmetric particles, whereas the 
F

44
( )/F

11
( ) for the spheroids tends to be greater than the F

33
( )/F

11
( ) at most scattering 

angles, especially in the backscattering direction. The violation of the Lorenz–Mie equality 
F

44
(180°) = –F

11
(180°)  by the spheroids yields a non-zero value of the circular depolarization 

 

 (2.53)

(cf. Eq. (2.28)). The ratios F
43

( )/F
11

( ) for the spheres and the spheroids also reveal sig-

nonspherical/spherical differences in the integral scattering and absorption characteristics 

morphologically complex particles, direct theoretical computations for many types of natu-

2.6) remain highly problematic. Therefore, there have been several attempts to simulate the 
scattering and absorption properties of actual particles using simple model shapes. These 
attempts have been based on the realization that in addition to size and orientation averag-
ing, averaging over shapes can also be necessary in many cases. Indeed, usually ensembles 
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making quite questionable the utility of a single model shape (however “irregular” it may 
look to the human eye) in the representation of scattering properties of an ensemble. 

As an illustration, Figure 2.17 shows the phase functions computed for polydisperse, ran-
domly oriented prolate spheroids with varying aspect ratios (Mishchenko et al., 1997). It is 
seen indeed that even after size and orientation averaging, each spheroidal shape produces 

measurements for real nonspherical particles usually show smooth and mostly featureless 
phase functions. On the other hand, the grey curves in Figure 2.18 (Dubovik et al., 2006) 
show that shape mixtures of polydisperse, randomly oriented prolate and oblate spheroids 

scattering matrix for natural irregular particles. On the other hand, the Lorenz–Mie results 
depicted by black curves disagree with the laboratory data quite substantially.

These examples lead to two important conclusions. First of all, they provide evidence 
that the often observed smooth scattering-angle dependence of the elements of the scatter-

Volten, 2006) is largely caused by the diversity of particle shapes in the ensemble. Sec-
ondly, they suggest that at least some scattering properties of ensembles of irregularly and 
randomly shaped aerosols can be modeled adequately using polydisperse shape mixtures 
of simple particles such as spheroids. It goes without saying that forming representative 
mixtures of less regular particles than spheroids should be expected to eventually provide 

(e.g., Bi et al., 2009; Zubko et al., 2009).
In most cases nonspherical–spherical differences in the optical cross-sections and the 

-
ments. This does not mean, however, that the effects of nonsphericity and morphology on 
the integral scattering and absorption characteristics are always negligible or unimportant. 
An important type of particle characterized by integral radiometric properties substantially 
different from those of volume-equivalent spheres are clusters composed of large numbers 
of small monomers such as soot aggregates shown in Figure 2.6b (see, e.g., the reviews by 
Sorensen, 2001 and Moosmüller et al., 2009). The overall morphology of a dry soot aerosol 
is usually described by the following statistical scaling law: 

 

 (2.54)

where a is the monomer mean radius, k
0
 is the prefactor, D

f
 is the fractal dimension, N

S
 is 

the number of spherical monomers in the cluster, and R
g
, called the radius of gyration, is 

a measure of the overall cluster radius. The fractal dimension is especially important for 
the quantitative characterization of the aggregate morphology. Densely packed aggregates 
have D

f
 values approaching 3, whereas the fractal dimension of chain-like branched clus-

Detailed computations for fractal soot clusters based on the DDA and the superposition 
T-matrix method have been reported by Klusek et al. (2003), Liu and Mishchenko (2005, 

2.8  Illustrative theoretical and laboratory results
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2007), Liu et al. (2008), and Kahnert (2010). These numerically exact results have dem-
onstrated that the integral radiometric properties of the clusters can often be profoundly 
different from those of the volume-equivalent spheres. This is especially true of the scat-

(2.9). 
Figure 2.19 depicts the results of T-matrix computations of the scattering matrix ele-

ments averaged over 20 soot-cluster realizations randomly computer-generated for the same 
values of the fractal parameters using the procedure developed by Mackowski (2006). In a 
rather peculiar way (cf. West, 1991), the angular scattering properties of the clusters appear 
to be a mix of those of wavelength-sized compact particles (the nearly isotropic Rayleigh 
phase function of the small individual spherules evolves into a forward scattering phase 
function) and Rayleigh scatterers (i.e., the ratio –F

12
( )/F

11
( ) is systematically positive, 

almost symmetric with respect to the scattering angle  = 90°, and reaches a nearly 100% 
maximum at F

34
( )/F

11
( ) is very close to zero). The deviation of 

the ratio F
22

( )/F
11

( ) from 100% is the only unequivocal manifestation of the nonsphe-
ricity of the soot-cluster shape. 
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Stokes scattering matrix for micrometer-sized feldspar particles at a wavelength of 633 nm (Volten 

T-matrix results 
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real and model particle shapes are contrasted in the inset. The black curves show the corresponding 
results for volume-equivalent polydisperse spherical particles.
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wavelength of the incident light is 628 nm. Also shown are Lorenz–Mie results for the corresponding 
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is the result of applying the single-scattering approximation to the corresponding external 
mixture of the constituent monomers (i.e., by assuming that all monomers are widely sepa-
rated and randomly positioned rather than form a cluster with touching components). The 
second set was computed by applying the Lorenz–Mie theory to a homogeneous sphere 
with a volume equal to the cumulative volume of the cluster monomers. Clearly, the exter-
nal-mixture model provides a poor representation of the cluster phase function, whereas 
the performance of the equal-volume-sphere model is inadequate with respect to all scat-
tering matrix elements. 

2.8  Illustrative theoretical and laboratory results
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