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Coherent backscattering in the cross-polarized channel
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We analyze the asymptotic behavior of the cross-polarized enhancement factor in the framework of the standard
low-packing-density theory of coherent backscattering by discrete random media composed of spherically
symmetric particles. It is shown that if the particles are strongly absorbing or if the smallest optical dimension of
the particulate medium (i.e., the optical thickness of a plane-parallel slab or the optical diameter of a spherically
symmetric volume) approaches zero, then the cross-polarized enhancement factor tends to its upper-limit value
2. This theoretical prediction is illustrated using direct computer solutions of the Maxwell equations for spherical
volumes of discrete random medium.
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I. INTRODUCTION

Coherent backscattering (CB) of light (otherwise known as
weak localization of electromagnetic waves) is a remarkable
interference effect surviving any degree of disorder of a sparse
particulate medium [1–6]. Although CB has been studied
extensively over the past 25 years, some aspects of this
phenomenon remain poorly understood and require further
analysis. One of the puzzling quantitative characteristics of
CB is the so-called cross-polarized enhancement factor ζ⊥,||.
In early laboratory experiments (e.g., [7,8]), the ζ⊥,|| values
measured for optically thick (essentially semi-infinite) partic-
ulate layers were found to be much closer to unity than those
of the copolarized enhancement factor ζ||,||. Yet numerically
exact theoretical results valid in the asymptotic limit of very
small packing density revealed frequent occurrences of ζ⊥,||
values close to the theoretical upper limit ζ max

⊥,|| = 2 [5]. Most
intriguingly, these large values of ζ⊥,|| were found for optically
thin particulate slabs or for strongly absorbing particles, that is,
in cases when the amount of multiple scattering is minimized
and many other manifestations of CB are suppressed.

In this paper, we give a simple physical explanation
of this behavior of the cross-polarized enhancement factor.
Furthermore, we show that this behavior is reproduced not only
by the asymptotic low-density theory of CB but also by direct
computer solutions of the macroscopic Maxwell equations for
spherical volumes of discrete random media.

II. THEORY

In the framework of the standard low-density theory of
radiative transfer and CB [5], the response of a discrete

random medium to external illumination in the form of a
plane electromagnetic wave or a parallel quasimonochromatic
beam of light is fully described by the corresponding 4 × 4
real-valued Mueller matrix R:

⎛
⎜⎜⎜⎝

I sca(n̂sca)

Qsca(n̂sca)

U sca(n̂sca)

V sca(n̂sca)

⎞
⎟⎟⎟⎠ ∝ R(n̂sca,n̂inc)

⎛
⎜⎜⎜⎝

I inc

Qinc

U inc

V inc

⎞
⎟⎟⎟⎠ . (1)

Here, the Stokes parameters I, Q, U, and V of the incident
(“inc”) and scattered (“sca”) light are defined with respect
to the scattering plane, that is, the plane defined by the unit
vectors of the incidence, n̂inc, and scattering, n̂sca, directions
(Fig. 1). The Mueller matrix is decomposed into the first-
order scattering (superscript 1), diffuse multiple-scattering
(superscript M), and cyclical (superscript C) contributions
[9–14]:

R(n̂sca,n̂inc) = R1(n̂sca,n̂inc) + RM (n̂sca,n̂inc) + RC(n̂sca,n̂inc).

(2)

Both R1(n̂sca,n̂inc) and RM (n̂sca,n̂inc) can be found by
solving the standard vector radiative transfer equation [5].
Furthermore, in the case of the exact backscattering direction
(n̂sca = −n̂inc), the cyclical Mueller matrix can be rigorously
expressed in terms of the diffuse multiple-scattering matrix.
Specifically, assuming that the particulate medium is macro-
scopically isotropic and mirror-symmetric [15] and can be
modeled as a plane-parallel slab of infinite horizontal extent
or as a spherically symmetric volume, we have [5,16]

RC(−n̂inc,n̂inc) =

⎛
⎜⎜⎝

RC
11(−n̂inc,n̂inc) RM

12(−n̂inc,n̂inc) 0 0
RM

12(−n̂inc,n̂inc) RC
22(−n̂inc,n̂inc) 0 0

0 0 RC
33(−n̂inc,n̂inc) RM

34(−n̂inc,n̂inc)
0 0 −RM

34(−n̂inc,n̂inc) RC
44(−n̂inc,n̂inc)

⎞
⎟⎟⎠ , (3)
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where
RC

11(−n̂inc,n̂inc) = 1
2

[
RM

11(−n̂inc,n̂inc) + RM
22(−n̂inc,n̂inc)

−RM
33(−n̂inc,n̂inc) + RM

44(−n̂inc,n̂inc)
]
,

(4)

013829-11050-2947/2011/83(1)/013829(5) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.013829


MISHCHENKO AND MACKOWSKI PHYSICAL REVIEW A 83, 013829 (2011)

RC
22(−n̂inc,n̂inc) = 1

2

[
RM

11(−n̂inc,n̂inc) + RM
22(−n̂inc,n̂inc)

+RM
33(−n̂inc,n̂inc) − RM

44(−n̂inc,n̂inc)
]
,

(5)

RC
33(−n̂inc,n̂inc) = 1

2

[ − RM
11(−n̂inc,n̂inc) + RM

22(−n̂inc,n̂inc)

+RM
33(−n̂inc,n̂inc) + RM

44(−n̂inc,n̂inc)
]
,

(6)

RC
44(−n̂inc,n̂inc) = 1

2

[
RM

11(−n̂inc,n̂inc) − RM
22(−n̂inc,n̂inc)

+RM
33(−n̂inc,n̂inc) + RM

44(−n̂inc,n̂inc)
]
.

(7)

Note that the matrices R1(−n̂inc,n̂inc) and RM (−n̂inc,n̂inc)
have the same block-diagonal structure, with only six inde-
pendent elements:

R1(−n̂inc,n̂inc) =

⎛
⎜⎜⎜⎝

R1
11(−n̂inc,n̂inc) R1

12(−n̂inc,n̂inc) 0 0

R1
12(−n̂inc,n̂inc) R1

22(−n̂inc,n̂inc) 0 0

0 0 R1
33(−n̂inc,n̂inc) R1

34(−n̂inc,n̂inc)

0 0 −R1
34(−n̂inc,n̂inc) R1

44(−n̂inc,n̂inc)

⎞
⎟⎟⎟⎠ , (8)

RM (−n̂inc,n̂inc) =

⎛
⎜⎜⎜⎝

RM
11(−n̂inc,n̂inc) RM

12(−n̂inc,n̂inc) 0 0

RM
12(−n̂inc,n̂inc) RM

22(−n̂inc,n̂inc) 0 0

0 0 RM
33(−n̂inc,n̂inc) RM

34(−n̂inc,n̂inc)

0 0 −RM
34(−n̂inc,n̂inc) RM

44(−n̂inc,n̂inc)

⎞
⎟⎟⎟⎠ . (9)

The above formulas allow one to introduce the cross-polarized enhancement factor ζ⊥,|| in the case of incident light linearly
polarized in the scattering plane (Qinc = I inc, U inc = V inc = 0). Specifically, ζ⊥,|| is defined as the ratio of the total cross-polarized
intensity (i.e., the total-intensity component polarized perpendicularly to the scattering plane) scattered in the exact backscattering
direction to the diffuse cross-polarized intensity. We then have [5]

ζ⊥,||(n̂inc) = I⊥(−n̂inc)

I diff
⊥ (−n̂inc)

= R1
11 − R1

22 + RM
11 − RM

22 − RM
33 + RM

44

R1
11 − R1

22 + RM
11 − RM

22

, (10)

where the arguments (−n̂inc,n̂inc) on the right-hand side are omitted for brevity. Note that in [5] this quantity is denoted as
ζhv. An important property of the cross-polarized enhancement factor is that in the case of spherically symmetric particles
R1

11(−n̂inc,n̂inc) ≡ R1
22(−n̂inc,n̂inc), and so the resulting formula for ζ⊥,|| contains no first-order scattering terms,

ζ⊥,||(n̂inc) = RM
11(−n̂inc,n̂inc) − RM

22(−n̂inc,n̂inc) − RM
33(−n̂inc,n̂inc) + RM

44(−n̂inc,n̂inc)

RM
11(−n̂inc,n̂inc) − RM

22(−n̂inc,n̂inc)
. (11)

Let us now assume that RM (−n̂inc,n̂inc) is domi-
nated by the diffuse second-order scattering contribution:
RM (−n̂inc,n̂inc)≈R2(−n̂inc,n̂inc). This is the case when the
particles are strongly absorbing, thereby implying a vanish-
ingly small single-scattering albedo �, or when the smallest
optical dimension T of the particulate medium (i.e., the optical
thickness of a plane-parallel slab or the optical diameter
of a spherically symmetric volume) tends to zero. It is
then straightforward to show that in the case of spherically
symmetric constituent particles,

lim
�→0

ζ⊥,||(n̂inc) = lim
T →0

ζ⊥,||(n̂inc) = 2. (12)

Indeed, let us consider an arbitrary second-order scattering
ladder diagram involving particles 1 and 2 (Fig. 2). Plane
B contains the centers of the particles, whereas plane A is
the reference plane used to specify the Stokes parameters of
the incident and scattered light in Fig. 1. It is clear that to
compute the contribution of this diagram to the total diffuse
multiple-scattering Mueller matrix, one needs to evaluate the

scan̂

Θ

incn̂

FIG. 1. (Color online) Scattering geometry.
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incn̂

A

B 1

2 α

incn̂−

θ 1

θ2

FIG. 2. (Color online) Second-order backscattering.

following matrix product:

M = L(α)F2(θ2)F1(θ1)L(α). (13)

Here,

L(η) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 cos 2η − sin 2η 0

0 sin 2η cos 2η 0

0 0 0 1

⎞
⎟⎟⎟⎠ (14)

is the rotation matrix describing the transformation of the
Stokes parameters upon the rotation of the reference frame
by an angle η in the clockwise sense as viewed in the direction
of light propagation, α is the angle between planes A and B,
Fi (i = 1,2) are the respective 4 × 4 Stokes scattering matrices
of particles 1 and 2 defined with respect to plane B, and
θi are the respective scattering angles (Fig. 2). Taking into
account that for the spherical particles each scattering matrix
is block-diagonal and has only four independent elements,

Fi(θ ) =

⎛
⎜⎜⎜⎝

ai1(θ ) bi1(θ ) 0 0

bi1(θ ) ai1(θ ) 0 0

0 0 ai3(θ ) bi2(θ )

0 0 −bi2(θ ) ai3(θ )

⎞
⎟⎟⎟⎠ , (15)

one can easily verify that

M11 − M22 = −M33 + M44 (16)

irrespective of α. Obviously, this equality holds for any pair
of particles and for any n̂inc. Therefore, it also holds for the
cumulative diffuse second-order scattering matrix,

R2
11(−n̂inc,n̂inc) − R2

22(−n̂inc,n̂inc)

= −R2
33(−n̂inc,n̂inc) + R2

44(−n̂inc,n̂inc). (17)

Upon substitution into Eqs. (11) and (17) obviously yields
Eq. (12).

III. NUMERICAL RESULTS

In the case of plane-parallel media consisting of sparsely
distributed particles, the limits of Eq. (12) are well illustrated
by the numerical results shown in Plate 14.6.3 and the left-hand
bottom panel of Fig. 14.6.3 in [5]. In this section, we further
demonstrate the second limit using direct computer solutions
of the Maxwell equations for statistically homogeneous

spherical volumes of discrete random media following the
general methodology described in [17].

Our model of discrete random media is a spherical volume
randomly filled with N identical nonoverlapping spherical
particles, as shown in Fig. 1. The dimension of the volume
is specified in terms of its size parameter kR, where k is the
wave number in the empty space surrounding the particles and
R is the volume radius defined such that the corresponding
sphere encloses the centers of all the constituent particles. The
size of the particles is defined in terms of their size parameter
ka, where a is the particle radius. The particle size parameter
is fixed at ka = 2, while the particle refractive index is fixed
at 1.31. The latter value is well representative of liquid water
and water ice at visible wavelengths.

The multisphere volumes that are used in our computations
were generated using a Monte Carlo algorithm designed to
sequentially add spherical particles to a growing, enclosing
spherical volume, in such a way so that the spheres do not
overlap, and the distribution of spheres throughout the volume,
at any point in the simulation, is statistically random with a
uniform, set volume fraction f.

Each N-particle group thus configured is then used to
average all far-field optical observables over the uniform
orientation distribution of this configuration with respect to the
laboratory reference frame. This approach yields, in effect, an
infinite continuous set of random realizations of the spherical
scattering volume and allows us to use the efficient analytical
orientation averaging technique afforded by the superposition
T-matrix method [18–20]. The latter represents a direct
computer solver of the macroscopic Maxwell equations for a
multisphere group. Within its range of numerical convergence,
the corresponding T-matrix computer program generates
results with a guaranteed number of accurate decimals, which
makes this technique numerically exact. All calculations were
performed using the most recent version of the multisphere
T-matrix code described in [21]. This updated code is written
in FORTRAN-90 in conjunction with message-passing interface
(MPI) instructions and is designed to be run on distributed
memory computer clusters.

As before, the overall scattering geometry is shown in
Fig. 1. The incident light propagates in the direction n̂inc and
is scattered in the direction n̂sca. The Stokes parameters of
the incident and scattered light are specified with respect to
the scattering plane, and the transformation of the Stokes
parameters upon scattering is described by the respective
far-field Mueller matrix R. Since the multisphere
configurations used are sufficiently “random” by design,
averaging over all orientations of these configurations yields
a block-diagonal Mueller matrix having only six independent
significant elements,

⎛
⎜⎜⎝

I sca

Qsca

U sca

V sca

⎞
⎟⎟⎠ ∝

⎛
⎜⎜⎝

R11(�) R21(�) 0 0
R21(�) R22(�) 0 0

0 0 R33(�) R34(�)
0 0 −R34(�) R44(�)

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

I inc

Qinc

U inc

V inc

⎞
⎟⎟⎠ . (18)
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FIG. 3. (Color online) Normalized cross-polarized intensity vs
scattering angle for spherically symmetric volumes of discrete
random medium. (a) The volume packing density is fixed at f = 0.05.
(b) The volume size parameter is fixed at kR = 40.

We found that in all the cases considered, the maximum
magnitude of the matrix elements denoted by a zero does not
exceed 0.001 that of the major elements.

Figure 3 depicts the angular distribution of the cross-
polarized scattered intensity normalized by its backscattering
value,

I sca
⊥ (�)

I sca
⊥ (180◦)

= R11(�) − R22(�)

R11(180◦) − R22(180◦)
. (19)

In panel (a), the packing density is fixed at f = 0.05, while
kR is given values 40, 50, and 60 corresponding to N =
384, 752, and 1301. In panel (b), the volume size parameter
is fixed at kR = 40, while the packing density f is varied
between 0.01 and 0.2. One can see that both panels exhibit
pronounced backscattering peaks. The angular widths of the
peaks scale as 1/kR in panel (a) and are independent of f
in panel (b), which is consistent with the CB origin of the
peaks and relatively small optical thicknesses of the scattering
volumes. The peaks are rounded at � = 180◦, which is a
typical trait of finite particulate media [22,23]. Finally, in
agreement with the discussion in the previous section, the
amplitudes of the cross-polarized intensity peaks are very
close to 2.

IV. CONCLUDING REMARKS

The two limits of Eq. (12) supplement the set of general
properties of CB characteristics of discrete random media
composed of spherically symmetric particles as summarized
in Sec. 14.5.5 of [5]. The very structure of the cross-polarized
enhancement factor for spherical particles, wherein the first-
order scattering contribution gets eliminated, endows ζ⊥,|| with
a remarkable property of survival in circumstances when the
majority of other manifestations of CB get strongly suppressed
if not totally extinguished. This may make measurements of
ζ⊥,|| a useful optical characterization tool in various physi-
cal, chemical, biomedical, engineering, and remote-sensing
applications [24–28].

The apparent insensitivity of ζ⊥,|| to packing density
revealed by Fig. 3(b) is intriguing. In fact, our computations
for kR = 30 (not shown) suggest that this invariance may
hold up to packing densities ∼0.4. Whereas the Lorenz-Mie
values of the single-particle extinction cross section may be
applicable to sparsely distributed particles with f = 0.01,
they becomes quite questionable in application to densely
packed particles with f � 0.05. In this regard, Fig. 3(b) may
be indicative of a substantial decrease of the single-particle
extinction cross section with increasing f which results in com-
parable values of the respective optical diameters of the five
scattering volumes despite a 20-fold variation of the packing
density.

The general property (17) of the diffuse second-order
backscattering Mueller matrix may have important implica-
tions for active remote sensing of liquid-droplet clouds in
the terrestrial atmosphere. Indeed, exactly the same property
is possessed by the Mueller matrix describing first-order
backscattering from nonspherical particles [see Eq. (2.131)
of [15]. This implies that a nonzero contribution of multiple
scattering to the lidar or radar signal can easily be misin-
terpreted in terms of the presence of nonspherical particles.
Averaging over all α in Fig. 2 yields

R2
22(−n̂inc,n̂inc) = −R2

33(−n̂inc,n̂inc), (20)

which exacerbates the problem even further by implying the
standard “nonspherical” relationship between the resulting
linear and circular depolarization ratios [see Eq. (10.4)
of [15].

Finally, we note that while Eq. (12) represents a noteworthy
result for classical scatterers considered in this paper, similar
limits have been obtained previously for the case of cold atomic
media [29–31]. In particular, the cross-polarized enhancement
factor of 2 for double scattering by cold strontium atoms
has been reported based on both experimental and theoretical
studies [32], which may reveal an interesting analogy between
quantum and spherically symmetric classical scatterers.
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