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a b s t r a c t

Following Keller (Proc Symp Appl Math 1962;13:227–46), we classify all theoretical

treatments of electromagnetic scattering by a morphologically complex object into first-

principle (or ‘‘honest’’ in Keller’s terminology) and phenomenological (or ‘‘dishonest’’)

categories. This helps us identify, analyze, and dispel several profound misconceptions

widespread in the discipline of electromagnetic scattering by solitary particles and

discrete random media. Our goal is not to call for a complete renunciation of

phenomenological approaches but rather to encourage a critical and careful evaluation

of their actual origin, virtues, and limitations. In other words, we do not intend to deter

creative thinking in terms of phenomenological short-cuts, but we do want to raise

awareness when we stray (often for practical reasons) from the fundamentals. The main

results and conclusions are illustrated by numerically-exact data based on direct

numerical solutions of the macroscopic Maxwell equations.

Published by Elsevier Ltd.
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1. Introduction: microphysical and phenomenological
approaches to electromagnetic scattering

Scientific, biomedical, and engineering problems invol-
ving the scattering of light (or other electromagnetic
radiation) by a morphologically complex macroscopic
object are quite common. Among typical examples of a
complex scattering object are a cloud, a particulate surface,
a particle suspension, a tissue sample, or an isolated
morphologically complex particle. Quite often electromag-
netic scattering by a complex object is addressed without
an explicit solution of the macroscopic Maxwell equations
(MMEs). In some cases it is acknowledged that the MMEs
do control the scattering phenomenon, but then it is
claimed that a direct solution of the MMEs is far too
difficult to attempt. In many cases the MMEs are not
mentioned at all. Instead, an ad hoc ‘‘approximation’’ is
used and is essentially elevated to the level of an
independent basic physical principle, as exemplified by
the phenomenological radiative transfer theory (RTT).
Usually this is done based on vague ‘‘physical grounds’’,
which is a traditional implicit excuse for not being able to
derive the desired outcome mathematically from primor-
dial equations such as the MMEs.

Such approximations are often based on ‘‘physical
concepts’’ many of which are the consequence of trying to
describe a complex physical phenomenon using a simpli-
fied analogy. For example, the propagation of electro-
magnetic waves is often described as being analogous to
the propagation of waves on the surface of a pond. Such
an analogy may serve to increase the level of mental
comfort of students by helping them ‘‘visualize’’ a physical
phenomenon that escapes completely human natural
senses. However, this analogy can be quite misleading
and contains no real physics whatsoever since electro-
magnetic waves are not mechanical surface waves.
Instead, real physics is contained in the proper selection of

mathematical equations intended to adequately describe

specific natural phenomena. Once these primordial equa-
tions have been formulated, solving these equations
directly without invoking any ad hoc ‘‘physical concepts’’
would solve all real needs of the physicist.

Let us imagine, for example, that we have at our
disposal a direct computer solver of the MMEs (in the
form of a suitable {computer; computer program} combi-
nation) applicable to an arbitrarily complex object. Then
we would not need any approximation and any physical
concept not already contained in the MMEs in order to
interpret laboratory or remote-sensing measurements of
electromagnetic scattering. Indeed, the output of any
measurement could then be modeled by solving the
MMEs once for a fixed object or many times for a
representative set of realizations of a random object (such
as a cloud) supplemented by statistical averaging of the
relevant optical observables.

Unfortunately, a direct solver of the MMEs applicable
to a real cloud of liquid water droplets or ice crystals does
not exist and is unlikely to become available in the near
future. Hence the widespread use of ‘‘approximate’’
treatments of electromagnetic scattering by complex
macroscopic objects.

Paraphrasing Keller [1] and using his terminology, all
theoretical methods for treating electromagnetic scatter-
ing by a morphologically complex object can be classified
into two categories: ‘‘honest’’ (or microphysical) and
‘‘dishonest’’ (or phenomenological).1 An honest method
is the result of solving the MMEs, perhaps after making
one or more specific and well defined assumptions
intended to simplify the solution. For example, the
Rayleigh approximation [2] is the result of solving the
MMEs under the assumption that the product of the wave
number and the maximal particle dimension is much
smaller than unity, while the Fresnel formulas and
coefficients follow from the assumption that a plane
wave is incident on a perfectly flat interface separating
two homogeneous half-spaces with different real-valued
refractive indices. The practical applicability of a micro-
physical method usually requires no validation provided
that all underlying assumptions are indeed satisfied.
However, if an honest method is used to model situations
in which one or more of the underlying assumptions are
violated then the quantitative applicability of this
approach must be carefully examined [3].

Fundamentally, an honest method is by definition the
result of an explicit direct solution of the MMEs, e.g., a
closed-form analytical solution or a numerically-exact
computer solution. The former is often the consequence of
taking an asymptotic limit (e.g., assuming that the
product of the wave number and the distance from the
scattering object to the observation point is much greater
than unity, which renders the far-field approximation).
The latter is the outcome of running a direct computer
solver of the MMEs generating numbers with a guaran-
teed number of correct decimals. The number of correct
decimals may vary depending on the available computer
resources and practical accuracy requirements. However,
all reported decimals can, in principle, be validated by
modifying computer program settings in order to accom-
modate a more stringent accuracy requirement.

Quite often the use of a microphysical analytical
method allows one to identify certain idealized physical
concepts. Typical examples would be the asymptotic
short-wave concept of a light ray propagating in a
continuous medium, the concepts of reflection and
refraction of waves by a plane interface, the concepts of
wave interference and diffraction, and the concept of far-
field scattering. Such concepts are unnecessary in princi-
ple and are nothing more than verbal characterizations of
formulas derived from the MMEs. However, they consti-
tute what is usually called ‘‘physical understanding of the
problem’’ and as such may have some positive heuristic
value and facilitate qualitative ‘‘interpretation’’ of for-
mulas, digital computer outputs, or experimental data,

1 Of course, the words ‘‘honest’’ and ‘‘dishonest’’ are intended to

characterize methods rather than human character traits. However, the

terms ‘‘honest’’ and ‘‘dishonest theoretical methods’’ can be viewed by

some as having the connotation of a moral judgment about the

practitioners of such methods. Minding those who believe that Keller’s

terminology may be excessively figurative, we will often use the words

‘‘microphysical’’ and ‘‘phenomenological’’ as substitutes for ‘‘honest’’ and

‘‘dishonest’’, respectively.
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wherein formulas and numbers are ‘‘explained’’ or
‘‘interpreted’’ by using words. However, it is very
important to remember that such derivative concepts
represent idealizations, cannot replace the original math-
ematical formulas, and should not be used outside the
range of their validity defined by the explicit solution of
the MMEs.

A phenomenological approach to electromagnetic
scattering is not based on an explicit solution of the
MMEs for the specific scattering object in question.
Instead, it is a conglomerate of formulas and concepts
borrowed, on an ad hoc basis, from various honest (or
even other phenomenological) approaches. Almost always
a phenomenological approach is ‘‘derived’’ by saying
words under the pretense that these words represent a
‘‘physical understanding of the problem’’ which, presum-
ably, allows one to bypass writing down the MMEs and
solving them mathematically.

A classical example of a phenomenological approach is
the geometrical theory of diffraction (GTD) of electro-
magnetic waves in inhomogeneous media [4,5]. In fact,
the book by Borovikov and Kinber [4] is quite remarkable
in that it states explicitly that the GTD is based on a set of
‘‘postulates’’ intended to define the ‘‘directions of dif-
fracted rays’’. In other words, it is recognized that the
‘‘intuitively obvious’’ concept of rays is incompatible with
the physical phenomenon of diffraction of waves, and so
ad hoc postulates (i.e., patches) not following directly
from the MMEs are necessary to combine these motley
concepts into a practical computational procedure.

Unfortunately, such honest accounts of phenomenologi-
cal approaches are quite rare. Usually it is not recognized
that a verbally stated ‘‘physical understanding’’ represents,
in fact, one or several postulates which implicitly supple-
ment or even replace the MMEs. It is, however, a well-
known mathematical fact that a properly formulated
combination of the MMEs and boundary conditions has a
solution, this solution being unique. This means that any
additional postulate is unnecessary at best and can contra-
dict the MMEs at worst. As a consequence, phenomenolo-
gical approaches often serve as a plentiful source of
misconceptions hindering further progress in the theory of
electromagnetic scattering and its practical applications.

The main objective of this essay is to identify, analyze,
and dispel several such misconceptions widespread in the
discipline of electromagnetic scattering by an isolated
particle or a discrete random medium (DRM). To para-
phrase Keller [1] once more, our goal is not to call for a
complete renunciation of phenomenological approaches
but rather to encourage a critical and open evaluation of
their actual origin, virtues, and limitations. It is hoped that
in certain cases this can result in an improved justification
of a phenomenological method by showing that its results
are, in some cases, useful quantitative approximations to
a microphysical solution.

2. Framework

In what follows, we will assume that the interaction of
electromagnetic radiation with an isolated particle or a

DRM is fully described by the MMEs supplemented by
appropriate boundary conditions [6–8]. In other words, it
is assumed that at each moment in time, the entire
scattering object can be represented by a specific spatial
configuration of a number NZ1 of discrete finite particles
(Fig. 1). A solitary particle (N=1) or any constituent
particle of a group (N41) is assumed to be sufficiently
large so that it can be characterized by optical constants
appropriate to bulk matter. In terms of classical
macroscopic electromagnetics, the presence of a particle
means that the optical constants inside the particle
volume are different from those of the surrounding host
medium. The spatial distribution of the optical constants
throughout the scattering object defines the
corresponding boundary conditions which, along with
the radiation condition at infinity [9,10], make the
solution of the MMEs unique.

A more fundamental way to treat electromagnetic
scattering by the object shown in Fig. 1 would be to
consider it as a vast collection of elementary particles and
use the formalism of quantum electrodynamics (QED). We
do not do that for two reasons. First of all, the direct
application of this approach is impracticable, given the
enormous complexity of the scattering object at the
elementary-particle level, and, to the best of our knowl-
edge, has never been attempted. Second of all, it is known
that by combining the concepts of QED and statistical
mechanics and assuming that the scattering object is
macroscopic, one can arrive at the classical MMEs [11,12].
This means that certain optical observables can be
computed with sufficient accuracy by solving the MMEs,
which allows us to adopt them as primordial physical
equations in the specific context of our analysis of
electromagnetic scattering. Importantly, by virtue of
having their origin in QED, the MMEs themselves
represent an honest approach to the quantitative descrip-
tion of a wide range of electromagnetic phenomena.

Another basic assumption will be that all fields and
sources vary in time according to the complex-exponen-
tial time dependence exp(� iot), where t is time, o is the
angular frequency, and i=(�1)1/2. In other words, our
analysis will be explicitly limited to frequency-domain
electromagnetic scattering [6,9,10,13,14]. For the sake of
brevity, the factor exp(� iot) will thereafter be omitted.
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Fig. 1. Scattering object in the form of a group of N discrete particles.
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It is important to recognize that QED is based on the
quantization of the microscopic electromagnetic field
interacting with elementary particles and involves
photons, each photon being a quantum of a single normal
mode of the microscopic field [15–21]. As such, photons
are neither waves nor localized particles of light [15–23].
During the explicit derivation of the MMEs from QED,
photons and elementary particles ‘‘disappear’’, so that the
MMEs involve only the macroscopic electromagnetic field
and macroscopic optical constants. Therefore, if one wants
to invoke the concept of photons to describe electro-
magnetic scattering by a macroscopic object, the proper
way to do that is to retract the MMEs and consistently use
the equations and concepts of QED to describe the
interaction of the group of elementary particles constitut-
ing the scatterer with the microscopic electromagnetic
field.2 Otherwise juggling with ‘‘photons’’ and ‘‘waves’’ at
will and ascribing to the ‘‘photons’’ desirable rather than
actual properties results in the notorious ‘‘photonic
confusion’’ discussed in detail in [7,8,25].

3. Scattering and causality

Perhaps the most profound misconception in the
discipline of electromagnetic scattering is that scattering
by an isolated particle is a solitary process unfolding in
time continuously wherein the incident field becomes
transformed into the scattered field (see [25] for a more
extensive discussion). This process allegedly involves a
preceding incoming wave, the physical interaction of this
wave with the particle, and the subsequent transforma-
tion of the incident wave into the outgoing scattered
wave. Furthermore, the incident wave is often portrayed
as the physical cause of the scattered wave.

However, the actual way to define electromagnetic
scattering is to solve the MMEs twice. The first solution, in
terms of the respective pair of the electric and magnetic
fields fE1ðrÞ,H1ðrÞg, corresponds to the situation with
no scattering object, whereas the second solution,
fE2ðrÞ,H2ðrÞg, corresponds to the situation with a
scattering object present, where r is the position vector
of the observation point (Fig. 1). The second solution is
intentionally sought in the form

E2ðrÞ ¼ E1ðrÞþE3ðrÞ, ð1Þ

H2ðrÞ ¼H1ðrÞþH3ðrÞ, ð2Þ

where the vector fields E3(r) and H3(r) are required to
satisfy the radiation condition at infinity [9,10] by decay-
ing as the inverse distance from the object. The total field
in the absence of the particle is called the incident field,

whereas the difference between the total field in the
presence of the particle and the total field that would
exist in the absence of the particle is called the scattered
field:

Esca
ðrÞ � E3ðrÞ ¼ E2ðrÞ�E1ðrÞ ¼ E2ðrÞ�Einc

ðrÞ, ð3Þ

Hsca
ðrÞ �H3ðrÞ ¼H2ðrÞ�H1ðrÞ ¼H2ðrÞ�Hinc

ðrÞ: ð4Þ

Thus, it is the modification of the total electromagnetic field
resulting from the presence of the particle that is called
electromagnetic scattering. This means that although electro-
magnetic scattering can be said to be a physical phenomenon

(amounting to the fact that the total fields computed in the
presence and in the absence of a particle are different), it is
not a solitary physical process.

Eqs. (3) and (4) demonstrate that the total field in the
presence of the particle is intentionally represented as the
sum of the incident and scattered fields:

EðrÞ � E2ðrÞ ¼ Einc
ðrÞþEsca

ðrÞ, ð5Þ

HðrÞ �H2ðrÞ ¼Hinc
ðrÞþHsca

ðrÞ, ð6Þ

where Einc
ðrÞ and Hinc

ðrÞ are obtained by solving the MMEs
in the absence of the particle. This makes both the
incident and the scattered field, as they appear in Eqs. (5)
and (6), purely mathematical quantities. This implies, in
particular, that

� the incident field is not modified by scattering and is
not transformed into the scattered field;
� the purely mathematical incident field cannot interact

physically with the particle;
� the purely mathematical incident field cannot be a

physical cause of the purely mathematical scattered field;
� only the total field, either in the absence or in the

presence of the particle, is a real physical field.

These points are well exemplified by the so-called
volume integral equation (VIE), which follows directly
from the MMEs. The VIE for the electric field reads

EðrÞ ¼ Einc
ðrÞþk2

1

Z
VINT

dr0G
2

ðr,r0Þ � Eðr0Þ½m2ðr0Þ�1�

¼ Einc
ðrÞþk2

1 I
2

þ
1

k2
1

r �r

 !

�

Z
VINT

dr0Eðr0Þ
expðik1jr�r0jÞ

4pjr�r0j
½m2ðr0Þ�1�,

r 2 R3, ð7Þ

where m(r0) is the refractive index of the particle interior
relative to that of the host exterior medium, k1 is the wave
number in the host medium, G

2

ðr,r0Þ is the free space
dyadic Green’s function, I

2

is the identity dyadic, � is the
dyadic product sign, VINT is the interior volume of the
particle, and R3 is the entire three-dimensional space.
One can see that the VIE expresses the total field

2 Note in this regard that the so-called ‘‘cavity QED’’ based on the

quantization of the macroscopic electromagnetic field remains a

phenomenological theory [24]. In fact, this theory can hardly be self-

consistent in principle since the MMEs are derived by quantizing the

microscopic electromagnetic field in the first place. The legitimacy of a

repeated quantization of the resulting macroscopic electromagnetic field

is quite questionable and does not follow from any fundamental physical

principles. As a consequence, the cavity QED and similar approaches

based on the quantization of the macroscopic electromagnetic field

remain ‘‘dishonest’’ theories.
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everywhere in space in terms of the total field inside the
scattering object.3 If the scattering object is absent then
mðr0Þ � 1, and the total field is identically equal to the
incident field. Otherwise the total field can be represented
mathematically as a vector sum of the incident and
scattered components, the latter being given by the
second term on the right-hand side of Eq. (7).

Eq. (7) makes it quite obvious that the particle
interacts with the total field rather than with the incident
field. Therefore, if one wants to identify the cause of the
scattered field then it is the very presence of the particle.
This conclusion is quite consistent with the above
definition of the phenomenon of electromagnetic
scattering.

The erroneous characterization of electromagnetic
scattering by a particle as a solitary physical process
unfolding in time undoubtedly stems from the above-
mentioned ‘‘photonic confusion’’ (e.g., ‘‘a photon flies up
to a macroscopic object and bounces off of it, thereby
creating the scattered field’’) as well as from the misuse of
geometrical optics (e.g., ‘‘a ray impinges on the surface of
the particle and gets partly reflected from and partly
refracted into the particle; the reflected rays and the rays
refracted outside, perhaps after two or more internal
reflections, create the scattered field’’). Such characteriza-
tions of electromagnetic scattering fall apart as soon as
one begins to scrutinize the exact definitions and physical
meaning of the specific terms involved (e.g., [25]).

The verbally formulated causality of electromagnetic
scattering has been used to derive the so-called sum rule
for the extinction cross section by expressing the integral
of the extinction cross section over all wavelengths in
terms of a simple product of the particle volume and a
coefficient depending on the particle shape and static
dielectric function [27]. Several other sum rules have been
derived, again using the ‘‘causality’’ consideration (see,
e.g., references in [28]). However, as discussed above, the
scattered field is not caused by the incident field. There-
fore, alleged mathematical incarnations of the erro-
neously stated ‘‘physical’’ causality must be derived
directly from the MMEs rather than accepted
as ‘‘physically obvious’’ facts. Otherwise, they represent
additional postulates which, in fact, may contradict the
MMEs. Therefore, the resulting sum rules should be
considered unproven hypotheses rather than outcomes
of rigorous derivations from first principles [28].

4. Geometrical optics

An instructive example of a phenomenological theore-
tical approach is the geometrical optics method (GOM)
widely used to describe far-field electromagnetic scatter-
ing by a nonspherical particle [29,30]. The GOM is often
characterized as an asymptotic solution of the MMEs
in the limit k1Dmin-N, where Dmin is the smallest

dimension of the particle, although this characterization
is generally incorrect. In the case of scattering by a perfect
homogeneous sphere, many features of the GOM can be
justified, at least partially, by studying the asymptotic
behavior of the Lorenz–Mie coefficients [31–35]. How-
ever, the availability and great numerical efficiency of the
exact Lorenz–Mie theory limit the practical usefulness of
the GOM in the particular case of spherical particles. The
GOM is most useful in application to nonspherical
particles, since all numerically-exact techniques become
quite time-consuming, if even applicable, when the
particle size becomes much greater than the wavelength
[36–38]. In this general case, however, the GOM has never
been derived directly from the MMEs by evaluating the
limit k1Dmin-N. Instead, it remains a collection of ad hoc

formulas, recipes, and concepts united by ‘‘simple physi-
cal considerations’’. This does not allow one to character-
ize the GOM as an honest technique. Given the complexity
of the general scattering problem, this situation is unlikely
to change in the future.

Besides the simplest version of the GOM combining the
Snell–Fresnel ray tracing with diffraction on the particle
projection, several more sophisticated versions of the
GOM have been proposed, such as the GTD and the so-
called Kirchhoff approximation (see, e.g., [4,5,29,39–41]
and references therein). Like with any phenomenological
approach, the range of applicability of these and similar
techniques is not well defined, and their quantitative
applicability should be extensively examined versus
numerically-exact results [41–47].

As an example, Fig. 2 depicts the results of GOM and
Lorenz–Mie computations of the phase function a1(Y) for
nonabsorbing homogeneous spheres [36,48], where Y 2
½0,p� is the scattering angle defined as the angle between
the incidence and scattering directions. The phase
function describes the angular distribution of scattered
light for unpolarized incident intensity and is normalized
according to

1

2

Z p

0
dY sinYa1ðYÞ ¼ 1: ð8Þ

The Lorenz–Mie results are averaged over a narrow size
distribution with an effective variance of 0.07, so that x

represents the effective size parameter k1reff, reff being the
effective radius of the size distribution [48]. The GOM
results are computed for a single sphere with a size
parameter x=k1a, where a is the sphere radius. The ray-
tracing and diffraction components of the GOM phase
functions have been averaged over 11-wide angular
bins. One can see that the GOM phase-function
results for spheres become reasonably accurate only
at size-parameter values exceeding several hundred.
Furthermore, the simple GOM is unable to reproduce the
strong enhancement of intensity in the backscattering
direction traditionally called the glory. However, the
indisputable heuristic value of the GOM is the
qualitative prediction of the local maxima at scattering
angles close to 1371 and 1301 called the primary and
secondary rainbows.

Fig. 3 shows the results of approximate GOM and
numerically-exact T-matrix computations of the phase

3 Note that writing the VIE in the form of the first line of Eq. (7)

implies that the singularity of the dyadic Green’s function is treated in an

appropriate way (see [26] and references therein). This comment also

applies to Eq. (14) below.
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function for monodisperse, randomly oriented circular
cylinders with a diameter-to-length ratio of unity and a
relative refractive index m=1.311 [36,44]. The quasi-
periodic ripple in the T-matrix curves is caused by
interference effects characteristic of monodisperse
particles, the scattering-angle frequency of this ripple
being inversely proportional to particle size parameter
(see the discussion in the following section). Contrasting
Figs. 2 and 3 appears to suggest that GOM results for
nonspherical particles in random orientation may be
somewhat more accurate for a given size parameter
than those for surface-equivalent spheres. Again, the
heuristic value of the GOM in this case is its ability to
predict qualitatively specific scattering-angle features

such as the 461 halo and the strong and narrow
retroreflection peak centered at the exact backscattering
direction.

5. Multiple scattering

Throughout scientific literature, one can encounter
various definitions of ‘‘multiple scattering’’, all of them
stemming from an intuitive idea of successive scattering
events caused by a sequence of particles in a multi-
particle group. However, the characterization of a mor-
phologically complex object, such as a cloud, as being
composed of separate particles is based solely on the
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Fig. 2. Phase function versus scattering angle computed with the GOM and Lorenz–Mie theory for homogeneous spheres with a relative refractive index

m=1.33 and size parameters x=40, 160, and 600. The vertical axis scale applies to the curves with x=600, the other curves being successively displaced

upward by a factor of 100.
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human visual perception and is immaterial in the frame-
work of the MMEs. Indeed, the same VIE describes
electromagnetic scattering by a ‘‘multi-particle system’’
shown in Fig. 1 as well as by a ‘‘single isolated particle’’,
even though the interior volume VINT in the
former case is the union of the ‘‘constituent-particle
volumes’’. In other words, an object remains a single,
unified scatterer irrespective of the complexity of its
morphology.

To illustrate this point, let us consider far-field
scattering of a plane electromagnetic wave by three fixed
objects shown in Figs. 4a–c: an oblate spheroid with an
aspect ratio of 2, a circular cylinder with a diameter-to-
length ratio of one, and a cluster of 80 small identical
spherical particles randomly distributed throughout an
imaginary spherical volume V having a radius A. The
volume-equivalent-sphere size parameters of the
spheroid and the cylinder are the same and are equal to
that of the spherical volume: k1A=40. The size parameter
of the constituent spherical particles is k1a=4. The relative
refractive indices of the spheroid, the cylinder, and the
constituent spherical particles are the same and are equal
to 1.32. The coordinates of the constituent spheres
populating the volume V were selected using a random
number generator, but otherwise they are fixed.

The laboratory spherical coordinate system used to
describe far-field electromagnetic scattering is shown in
Fig. 4d, in which the unit vectors n̂

inc
and n̂

sca
specify the

directions of incidence and scattering, respectively. The
orientation of a scattering object with respect to the
laboratory frame is specified by the Euler angles of
rotation, as shown in Fig. 5 [36]. The corresponding sets
of the Euler angles fa,b,gg are given by {1451, 521, 01} for
the spheroid and the cylinder and by {01, 01, 01} for the
spherical volume.

The angular distribution and polarization state of the
scattered light in the far-field zone of the entire scattering
object is fully described by the so-called Stokes phase
matrix Z [36]. The latter expresses the Stokes parameters

of the light scattered in the observation direction n̂
sca

in
terms of those of the incident light:

Isca

Q sca

Usca

Vsca

2
6664

3
7775pZðn̂

sca
,n̂

inc
Þ

Iinc

Q inc

Uinc

V inc

2
6664

3
7775: ð9Þ

The Stokes parameters of the incident and scattered light
are defined with respect to the corresponding meridional
planes. The zenith and azimuth angles of the incidence
direction are assumed to be yinc=01 and jinc=01 which
implies that the meridional plane of the incidence
direction coincides with the xz half-plane with xZ0.
The incident light is taken to be circularly polarized in
the counter-clockwise sense when looking in the direction
of propagation, which implies that Vinc= Iinc and
Qinc=Uinc=0.

The left-hand panels of Figs. 6a–c show the far-field
angular distributions of the total intensity, Isca, scattered
in the backward hemisphere by the three fixed objects.
These intensity distributions were computed using the
numerically-exact T-matrix programs described in [36,49]
and demonstrate typical speckle patterns of comparable
complexity. The origin of the speckles can be explained
qualitatively as follows.

Using the VIE (7), it is rather straightforward to show
that sufficiently far from the entire scattering object, the
scattered field is given by the following formula of the far-
field approximation [36]:

Esca
ðrÞ ¼

r-1

expðik1rÞ

r

k2
1

4p ð I
2

�n̂
sca
� n̂

sca
Þ �

Z
VINT

dr0½m2ðr0Þ�1�

�Eðr0Þexpð�ik1n̂
sca
� r0Þ, ð10Þ

where r is the distance from the origin of the laboratory
coordinate system to the observation point. The cause of
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Fig. 3. GOM and T-matrix phase functions for monodisperse, randomly oriented circular cylinders with surface-equivalent-sphere size parameters xse=40

and 180.
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the speckle is the complex exponential factor
expð�ik1n̂

sca
� r0Þ on the right-hand side of Eq. (10).

Indeed, the electric field contributions from two

arbitrary elementary volumes of the scattering
object centered at r0 and r00 interfere in the far-field
zone, the result of the interference being controlled
by the product expð�ik1n̂

sca
� r0Þ½expð�ik1n̂

sca
� r
00

Þ�� ¼
exp½�ik1n̂

sca
� ðr0�r

00

Þ�, where the asterisk denotes a
complex-conjugate value. Depending on the angle be-
tween n̂

sca
and r0�r

00

and on jr0�r
00

j, this complex
exponential can be a rapidly varying function of n̂

sca
.

As a result, the angular scattering pattern in the far-
field zone can be expected to be a superposition of
multiple maxima and minima generated by different
pairs of elementary volume elements of the scatterer.
The most rapidly changing component of the scattering
pattern should be caused by the pairs of elementary
volume elements with ðr0�r

00

Þ ? n̂
sca

and jr0�r
00

j 	 2Amin,
where Amin is the radius of the smallest circumscribing
sphere of the scattering object. Therefore, the far-
field angular pattern can be expected to vary quite
significantly even when the scattering direction
changes by as little as p=ð2k1AminÞ (rad) since this change
corresponds to a change of the phase k1n̂

sca
� ðr0�r

00

Þ equal
to p The actual angular distribution of the intensity
maxima and minima depends, of course, on the morphol-
ogy of the scattering object, as the left-hand panels of
Fig. 6 vividly demonstrate.
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Fig. 5. Euler angles of rotation transforming the laboratory coordinate

system fx,y,zg into the particle coordinate system fx0 ,y0 ,z0g: The z0 axis for

the spheroid and the cylinder is directed along the axis of rotational

symmetry.
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The speckle patterns in Figs. 6a and b appear to be
somewhat less irregular than that in Fig. 6c. This can be
explained qualitatively by the greater morphological
complexity of the random multi-sphere group, the less
regular spatial distribution of the elementary volume
elements contributing to the integral on the right-hand
side of Eq. (10), and the fact that empty spaces between
the constituent spheres do not contribute to the scattered
field.

The right-hand panels of Fig. 6 show the results of
averaging the scattered intensity over the uniform
orientation distribution of the respective objects. Not
surprisingly, the average intensity distributions are
rotationally symmetric relative to the incidence direction.

Fig. 6. Total intensity scattered by the spheroid (a), the cylinder (b), and the spherical volume (c) in fixed (left-hand panels) and random (right-hand

panels) orientations. The grey scale was individually adjusted in order to maximally reveal the fine structure of each scattering pattern. Fig. 7 shows the

angular coordinates used for all six panels.

120°

300°60°

240°

180°

= 160°120° 140°
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Fig. 7. Angular coordinates used in Fig. 6.
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The scattering patterns for the randomly oriented spher-
oid and cylinder show residual interference effects,
whereas that for the randomly oriented multi-particle
group is rather featureless, with the exception of a strong
and narrow backscattering peak. Note that the
dotted curve in Fig. 3 largely reproduces the radial profile
of the scattered intensity in the right-hand panel of
Fig. 6b, the small differences resulting from the different
definitions of the particle size parameter (in terms of
those of the surface- and volume-equivalent sphere,
respectively).

Fig. 6 demonstrates that there can be vast differences
between instantaneous or statistically averaged scattering
patterns generated by different objects. However, these
differences result from differences in the objects’ char-
acteristics (such as the overall size relative to the
wavelength, morphology, and relative refractive index)
rather than from differences in fundamental physical laws
describing electromagnetic scattering. The physics of
electromagnetic scattering, as embodied by the MMEs or
the mathematically equivalent VIE, remains the same
irrespective of the nature of the scattering object. To the
extent that analytical or numerically-exact solutions of
these primordial equations are possible in practice, they
incorporate and represent all the physics of the scattering
problem.

Despite this irrefutable fact, there is a tendency to
believe that the ‘‘multi-particle’’ morphology shown in
Fig. 4c somehow results in a multiple-scattering object,
whereas the ‘‘single-particle’’ morphologies shown in
Figs. 4a and b result in single-scattering objects. We have
mentioned, however, that multiple electromagnetic scat-
tering is not a real physical phenomenon. Indeed, all three
left-hand panels in Fig. 6 are the result of solving the same
MMEs and describe single electromagnetic scattering by
three morphologically different objects. The computation
of the left-hand panel in Fig. 6c did not involve any new
equations and, thus, any new physical phenomena.

However, multiple scattering can be viewed as a useful
mathematical abstraction facilitating, in particular, the
derivation of such important honest theories as the
microphysical theories of radiative transfer (RT) and
coherent backscattering (CB). The specific way to intro-
duce the mathematical concept of multiple scattering is as
follows.

Consider an arbitrary scattering object, e.g., the spheroid
shown in Fig. 4a, and subdivide it arbitrarily into a number
N of non-overlapping volume elements Vi such that

VINT ¼
[N

i ¼ 1

Vi: ð11Þ

The volume elements need not be infinitesimally small. The
next step is to represent the total scattered field at an
observation point r as a vector superposition of partial
fields scattered by the individual volume elements:

EðrÞ ¼ Einc
ðrÞþ

XN

i ¼ 1

Esca
i ðrÞ, r 2 R3, ð12Þ

where Esca
i ðrÞ is the ith partial scattered electric field. Then it

can be shown that the partial scattered fields are found by

solving vector so-called Foldy–Lax equations (FLEs) which
follow directly from the VIE and are exact [7,50]. Specifi-
cally, the ith partial scattered field is given by

Esca
i ðrÞ ¼

Z
Vi

dr0G
2

ðr,r0Þ �

Z
Vi

dr
00

T
2

iðr
0,r
00

Þ � Eiðr
00

Þ, ð13Þ

where Eiðr
00

Þ is the electric field ‘‘exciting’’ volume i, and the
N dyadics T

2

i are found by solving individually the following
Lippmann–Schwinger equation:

T
2

iðr,r0Þ ¼ k2
1½m

2
i ðrÞ�1�dðr�r0Þ I

2

þk2
1½m

2
i ðrÞ�1�

Z
Vi

dr
00

G
2

ðr,r
00

Þ � T
2

iðr
00

,r0Þ, r,r0 2 Vi,

ð14Þ

where dðrÞ is the three-dimensional delta function. The T
2

i

is the dyadic transition operator of the ith volume element
with respect to the fixed laboratory coordinate system
computed in the absence of all the other volume elements.
Thus, the N dyadic transition operators are totally indepen-
dent of each other. However, the exciting fields are
interdependent and are found by solving the following
system of N linear integral equations:

EiðrÞ ¼ Einc
ðrÞþ

XN

jðaiÞ ¼ 1

EijðrÞ, r 2 Vi, i¼ 1, . . . ,N, ð15Þ

where the ‘‘partial’’ exciting fields EijðrÞ are given by

EijðrÞ ¼
Z

Vj

dr0G
2

ðr,r0Þ �
Z

Vj

dr
00

T
2

jðr
0,r
00

Þ � Ejðr
00

Þ: ð16Þ

The FLEs (12)–(16) are equivalent to the VIE. However,
the fact that T

2

i for each i is an individual property of the
ith volume element computed as if this volume element
were alone allows one to introduce the mathematical
concept of multiple scattering. Indeed, let us rewrite Eqs.
(12), (13), (15), and (16) in a compact operator form:

E¼ Eincþ
XN

i ¼ 1

ĜT̂ iEi, ð17Þ

Ei ¼ Eincþ
XN

jðaiÞ ¼ 1

ĜT̂ jEj, ð18Þ

where

ĜT̂ jEj ¼

Z
Vj

dr0G
2

ðr,r0Þ �
Z

Vj

dr
00

T
2

jðr
0,r
00

Þ � Ejðr
00

Þ: ð19Þ

Iterating Eq. (18) yields

Ei ¼ Eincþ
XN

jðaiÞ ¼ 1

ĜT̂ jE
incþ

XN

jðaiÞ ¼ 1

lðajÞ ¼ 1

ĜT̂ jĜT̂ lE
inc

þ
XN

jðaiÞ ¼ 1

lðajÞ ¼ 1

mðalÞ ¼ 1

ĜT̂ jĜT̂ lĜT̂ mEincþ � � � , ð20Þ

whereas the substitution of Eq. (20) in (17) gives

E¼ EincþEsca, ð21Þ
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Esca ¼
XN

i ¼ 1

ĜT̂ iE
incþ

XN

i¼ 1

jðaiÞ ¼ 1

ĜT̂ iĜT̂ jE
inc

þ
XN

i¼ 1

jðaiÞ ¼ 1

lðajÞ ¼ 1

ĜT̂ iĜT̂ jĜT̂ lE
incþ � � � : ð22Þ

The last two equations are nothing more than what is
usually called the Newmann or the Born expansion of the
total field. However, if one really wishes to introduce
the concept of multiple scattering, it is these formulas
that can be interpreted, purely mathematically, as an
order-of-scattering expansion. Indeed, the dyadic transi-
tion operators are independent of each other, and each of
them can be characterized as a unique and complete
electromagnetic identifier of the corresponding volume
element. Therefore, ĜT̂ iE

inc can be interpreted as the
partial scattered filed at the observation point generated
by the ith volume element in response to the excitation by
the incident field only, ĜT̂ iĜT̂ jE

inc is the partial field
generated by the same volume element in response to
the excitation caused by the jth volume element in
response to the excitation by the incident field, etc.
Thus, the first term on the right-hand side of Eq. (22)
can be interpreted as the sum of all single-scattering
contributions, the second term is the sum of all double-
scattering contributions, etc. The first term on the right-
hand side of Eq. (21) represents the unscattered (i.e., the
incident) field.

We intentionally began the discussion of the FLEs by
referring to a scattering object in the form of a spheroid.
Indeed, no one would claim that a spheroid is a multiple-
scattering object, which demonstrates once again that the
FLEs and their order-of-scattering representation do not
describe multiple scattering as a real physical phenomen-
on. For example, the term ĜT̂ iĜT̂ jĜT̂ lE

inc on the right-hand
side of Eq. (22) cannot be interpreted by saying that ‘‘the
incident wave approaches volume element l, gets scattered
by volume element l towards volume element j, ap-
proaches volume element j, gets scattered by volume
element j towards volume element i, approaches volume
element i, gets scattered by volume element i towards the
observation point, and finally arrives at the observation
point’’. Indeed, it follows from Eqs. (15) and (16) that all
mutual excitations EijðrÞ occur simultaneously and are not
temporally discrete and ordered events. Furthermore, they
are not, in general, electromagnetic waves and do not
propagate in a specific direction. All this shows again that
Eqs. (21) and (22) are nothing more than a mathematical
expansion of the total field in a certain series.

In the limit N-N, Vi-0 8i the FLEs yield the same
result as a widely used numerically-exact method called
the discrete dipole approximation [26,51]. Otherwise they
may appear to be too complicated to find extensive
practical applications. It turns out, however, that the
order-of-scattering form of the FLEs is a convenient
mathematical tool that can be used to derive the honest
microphysical theories of RT and CB. This recent devel-
opment will be discussed in the following section.

6. Microphysical theories of radiative transfer and
coherent backscattering

The phenomenological RTT pioneered by Lommel,
Chwolson, and Schuster [52–54] is a thoroughly phenom-
enological theory based on an eclectic combination of
principles and concepts borrowed on an ad hoc basis from
honest theories such as classical electromagnetics and
QED as well as from phenomenological approaches such
as the GOM and classical radiometry. The numerous
inherent inconsistencies and the overall inadequacy of the
phenomenological RTT have been exposed and exten-
sively discussed in [7,8,25,55]. Importantly, however, the
phenomenological RTT, as applied to a DRM composed of
randomly positioned macroscopic particles, has been
replaced by the honest microphysical RTT [56,57] and,
thus, has been rendered unnecessary.

The natural way to start the derivation of the micro-
physical theories of RT and CB is to apply the FLEs to an N-
particle group (Fig. 1) and choose N volumes Vi such that
each of them coincides with the interior of an entire
particle. As a consequence, the T

2

i in Eq. (13) becomes the
dyadic transition operator of the entire ith particle with
respect to the fixed laboratory coordinate system computed
as if all the other particles did not exist. In other words, the
T
2

i now serves as a complete and unique electromagnetic
identifier of particle i.

The resulting FLEs and their order-of-scattering form
can be greatly simplified by making the following two
assumptions:

� The N particles forming the group are separated widely
enough that each of them is located in the far-field
zones of all the other particles.
� The observation point is located in the far-field zone of

any particle from the group.

Indeed, the partial contribution of the jth particle to the
field exciting the ith particle in Eq. (15) now reduces to a
simple outgoing spherical wavelet centered at the origin
of particle j. The radius of curvature of this wavelet at the
origin of particle i is much larger than the size of particle i

so that the wavelet can be effectively considered as locally

plane and locally homogeneous. Hence the scattering of this
wavelet by particle i can be described in terms of the
conventional far-field scattering dyadic A

2

i centered at the
origin of particle i [7,36]. As a consequence, the original
system of the integral FLEs is converted into a system of
algebraic equations, while the original order-of-scattering
expansion becomes purely algebraic.

Specifically, assuming that the incident field is a plane
electromagnetic wave propagating in the direction of the
unit vector n̂

inc
, we have for the total field at an

observation point r located in the respective far-field
zones of all the N particles [7]:

EðrÞ ¼ Einc
ðrÞþ

XN

i ¼ 1

GðriÞA
2

iðr̂ i,n̂
inc
Þ � Einc

ðRiÞ

þ
XN

i ¼ 1

GðriÞ
XN

jðaiÞ ¼ 1

A
2

iðr̂ i,R̂ ijÞ � Eij, ð23Þ
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where GðrÞ ¼ expðik1rÞ=r, ri is the distance between the
origin of particle i and the observation point, r̂i is the unit
vector directed from the origin of particle i towards the
observation point, Ri is the position vector of the ith
particle origin, R̂ ij is the unit vector directed from the
origin of particle j towards the origin of particle i (Fig. 8),
and Eij are the distance-independent amplitudes of the
mutual particle–particle excitations. Eq. (23) shows that
the total field at any observation point located sufficiently
far from any particle in the group is the superposition of
the incident plane wave and N spherical waves generated
by and centered at the N particles. The Eij are now found
by solving a system of N(N�1) linear algebraic (rather
than integral!) equations [7]:

Eij ¼ GðRijÞA
2

jðR̂ ij,n̂
inc
Þ � Einc

ðRjÞ

þGðRijÞ
XN

lðajÞ ¼ 1

A
2

jðR̂ ij,R̂ jlÞ � Ejl, i,j¼ 1, . . . ,N, jai,

ð24Þ

where Rij is the distance between the origins of particles j

and i. The resulting order-of-scattering expansion of the
total field also becomes much simpler:

E¼ Einc
þ
XN

i ¼ 1

B
2

ri0 � E
inc
i þ

XN

i ¼ 1

XN

jðaiÞ ¼ 1

B
2

rij � B
2

ij0 � E
inc
j

þ
XN

i ¼ 1

XN

jðaiÞ ¼ 1

XN

lðajÞ ¼ 1

B
2

rij � B
2

ijl � B
2

jl0 � E
inc
l þ � � � , ð25Þ

where

E¼ EðrÞ, Einc
¼ Einc

ðrÞ, Einc
i ¼ Einc

ðRiÞ, ð26Þ

B
2

ri0 ¼ GðriÞA
2

iðr̂ i,n̂
inc
Þ, ð27Þ

B
2

rij ¼ GðriÞA
2

iðr̂ i,R̂ ijÞ, ð28Þ

B
2

ij0 ¼ GðRijÞA
2

jðR̂ ij,n̂
inc
Þ, ð29Þ

B
2

ijl ¼ GðRijÞA
2

jðR̂ ij,R̂ jlÞ: ð30Þ

One can see indeed that now the role of the unique
electromagnetic identifier of each particle is assumed
by the corresponding particle-centered scattering dyadic,
that is, the same quantity that would completely describe
far-field scattering of a plane electromagnetic wave
by this particle if it were solitary rather than a member
of the group. In other words, the far-field scattering
dyadics A

2

i (i=1,y,N) are computed by solving the
MMEs separately for each particle, which is much
simpler than solving the MMEs for the entire multi-
particle group.

Each term on the right-hand side of Eq. (25) can be
viewed as a multi-particle wave path resulting in a partial
transverse electromagnetic wave at the observation
point. Each partial wave is characterized by a well-defined
phase obtained by evaluating the respective product of
the participating G-factors. This means that one can
evaluate the result of the interference of any pair of such
‘‘multiply-scattered’’ waves at the observation point as a
function of the phase difference between the waves.

Most typically, random movements of the constituent
particles during the measurement cause a randomly
varying phase difference between two multi-particle
wave paths such as those shown in Fig. 4g. As a
consequence, averaging over particle positions yields a
zero net result.

There are, however, two classes of wave pairs whose
contributions survive the averaging over particle coordi-
nates. Fig. 4h gives an example of the so-called ladder
diagram [58] wherein both multi-particle wave paths are
self-avoiding (i.e., are not allowed to go through a particle
more than once) and go through the same string of
particles. In this case the corresponding phase difference
is identically equal to zero irrespective of particle
positions, thereby causing constantly constructive inter-
ference. The summation of all ladder-diagram contribu-
tions in the limit N-N coupled with averaging over the
uniform distribution of particle positions throughout the
scattering medium yields the vector radiative transfer
equation (RTE) [56,57]. The latter is valid at any observa-
tion point except far-field observation points located in
the exact forward-scattering direction.

Another class of wave pairs causing a non-zero
contribution in the far-field zone of the entire scattering
object is exemplified in Fig. 4i. Such pairs of self-avoiding
wave paths are called cyclical diagrams [58]. In this case
the two conjugate wave paths go through the same string
of particles, but in opposite directions. The corresponding
phase difference at a remote observation point is given by

D¼ k1ðRn�R1Þ � ðn̂
inc
þ n̂

sca
Þ: ð31Þ

If the observation direction n̂
sca

is far from the exact
backscattering direction given by �n̂

inc
then D varies

randomly with particle coordinates, and so the average
effect of the interference is zero. However, at exactly the
backscattering direction, n̂

sca
¼�n̂

inc
, the phase differ-

ence between the conjugate wave paths involving any

string of particles is identically equal to zero, and the
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Fig. 8. Scattering contribution caused by particle i in response to

excitation by particle j.
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interference is always constructive, thereby causing an
intensity peak. The summation of all cyclical-diagram
contributions in the limit N-N coupled with averaging
over the uniform distribution of particle positions
throughout the scattering medium yields the microphy-
sical theory of CB [7].

The classical integro-differential form of the RTE reads

q̂ � r~Iðr,q̂Þ ¼ �n0/Kðq̂ÞSx
~Iðr,q̂Þ

þn0

Z
4p

dq̂
0/Zðq̂,q̂

0
ÞSx

~Iðr,q̂
0
Þ: ð32Þ

In this equation, ~Iðr,q̂Þ is the 4�4 so-called specific
intensity column vector, /Kðq̂ÞSx and /Zðq̂,q̂

0
ÞSx are the

extinction and the phase matrix per particle, respectively,
averaged over all particle states (i.e., sizes, shapes,
orientations, and relative refractive indices), and n0=N/V
is the particle number density. The specific intensity
column vector is a function of spatial coordinates of the
observation point r and the ‘‘propagation direction’’ q̂ and
can be decomposed into the coherent and diffuse parts,

~Iðr,q̂Þ ¼ dðq̂�n̂
inc
ÞIcðrÞþ ~Idðr,q̂Þ, ð33Þ

each satisfying its own RTE:

n̂
inc
� rIcðrÞ ¼�n0/Kðn̂

inc
ÞSxIcðrÞ, ð34Þ

q̂ � r~Idðr,q̂Þ ¼�n0/Kðq̂ÞSx
~Idðr,q̂Þ

þn0

Z
4p

dq̂
0/Zðq̂,q̂

0
ÞSx

~Idðr,q̂
0
Þþn0/Zðq̂,n̂

inc
ÞSxIcðrÞ,

ð35Þ

where dðq̂Þ is the solid-angle delta function. The coherent
column vector Ic reduces to the Stokes column vector of
the incident plane wave at the illuminated boundary
of the medium, but is subject to exponential attenuation
and, possibly, the effect of dichroism inside the medium.

According to Eq. (33), the fundamental difference
between the coherent Stokes column vector Ic and the
diffuse specific intensity column vector ~Id is that the
former describes a monodirectional whereas the latter
describes an uncollimated flow of electromagnetic energy.
For example, the first element of the coherent Stokes
column vector, i.e., the coherent intensity Ic(r) is the
electromagnetic power per unit area of a small surface
element DS perpendicular to the incidence direction n̂

inc
,

whereas the first element of the diffuse specific intensity
column vector, i.e., the diffuse specific intensity ~Idðr,q̂Þ, is
the electromagnetic power per unit area of a small surface
element DS perpendicular to q̂ per one steradian of a
small solid angle DO centered around q̂. This interpreta-
tion of Ic(r) and ~Idðr,q̂Þ implies that both quantities can be
measured by appropriately placed and oriented detectors
of electromagnetic energy flux, which explains the
practical usefulness of the RTT.

7. Range of applicability of the honest theories of
radiative transfer and coherent backscattering

The discussion in the preceding section demonstrates
that RT and CB are idealized mathematical concepts valid
under specific circumstances. Since the microphysical
theories of RT and CB follow directly from the MMEs upon

making a sequence of well-defined assumptions [7,8],
their practical applicability does not require any valida-
tion provided that all these assumptions are fulfilled.
For example, there is little if any doubt that the RTE
describes adequately the results of photopolarimetric
observations of clouds in planetary atmospheres, as
exemplified by the remote-sensing discovery of micro-
meter-sized sulfuric acid droplets in the atmosphere of
Venus [59]. However, if either theory is used to model
situations in which one or more of the underlying
assumptions are violated then its quantitative applicabil-
ity must be carefully and extensively examined. The
requisite test results can be the outcome of a direct
numerically-exact solution of the MMEs or a controlled
laboratory experiment.

For example, one of the basic assumptions that one
has to make in order to arrive at the mathematical
concepts of RT and CB is that the particles forming a DRM
are located in the far-field zones of each other, which
implies a very low particle packing density. However,
both concepts have been used frequently to describe
electromagnetic scattering by densely packed DRMs such
as particle suspensions and particulate surfaces with
volume packing densities comparable to or even exceed-
ing 10%.

One way to validate the quantitative applicability of
the concepts of RT and CB to such densely packed DRMs
is to compare the results of numerical computations
with those of controlled laboratory experiments. As
discussed in [3], there is a fundamental difference
between controlled laboratory measurements and labora-
tory observations. In the former, one fully controls all
the conditions of the experiment and has complete
independent knowledge of all physical parameters speci-
fying the scattering medium (e.g., the size distribution,
shape, refractive index, and packing density of the
particles and the geometrical dimensions of the scattering
medium) as well as the capability to change them one
at a time. The known parameters of the medium then
serve as input for numerical computations of electro-
magnetic scattering, thereby making possible a direct
and unambiguous comparison of theoretical and mea-
surement results. Laboratory observations do not differ
from remote-sensing (e.g., astronomical) observations
in that one measures only the parameters of the scattered
light, without providing independently a complete
physical and compositional specification of the scattering
medium. As such, laboratory observations cannot be
used for validation purposes. Instructive examples of
the use of controlled laboratory measurements of electro-
magnetic scattering for validating the applicability of the
low-packing-density concepts of RT and CB to densely
packed DRMs can be found, e.g., in [60–62].

Another way to test the applicability of an honest low-
density theory of electromagnetic scattering to a densely
packed DRM is to use the results of direct computer
solutions of the MMEs. There are three numerically-exact
computer solvers of the MMEs that have been applied
recently to model electromagnetic scattering by media
consisting of large numbers of randomly positioned
particles: the superposition T-matrix method [36,49],
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the finite-difference time-domain method [63,64], and the
discrete dipole approximation [26,51]. By directly solving
the MMEs one can

� generate benchmark numbers by eliminating any
uncertainty associated with the use of an approximate
honest theoretical approach or a phenomenological
theory;
� control precisely all physical parameters of the

scattering medium and vary them one at a time;
� compute all requisite optical observables at once.

Such modeling can be viewed as an ideal controlled
laboratory experiment in which one studies unambigu-
ously the onset, evolution, and potential decay of all

observable manifestations of RT and CB as the particle
packing density gradually increases from zero to values
typical of actual particulate surfaces and particle suspen-
sions. Numerous applications of this approach can be
found in [65–79].

The right-hand panel of Fig. 6c gives an example of
how a direct numerically-exact solution of the MMEs
reproduces, at least qualitatively, the main prediction of
the low-density theory of CB, viz., the strong and narrow
backscattering intensity peak. Indeed, by averaging the
scattered intensity over all orientations of the multi-
particle group shown in Fig. 4c, one effectively models a
macroscopic scattering volume filled with randomly
positioned particles.

Another example of numerically-exact T-matrix results
is given in Fig. 9, which depicts the far-field angular
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Fig. 9. Elements of the normalized Stokes scattering matrix computed for a k1A=40 spherical volume of discrete random medium filled with N=1,y,240

identical spherical particles. The relative refractive index and size parameter of the particles are fixed at k1a=4 and m=1.32.
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dependence of the elements of the normalized Stokes
scattering matrix ~FðYÞ for a macroscopic spherical volume
of DRM populated with increasing numbers of randomly
positioned particles [68]. To define the scattering matrix,
we make a simplifying assumption that jsca ¼ 0 and
specify the scattering direction in terms of the scattering
angle Y¼ ysca (cf. Figs. 4d and 10). Then, by definition
[36,80],

~FðYÞ ¼

a1ðYÞ b1ðYÞ 0 0

b1ðYÞ a2ðYÞ 0 0

0 0 a3ðYÞ b2ðYÞ
0 0 �b2ðYÞ a4ðYÞ

2
66664

3
77775¼

4p
Csca

Zðn̂
sca

,n̂
inc
Þ,

ð36Þ

where Csca is the scattering cross section of the entire
volume, and the phase function a1ðYÞ satisfies the
normalization condition (8).

As we have already mentioned, the phase function
describes the angular distribution of the scattered
intensity provided that the incident light is unpolarized.
The upper left-hand panel of Fig. 9 vividly demonstrates
two fundamental consequences of increasing N consis-
tent, at least qualitatively, with predictions of the low-
density theories of RT and CB [7,48]. First of all, increasing
N makes the phase function at scattering angles
303rYr1703 progressively smooth and featureless,
thereby causing the ‘‘diffuse’’ intensity background clearly
identifiable in the right-hand panel of Fig. 6c. The
smoothness of the background intensity can be inter-
preted as a typical RT consequence of increasing amount
of multiple scattering with increasing N whereby light
undergoing many ‘‘scattering events’’ forgets the initial
incidence direction n̂

inc
and is likely to contribute equally

to all ‘‘exit’’ directions n̂
sca

. Second of all, the phase
functions at scattering angles Y41703 start to develop a
backscattering enhancement which becomes quite pro-
nounced for NZ160. This feature can be interpreted as a
typical manifestation of CB.

The upper left panel of Fig. 9 also reveals a far-field
optical effect which the RTT does not reproduce. Specifi-
cally, the constructive interference of light singly scat-
tered by the component particles in the exact forward
direction causes a strong forward-scattering enhance-
ment in the far-field zone of the entire volume [68]. The
origin of this feature is explained in Fig. 4f. Indeed,
the exact forward-scattering direction is unique in that
the phase of the wavelets singly forward-scattered by all
the particles in the volume is exactly the same irrespec-
tive of the specific particle positions. In the absence of
multiple scattering, the constructive interference of these
wavelets would lead to an increase of the forward-
scattering phase function a1(01) by a factor of N. This
increase does occur for N=2 and 5, but then it slows down
and eventually saturates at a value close to the Lorenz–
Mie prediction for a homogeneous k1A=40 spherical
scatterer. Interestingly enough, the extinction cross sec-
tion of the entire volume also saturates at a value close to
twice its projected area (Cext-2pA2) by the time the
constituent k1a=4 particles fill completely the volume’s
projection. This behavior of a1(01) and Cext with increasing
N can be interpreted qualitatively in terms of constituent
particles ‘‘shading’’ each other. Ultimately the far-field
forward-scattering behavior of the scattering volume
filled with densely packed, randomly positioned particles
starts to resemble that of a projection-area-equivalent
homogeneous scatterer.

The degree of linear polarization of the scattered light
for unpolarized incident light is given by the ratio
�Q sca=Isca ¼�b1=a1. The bottom left-hand panel of Fig. 9
shows that the most obvious effect of increasing N is to
smooth out the oscillations inherent in the polarization
curve for a single k1a=4 sphere and, on average, to make
polarization more neutral. The traditional RT explanation
of this behavior is that the main contribution to Qsca

comes from the first order of scattering, whereas light
‘‘scattered many times’’, as in Fig. 4h, becomes largely
unpolarized [7,48,80]. The effect of increasing N on the
ratio b2/a1 is quite similar.

The ratio a2/a1 is identically equal to unity for
scattering by a single sphere. Therefore, the rapidly
growing deviation of this ratio from 100% for NZ5 in
Fig. 9 can again be interpreted in RT terms as a direct
consequence of the strengthened depolarizing effect of
‘‘multiple scattering’’ [7]. Analogously, a3ðYÞ � a4ðYÞ and
a3ð1803

Þ=a1ð1803
Þ ¼�1 for scattering by a single spheri-

cally symmetric particle, but ‘‘multiple scattering’’ in
particle groups with NZ5 causes an increasingly sig-
nificant violation of these equalities.

Perhaps an even more convincing demonstration of the
onset of the CB effect is provided by Fig. 11a. Indeed, the
(a1+a4)/2 curve for an isolated particle shows no
backscattering enhancement at all, whereas those for
the multi-particle volumes show pronounced
backscattering peaks. The polarization curve for N=1

n̂sca

n̂inc

k1A = 60

2k1a = 4

�

�

Fig. 10. Far-field scattering by a macroscopic spherical volume of DRM.

The normalized Stokes scattering matrix is defined with respect to the

scattering plane (i.e., the plane through the incidence and scattering

directions) as a function of the scattering angle Y. In this case the

k1A=60 spherical volume is populated by N=800 identical spherical

particles having a size parameter k1a=2.
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reveals uniformly neutral polarization, whereas those for
the multi-particle volumes exhibit a narrow asymmetric
negative-polarization minimum at backscattering angles.
This feature is predicted by the low-density theory of CB
for Rayleigh constituent particles and is called the

polarization opposition effect (POE) [81,82]. Importantly,
the angular widths of all the backscattering peaks and the
angles of minimal polarization in Fig. 11a scale as 1/k1A

which is consistent with their interference CB origin
[cf. Eq. (31)].
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Fig. 11. (a) Scattering characteristics of a spherical scattering volume randomly filled with N=800 spherical particles. The particle refractive index and
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increases from 1 to 345, resulting in packing densities (defined as if the volume were infinite [79]) up to 47%.
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Fig. 11b demonstrates that the angular widths of these
backscattering features are virtually independent of the
particle refractive index, thereby further corroborating
their CB nature. Furthermore, all four polarization curves
exhibit the POE despite the complete absence of this
feature in the respective single-particle polarization
curves (Fig. 4e).

The effect of increasing the number of particles N in a
volume of DRM can be expected to be twofold. On one
hand, it facilitates ‘‘multiple scattering’’ and thereby
enhances the classical manifestations of RT and CB. On
the other hand, it leads to increased packing density and
can eventually cause changes in the scattering patterns
not implied by the low-packing-density theories of RT and
CB [83,84]. One should, therefore, expect that the RT and
CB interpretation of numerically-exact T-matrix data
must ultimately become inadequate when the particle
packing density becomes exceedingly large. Fig. 11c
shows that this is indeed the case: the curves for N=300
and 345 develop high-frequency interference ripple
typical of a compact particle with a size parameter
k1A=20 (cf. Fig. 3 and right-hand panels of Figs. 6a and
b) which, of course, is not predicted by the RT and CB
theories. Nevertheless, the direct solutions of the MMEs
do demonstrate that the classical predictions of these
low-density theories can survive (at least in a semi-
quantitative sense) volume packing densities typical of
particle suspensions and particulate surfaces [78,79].

This result raises an interesting question [85] of
whether one can legitimately attribute to the effect of
CB certain results of photometric and polarimetric
observations of particulate planetary surfaces at small
phase angles [86–101] such as those depicted in Fig. 12. In
principle, this attribution is as unnecessary as the
introduction of the mathematical concept of CB in the
first place. What matters is whether the results of
photopolarimetric astronomical observations can be
accurately reproduced by a direct solution of the MMEs
for a realistic model of the scattering medium. However,
attempting this is still impracticable, which makes it
tempting to interpret the results of observations using
idealized concepts such as RT and CB. Fortunately, the

photometric and polarimetric data for Europa (Fig. 12)
and several other high-albedo solar system objects [85]
are quite unique in that they reveal both the photometric
opposition effect and the POE of nearly equal angular
widths and with angular profiles consistent with the exact
solutions of the MMEs (Figs. 11a and b). No other honest
theory of electromagnetic scattering has been
demonstrated to yield both effects with their very
specific traits simultaneously. Therefore, it appears to
be rather safe to conclude that both opposition effects
can be attributed, at least qualitatively, to coherent
backscattering of sunlight by planetary surfaces
composed of microscopic regolith particles [78,85].

8. Scalar approximation

The honest microphysical derivation of the theories of
RT and CB helps expose and dispel such fundamental a
misconception as the scalar approximation (SA). It is
widely believed that if one is interested only in the
intensity of the scattered light but not in its polarization
state then polarization can be ignored altogether, and the
vector theories of RT and CB can be replaced by their
‘‘scalar’’ analogues. However, the SA is a phenomenologi-
cal approach in that it does not follow directly from the
MMEs. Therefore, the numerical accuracy of the SA must
be carefully and extensively examined by comparing
‘‘scalar’’ results with those obtained using the honest
vector versions of the RT and CB theories. Obviously, the
SA should be expected to fail when the incident light is
polarized. The inherently vector nature of electromagnetic
radiation can cause significant errors in ‘‘scalar’’ computa-
tions even when the incident light is unpolarized,
especially in computations of CB (e.g., [7,102,103] and
references therein).

9. Energy conservation

Another widespread misconception is that the RTE is a
direct consequence of applying trivial energy-balance
considerations to an ‘‘elementary volume element’’ of a
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Fig. 12. Brightness [92] and polarization [78,97,100] opposition effects observed for Europa. The phase angle a is defined as the angle between the source
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turbid medium. The fallaciousness of this belief becomes
immediately obvious as soon as one recalls that the RTE
does not describe per se specific manifestations of CB,
including the angular profile of the backscattering
intensity peak. Consider, for example, a semi-infinite
cloud layer composed of nonabsorbing particles. The
exact solution of the RTE suggests that the amount of
energy diffusely reflected by this layer is identically equal
to the amount of incident energy. However, adding the
missing energy contained in the CB intensity peak breaks
the energy conservation law: the amount of energy
exiting the nonabsorbing cloud layer exceeds the amount
of energy entering it.

In fact, it is a pure accident that summing up only the
ladder diagrams (Section 6) results in an equation that by
itself satisfies the energy conservation law. This implies
that the result of summing up the energy contributions of
all the other types of diagrams, including the cyclical
diagrams, must be equal to zero. The amount of energy
contained in the CB intensity peak is very small in the case
of a sparse scattering object with dimensions much
greater than the wavelength, e.g., a typical cloud of liquid
water droplets or ice crystals. Indeed, for such a medium
the angular width of the CB peak is inversely proportional
to the product of the wave number k1 and the so-called
transport mean free path ltr [58] and is negligibly small.
However, the application of the low-density theories of RT
and CB to densely packed scattering media may result in a
noticeable violation of the energy conservation law.

A direct numerically-exact solution of the MMEs is, of
course, free of this problem. Indeed, the single-scattering
albedo $ of any of the particulate volumes used to make
Figs. 9 and 11 was found to be precisely unity irrespective
of the particle packing density. This means that the
amount of energy entering a particulate volume is
identical to the amount of energy exiting it. Let us see,
however, what happens when one tries to solve the
scattering problem by replacing the original FLEs with
their far-field version (23) and (24). This is an instructive
exercise since the FLEs form the very basis of the
microphysical theories of RT and CB.

To do such computations, we use the same super-
position T-matrix code [49] but modify the coefficients
appearing in a certain translation–addition theorem for
vector spherical wave functions. Specifically we artificially
replace the Hankel functions of the first kind hð1Þn ðk1RijÞ,
where Rij is the distance between the origins of particles i

and j (Fig. 8), with their asymptotic far-field limits
ð�iÞnþ1 expðik1RijÞðk1RijÞ

�1. We have found that such
computations for k1A=30, k1a=2, and m=1.31 result in
$¼ 1:0035 for N=10 and $¼ 1:0900 for N=100. Similar
computations for k1A=40, k1a=4, and m=1.32 yield
$¼ 1:0004 for N=2, $¼ 1:0157 for N=5, $¼ 1:2344 for
N=10, $¼ 1:2970 for N=20, and $¼ 1:4903 for N=40.
Obviously, these numbers demonstrate a significant
violation of the energy conservation law in the form of
surplus scattered energy.

Since the modified superposition T-matrix code still
includes all types of multi-particle wave paths rather than
only the self-avoiding paths (Section 6), one may
hypothesize that the artificial replacement of near-field

with far-field interactions exaggerates the contribution of
wave paths going through a particle more than once. This
result demonstrates the importance of ignoring non-self-
avoiding paths in addition to ignoring CB in the micro-
physical derivation of the energy-conservation-compliant
RTE.

10. Particles as individual scatterers

One of the most fundamental misconceptions in the
phenomenological RTT is that each particle in a sparse
multi-particle group is an individual scatterer character-
ized by its own extinction, scattering, and absorption
cross sections, scattering matrix, and extinction matrix. In
other words, it is assumed that each particle possesses an
individual set of optical characteristics quantifying the
single-scattering transformation of the intensity (or the
Stokes parameters) rather than that of the electromag-
netic field. It is then postulated that the above individual
characteristics of particles contained in a ‘‘differential
volume element’’ of the DRM must be added to yield those
of the volume element. Finally, the resulting cumulative
characteristics enter the RTE.

It is then admitted that two factors can ‘‘modify’’ the
individual-particle optical characteristics:

� ‘‘effects of packing density’’ in a densely packed DRM;
� non-zero absorptivity of the host medium surrounding

the particles.

Numerous publications have been devoted to extensive
discussions of how these modifications might work and
how they should be accounted for in an appropriately
modified RTE.

This approach to RT is fundamentally wrong. As we
have seen in Section 5, the basic individual scattering
characteristic of particle i in a multi-particle group is its
dyadic transition operator T̂ i. If the particles in the group
are widely separated then the role of the unique
scattering identifier of a particle is assumed by its far-
field scattering dyadic Âi. Both dyadics quantify the
transformation of the electromagnetic field rather than
that of the intensity. As a consequence of statistical
averaging required to derive the RTE from the far-field
FLEs, the individual particles forming the DRM effectively
disappear. Instead, the resulting RTE is found to contain
phase and extinction matrices ensemble-averaged over all
the particles contained in the DRM. Thus, under no
circumstances can a particle in the DRM be characterized
by individual optical cross sections and phase and
extinction matrices.

In the case of a densely-packed DRM the original FLEs
cannot be replaced by the far-field FLEs, the single-
particle dyadic transition operators T̂ i cannot be replaced
by the corresponding far-field scattering dyadics Âi, the
classical RTE cannot be derived, and individual-particle
or even ensemble-averaged extinction and phase matrices
never appear. Thus, there are no packing-density
effects allegedly modifying individual-particle optical
characteristics.
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In the case of an absorbing host medium, the focal point
of the discussions was the likely effect of absorption on the
conventional scattering cross section, single-scattering
albedo, and phase function of an isolated particle and a
differential volume element. However, the application of
the microphysical approach to the derivation of formulas
describing actual optical observables shows that these
quantities cannot even be defined in the case of electro-
magnetic scattering by an isolated particle embedded in an
absorbing medium [104–106]. Instead, one can define the
extinction and phase matrices of an isolated particle as well
as derive the generalized RTE for a sparse DRM in much the
same way as it is done in the case of a nonabsorbing host
[106–108]. In particular, Eq. (32) is replaced by

q̂ � r~Iðr,q̂Þ ¼ �2k
00

1
~Iðr,q̂Þ�n0/Kðq̂ÞSx

~Iðr,q̂Þ

þn0

Z
4p

dq̂
0/Zðq̂,q̂

0
ÞSx

~Iðr,q̂
0
Þ, ð37Þ

where k
00

1 is the imaginary part of the complex-valued wave
number of the host medium.

11. Coherent field and effective dielectric constant

Finally, let us discuss the widespread misconception
according to which the so-called coherent field Ec(r) is a
real electromagnetic wave which propagates in a DRM
and is subject to exponential attenuation owing to a non-
zero imaginary part of the so-called dyadic propagation
constant k

2
. The source of this misinterpretation is the

following differential equation for the coherent field [7]:

dEcðrÞ

ds
¼ ik

2
ðŝÞ � EcðrÞ, ð38Þ

where the differential path-length ds is measured along
the unit vector ŝ and the dyadic propagation constant for
the propagation direction ŝ is given by

k
2
ðŝÞ ¼ k1 I

2

þ
2pn0

k1
/A

2

ðŝ,ŝÞSx: ð39Þ

An equation similar to Eq. (38) would describe, indeed,
the amplitude of a time-harmonic plane electromagnetic
wave as it propagates in a homogeneous (and generally
anisotropic) absorbing medium. Therefore, it is often
claimed, by analogy, that the coherent field in a DRM is
an exponentially attenuated plane electromagnetic wave,
k
2
ðŝÞ is given by a standard expression in terms of the

‘‘effective’’ dyadic optical constants of the DRM, and the
non-zero imaginary part of the dyadic propagation
constant is caused by the presence of the particles. Based
on this misinterpretation, it was postulated [109] that the
effective dyadic optical constants of a DRM must satisfy
the well-known Kramers–Kronig relations valid for a
homogeneous medium. From this premise, Purcell [109]
derived the sum rule for the extinction cross section
discussed earlier in Section 3.

It should be recalled, however, that the incident plane
electromagnetic wave is not attenuated exponentially
inside the DRM but rather remains unchanged, as it should
be with any incident field by definition [see Eq. (25)]. What
is attenuated exponentially according to the dyadic propa-

gation constant with a non-zero imaginary part is the time-
independent coherent field Ec(r) obtained by

� factorizing the total electric field inside the medium as
E0ðr,tÞexpð�iotÞ, where the electric field amplitude
E0ðr,tÞ is a ‘‘slowly-varying’’ function of time provided
that significant changes in particle positions occur over
time intervals much longer than the period of time-
harmonic oscillations 2p/o;
� artificially neglecting the time-harmonic factor

expð�iotÞ, because otherwise averaging over time
would give a zero net result:

1

T

Z tþT

t
dt0 expð�iot0Þ ¼

T b2p=o
0; ð40Þ

� expressing the random amplitude E0ðr,tÞ as a sum of
the time-independent coherent (average) field Ec(r)
and a fluctuating field Ef ðr,tÞ caused by random
changes in particle positions;
� calculating Ec(r) as the average of E0ðr,tÞ over a time

interval long enough to establish full ergodcity of the
DRM.

We thus see that the coherent field is an artificial
mathematical construction rather than an actual time-
dependent electromagnetic field. In particular, it is not a
time-harmonic plane electromagnetic wave. The only
reason to consider this purely mathematical quantity in
the first place is that it turns out to be useful in the
microphysical derivation of the RTE [7].

Thus, we must conclude that the effective dyadic optical
constants of a DRM are not physical dyadic optical
constants appearing in expressions for actual time-depen-
dent physical fields in a homogeneous medium. This
conclusion shows that there is no reason whatsoever to
state that the former satisfy the Kramers–Kronig relations
and negates the derivation of the sum rule in [109].

12. Concluding remarks

The very tone of Keller’s classification and terminology
[1] suggests that it may have been introduced with an
implicit goal to eventually drive phenomenological the-
ories out of circulation. For example, in another milestone
treatise on electromagnetic scattering by random media
published six years after Keller’s paper, Frisch [110] states
that even if completely dishonest methods ‘‘have pro-
duced many interesting results in the past, they are now
obsolete, for using dishonest methods is like gambling:
one does not know in advance whether the results will be
valid or not.’’ But even now, almost 50 years after the
publication of Keller’s paper, phenomenological methods
are still widely used and are unlikely to get abandoned in
the near future. The main reasons for that are, of course,
the ever increasing complexity of electromagnetic scatter-
ing problems needing solution and the perennial
inadequacy of available computer resources.

As we have mentioned above, the analytical simplicity of
phenomenological approaches can sometimes yield useful
physical insights. Furthermore, there are encouraging cases of
phenomenological approaches paving the way to advanced
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microphysical techniques. Among the most instructive
examples is the transformation of the discrete dipole
approximation from a phenomenological substitution of a
scatterer by a set of point dipoles [111] into a rigorous
corollary of the MMEs (see [26,112] and references therein).

Still it is critically important to be aware of the need to
examine carefully the origin of any phenomenological
approach and analyze thoroughly its likely errors. Quite
often a phenomenological theory is the source of
misconceptions and misinterpretations. There are phe-
nomenological theories which appear to be enticingly
simple and attractive and suggest an easy way for an
observational astronomer or a remote-sensing scientist to
publish a paper containing both the results of observa-
tions and their ‘‘theoretical interpretation’’—an unjust but
standard requirement in some journals. However, the
customers of such populist ‘‘theories’’ (e.g., the notorious
‘‘Hapke model’’) should realize that their papers can
become casualties of a thoroughly unphysical analysis
tool (see, e.g., [3,113] and references therein).

Finally, it is important to remember that even honest
mathematical concepts such as the concepts of RT and CB
have their limitations and, in the final analysis, are
unnecessary. The range of quantitative applicability of
these concepts in situations violating the basic assump-
tions used in their derivations needs to be established by
invoking the results of controlled laboratory experiments
and/or numerically-exact computer solutions of the
MMEs. There is no doubt that the ever increasing
efficiency of computers will enable one to explore
progressively sophisticated scattering models with direct
solvers of the MMEs and will eventually provide the
ultimate theoretical tool for the interpretation of remote-
sensing observations, thereby rendering the idealized
concepts of CB and RT unnecessary.
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Appendix A. List of acronyms

CB coherent backscattering

DRM discrete random medium

FLEs Foldy–Lax equations

GOM geometrical optics method

GTD geometrical theory of diffraction

MMEs macroscopic Maxwell equations

POE polarization opposition effect

QED quantum electrodynamics

RT radiative transfer

RTE radiative transfer equation

RTT radiative transfer theory

SA scalar approximation

VIE volume integral equation
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