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A general-purpose Fortran-90 code for calculation of the electromagnetic scattering and

absorption properties of multiple sphere clusters is described. The code can calculate

the efficiency factors and scattering matrix elements of the cluster for either fixed or

random orientation with respect to the incident beam and for plane wave or localized-

approximation Gaussian incident fields. In addition, the code can calculate maps

of the electric field both interior and exterior to the spheres. The code is written with

message passing interface instructions to enable the use on distributed memory

compute clusters, and for such platforms the code can make feasible the calculation

of absorption, scattering, and general EM characteristics of systems containing several

thousand spheres.
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1. Introduction

Over 40 years have passed since Liang, Brunning and
Lo, first developed an exact analytical solution to the
time-harmonic Maxwell’s equations for multiple sphere
systems [1,2]. The solution, as will be shown below, is not
trivial to implement, and much of the work on multiple
sphere scattering in the three decades following the
derivation was focused on the mathematical and compu-
tational aspects of the solution. In recent years, however,
the computational execution of the solution has become,
for the most part, mature, and emphasis is now placed
more on ‘‘what can the solution tell us’’ rather than ‘‘how
can we calculate the solution’’. And in this respect the use
of multiple sphere scattering codes is accelerating at a
significant rate [3,4], with applications ranging from the
interpretation of polarimetric observations of Titan [5] to
the resonant absorption of gold nanosphere arrays [6].
ll rights reserved.

ckowski).
In the late 1990s, the authors made available for free
download two Fortran-77 codes for calculation of light
scattering and absorption properties of sphere clusters.
One code, based on the work in [7,8], was for fixed
orientations of the cluster with respect to the incident
plane wave, while the other utilized the T-matrix proce-
dures derived in [9] to calculate orientation-averaged
properties. These codes have been used in numerous
applications over the years, yet the design of the codes
– which involve static memory allocation and a serial-
based algorithm – is not in a form readily adaptable to
high-performance, parallel-based computational plat-
forms. This shortcoming is especially relevant considering
that the multiple sphere solution, in recent years, has
been applied to large-scale ensembles of spheres, with the
objectives of identifying, via first-principle (i.e., direct
simulation) methods, the macroscopic radiative proper-
ties of inhomogeneous media [10,11].

The purpose of this paper is to describe a revised and
modernized version of the multiple sphere scattering
code. In making the revision, our first objective has been
to enable efficient execution of the code for large-scale
ensembles on both parallel and serial machines. To meet
this end we have written the code in Fortran-90, to make
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use of the language’s dynamic memory allocation and
vector arithmetic features. We have also combined the
fixed orientation and T-matrix, random-orientation fea-
tures into a single code. In addition, we have included
options for Gaussian beam incident fields and calculation
of electric field vectors in the near-field (both internal and
external) regions.

The plan of the paper is to first summarize the basic
formulation and computational algorithm of the multiple
sphere solution. We will then describe the general struc-
ture of the code and the steps for compilation and
execution. The paper will end by presenting two demon-
strations of the computational capabilities of the code.
2. Mathematical formulation

2.1. Interaction equations

In the most general sense, the purpose of the code is to
render a complete description of the electromagnetic
fields, in both the near and far-field regions that result
from the excitation of a target of NS spheres with a time-
harmonic field. A target, illustrated in Fig. 1, is specified
by the size parameters xi ¼ kai ¼ 2pai=l, relative refractive
indices mi ¼mi

0 þ imi
00, where i¼

ffiffiffiffiffiffiffi
�1
p

, and positions rela-
tive to a common target origin ri ¼ ðXi,Yi,ZiÞ for
i¼ 1,2, . . . ,NS. The spheres are taken in this description
to be homogeneous and isotropic, although it is relatively
simple to extend the formulation to account for layered
and/or optically active spheres. However, the spheres
cannot overlap.

The formulation represents an extension of Lorenz–Mie
theory to the multiple sphere system. The field external to
the spheres is represented by the superposition of the
incident and scattered fields, except in this case the scat-
tered field consists of components radiated from each
sphere in the target:

Eext ¼ EincþEsca ¼ Eincþ
XNS

i ¼ 1

Esca,i ð1Þ
x
y

z
rj

ai

ajri

aC

Fig. 1. Ensemble configuration.
The incident and scattered fields, at the i-th sphere in the
cluster, can be represented by regular and outgoing vector
spherical wave function (VSWF) expansions, centered about
the origin of the sphere:

Einc ¼
XLi

n ¼ 1

Xn

m ¼ �n

X2

p ¼ 1

f i
mnp Nð1Þmnpðr�riÞ ð2Þ

Esca,i ¼
XLi

n ¼ 1

Xn

m ¼ �n

X2

p ¼ 1

ai
mnp Nð3Þmnpðr�riÞ ð3Þ

In the above, Nmnp denotes the VSWF of either type 1
(regular) or 3 (outgoing), of order n, degree m, and mode
p¼1 (TM) or 2 (TE). The incident field coefficients f i

mnp will
depend on the characteristics of the incident field, whereas
the scattered field coefficients ai

mnp are unknown and are
sought from the solution. The order truncation limit Li in Eq.
(3) is chosen to provide an acceptable level of convergence
of the series; this topic will be covered in detail below.

Application of the continuity equations at the surface
of each sphere results in a system of interaction equations
for the scattered field coefficients:

ai
mnp�ai

np

XNS

j ¼ 1
jai

XLi

l ¼ 1

Xl

k ¼ �l

X2

q ¼ 1

Hi�j
mnp klq aj

klq ¼ ai
np f i

mnp ð4Þ

in which ai
np denote the Mie coefficients of the sphere and

depend on the sphere size parameter and refractive index,
and Hi� j is the outgoing VSWF translation matrix which
transforms the outgoing VSWF centered about origin j

into an expansion of regular VSWF centered about origin i.
Eq. (4), in conjunction with Eqs. (1)–(3), represents the

formal solution for the scattered field produced by the
sphere ensemble. In the case of equal-sized spheres with
equal truncation limits LS, Eq. (4) forms a system of
2NSLSðLSþ2Þ linear equations for the set of scattering
coefficients. The matrix Hi� j will be fully populated for
an arbitrary translation between j and i, and correspond-
ingly all orders/degrees/modes of the scattered field from
a sphere j will (in general) influence a particular order/
degree/mode of the field at i. This is in stark contrast to
the isolated sphere case, in which each scattering order/
degree/mode is excited only by the same harmonic
component for the incident field. And it is in this respect
that the multiple sphere solution departs – in a practical
sense – from the single sphere Mie theory: the latter
provides an explicit formula for the scattered field,
whereas the former gives only an implicit relationship.
That is, numerical methods (in the form of linear equation
solvers) are needed to produce a useable solution. This
characteristic has obvious relevance with regard to the
order truncation limit Li. Specifically, closure of Eq. (4)
requires an a priori value of Li for each sphere. In most
situations Li can be set using a Lorenz–Mie criterion for
the isolated sphere i, yet there are specific situations in
which interactions among neighboring spheres can have a
significant effect on the convergence of Eq. (3) [8]. To
accommodate such situations, the code allows for both
automatic (based on the Lorenz–Mie criterion) and man-
ual (user-set) specification of Li.
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Iterative methods are used in the code to obtain
numerical solutions to Eq. (4). The main advantage of this
approach, as opposed to direct solvers using matrix
inversion, is that the translation matrices Hi� j can be
factored into rotational and axial translational parts [12].
This results in a decoupling of order and degree, and leads
to both faster matrix–vector multiplication and smaller
matrix storage requirements. Our experience, and that of
others, is that the biconjugate gradient method provides
the most reliable, and fastest, solution to Eq. (4), as
compared to over/under relaxation and order-of-scatter-
ing methods [13]. The number of iterations required for a
solution depends on a host of parameters; i.e., the
number, size parameters, and refractive indices of the
spheres, and the proximity of the spheres to each other. In
general, as the spheres become more widely separated the
solution will converge faster. An important factor affect-
ing convergence is whether any of the spheres is at or
near a resonance mode; such conditions can lead to
extremely small convergence rates and may be more
effectively solved using direct methods [14].
2.2. Incident and total scattered field

Referring to Fig. 2, the propagation direction ẑ
0

of the
incident field is defined by an azimuth angle a and polar
angle b relative to the target coordinate frame. The angle
g appearing in Fig. 2 is used to define the scattering plane,
upon which the amplitude and scattering matrix ele-
ments are based. The procedure for calculating the ampli-
tude and scattering matrix elements will be discussed in
the following section, yet for now it is noted that
determination of these properties, for a set incident
direction, requires the solution to Eq. (4) for two mutually
orthogonal linear polarizations of the incident field. In the
code, the two states correspond to polarization in the b̂
and â directions as illustrated in Fig. 2.
γ

z'

y'

x'

α

β

x

y

z

incident
propagation
direction

β

α

Fig. 2. Target and incident field frames.
In addition to the standard case of plane wave inci-
dence, the code also provides for the representation of
collimated incident beams having a Gaussian amplitude
distribution. In the Gaussian beam (GB) case, the incident
field expansion coefficients centered about sphere i,
appearing in Eqs. (2)–(4), cannot be related to those
relative to some other origin by a simple phase shift
relation. The general approach used in the code is to
define the incident field expansion, for either the plane
wave or GB case, relative to the target origin, and then use
the VSWF translation theorem to obtain the values of f i

mnp.
At the target origin, the incident field expansion will

appear as

EincðrÞ ¼
XL

n ¼ 1

Xn

m ¼ �n

X2

p ¼ 1

fmnp Nð1ÞmnpðrÞ ð5Þ

The order truncation limit L in Eq. (5) – which is chosen so
that the expansion will yield an acceptable description of
the incident field on each sphere in the ensemble – will
typically depend on the size parameter kaC where aC is the
circumscribing sphere radius illustrated in Fig. 1. For a
plane wave (PW), the coefficients for the incident field
VSWF expansion, centered about the target origin, are
given by

f
mnp,b̂ ,PW

fmnp,â ,PW

 !
¼�4p inþ1 e�i m a

tmnpðcosbÞ
itmnð3�pÞðcosbÞ

 !
ð6Þ

where tmnp are derived from the vector spherical harmo-
nic functions, and are given by

tmnpðcosbÞ ¼
ð�1Þm

2

1

4pð2nþ1Þ

� �1=2

ðð�1Þp DðnÞm�1ðcosbÞ

þDðnÞm1ðcosbÞÞ ð7Þ

with DðnÞmk denoting the generalized spherical function [15].

Along with a propagation direction and polarization
angle, the GB is characterized by a focal point (taken here
to be the target origin) and beam width o0. For a beam
propagating in the þz direction and polarized in the x

direction, the amplitude distribution along the focal plane
will be given by

Eincðx,y,0Þ ¼ x̂ exp �
x2þy2

o2
0

 !
ð8Þ

The localized approximation is used in the code to provide
a VSWF representation of the GB, which is valid for
ko0Z5 [16,17]. The incident field expansion coefficients,
for the expansion centered about the beam focal point, are
given by

fmnp,ŝ ,GB ¼ gn fmnp,ŝ ,PW ð9Þ

gn ¼ exp �
nþ1=2

ko0

� �2
" #

ð10Þ

where ŝ denotes the specific polarization state.
Since Eq. (5) is assumed to provide a sufficiently

accurate representation of the incident field at all spheres
in the target, the sphere-centered expansion for the
incident field can be obtained by application of the
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translation theorem to Eq. (5). This results in

f i
mnp, ŝ ¼

XLi

l ¼ 1

Xl

k ¼ �l

X2

q ¼ 1

Ji�0
mnp klq fklq, ŝ ð11Þ

where Ji�0 is the regular VSWF translation matrix and f

refers to either the PW or GB case.
In a manner analogous to that relating Eq. (2) to Eq. (5),

the scattered field from the cluster can be represented by a
single outgoing VSWF expansion centered about the cluster
origin, so that

Esca,ŝ ðrÞ ¼
XLT

n ¼ 1

Xn

m ¼ �n

X2

p ¼ 1

amnp,ŝ Nð3ÞmnpðrÞ ð12Þ

amnp,ŝ ¼
XNS

i ¼ 1

XLi

l ¼ 1

Xl

k ¼ �l

X2

q ¼ 1

J0�i
mnp klqai

klq,ŝ ð13Þ

in which ai
klq,ŝ refer to the scattering coefficients obtained

from solution of Eq. (4) for an incident field with polariza-
tion state ŝ. The truncation limit LT in the expansion will
depend on the distance jrj, with LT-1 (i.e., lack of
convergence) as jrj-Maxjrij. In particular, the expansion
in Eq. (12) will not be useful to characterize the near-field
characteristics of the scattered electric field. However,
Eq. (12) is completely valid in the far-field regions, and for
this limit LT becomes equal to the incident field truncation
limit L.
2.3. Coordinate rotation, amplitude and scattering matrix,

and cross sections

Referring again to Fig. 2, the scattering plane is defined
as the z02x0 plane in the incident field coordinate frame.
The incident field coordinate frame ðx0,y0,z0Þ, in turn, is
obtained by a solid rotation of the target frame (x,y,z)
through the Euler angles ða,b,gÞ. The expansion coeffi-
cients that describe the total scattered field, for incident
polarization parallel or perpendicular to the scattering
plane, are obtained by

a0mnp,J ¼ a0
mnp,b̂

cosgþa0mnp,âsing ð14Þ

amnp,?
0 ¼ a0

mnp,b̂
sing�a0mnp,âcosg ð15Þ

in which b̂ and â denote solutions corresponding to the
two incident polarization states illustrated in Fig. 2, and
the prime denotes that the coefficients have been rotated
from the target to the incident field coordinate frames, in
that

a0mnp,ŝ ¼
Xn

k ¼ �n

DðnÞmkðcosbÞ eika aknp,ŝ ð16Þ

where aknp,ŝ refer to the coefficients obtained from
Eq. (13). The amplitude matrix elements are obtained by
using the far-field asymptotic form of the outgoing VSWF,
resulting in

S1 ¼
XL

n ¼ 1

Xn

m ¼ �n

X2

p ¼ 1

ð�iÞna0mnp,?tmn3�pðcosy0Þ ð17Þ
S2 ¼
XL

n ¼ 1

Xn

m ¼ �n

X2

p ¼ 1

ð�iÞnþ1a0mnp,Jtmnpðcosy0Þ ð18Þ

S3 ¼
XL

n ¼ 1

Xn

m ¼ �n

X2

p ¼ 1

ð�iÞnþ1a0mnp,?tmnpðcosy0Þ ð19Þ

S4 ¼
XL

n ¼ 1

Xn

m ¼ �n

X2

p ¼ 1

ð�iÞna0mnp,Jtmn3�pðcosy0Þ ð20Þ

in which y0 denotes the scattering angle. Elements of the
scattering matrix can be obtained directly from those of
the amplitude matrix following the formulas presented in
Bohren and Huffman [18].

The absorption cross section of sphere i is defined so
that Cabs,iI0 is the rate at which the sphere absorbs energy
from the incident wave of irradiance (at the focal point,
for a GB) I0. It is given by

Cabs,i ¼
2p
k2

XLi

n ¼ 1

Xn

m ¼ �n

X2

p ¼ 1

b
i

np ai
mnp

��� ���2 ð21Þ

where b
i

np is a positive (or zero) real valued property
solely of sphere i, defined by

b
i

np ¼�Re
1

ai
np

þ1

 !
ð22Þ

The amnp coefficients in the above formula would corre-
spond to either the parallel or perpendicular polarization
values; the absorption cross section for unpolarized
incident radiation would be the average of the two. The
absorption cross section of the entire ensemble is
obtained from the sum of the individual sphere cross
sections:

Cabs ¼
XNS

i ¼ 1

Cabs,i ð23Þ

In a similar manner, an extinction cross section of an
individual sphere can be defined so that I0Cext,i is the rate
at which the sphere removes energy from the incident
wave. The optical theorem applied to the field scattered
from the sphere gives

Cext,i ¼�
2p
k2

Re
XLi

n ¼ 1

Xn

m ¼ �n

X2

p ¼ 1

ai
mnppi�

mnp ð24Þ

As before, the scattering and incident field coefficients
would correspond to the particular polarization state. The
total ensemble extinction cross section would also be
obtained from the sum of the parts:

Cext ¼
XNS

i ¼ 1

Cext,i ð25Þ

Unlike the absorption cross section, the extinction cross
section for the individual sphere would be difficult – if not
impossible – to experimentally measure. The definition of
this quantity relies on the superposition model of the
scattered field, and although this model serves perfectly
well as a means to solve Maxwell’s equations for the
ensemble, it is not obvious how the partial fields scattered
from the individual spheres could be discriminated in an
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experiment. The sphere extinction is also not bound by
the isolated-particle inequality of Cext,i4Cabs,i; it is
entirely possible for this inequality to be reversed, and
even for Cext, io0, on the individual sphere level. And in
this respect a scattering cross section is only meaningful
on the target level, and is obtained from energy conserva-
tion via

Csca ¼ CextþCabs ð26Þ
2.4. The T-matrix relationships

Substitution of Eq. (11) into Eq. (4) leads to

1

ai
m

Ti
mn�

XNS

j ¼ 1
jai

X
n0

Hi�j
m n0 Tj

n0n ¼ Ji�0
mn ð27Þ

In the above and what follows, Greek subscripts are short-
hand for the degree-order-mode triplet, i.e., m¼ ðmnpÞ.
The sphere-target Ti-matrix is defined so that

ai
m ¼

X
n

Ti
mn fn ð28Þ

and will typically have more columns than rows; the
largest row and column order will be Li and L,
respectively.

Replacing Eq. (28) into Eq. (13) results in

am ¼
XNS

i ¼ 1

X
n

X
n0

J0�i
mn0 Ti

n0n fn ¼
X
n

Tmn fn ð29Þ

The cluster-centered T-matrix treats the ensemble of
spheres as a single – albeit nonspherical – particle. The
cross sections of the target and the scattering matrix – in
either fixed or random orientation – can be obtained
analytically from its properties. However, the T-matrix
cannot predict the fields within the cluster or the cross
sections of the individual spheres, because Eq. (12) will be
valid only for radii that exceed the largest sphere-target
origin distance. The detailed individual sphere and near-
field information – which is inaccessible from Eq. (29) –
can, however, be obtained from the original superposition
model.

Calculation of the target T-matrix in the code is
accomplished by iterative solution of Eq. (27) for a
succession of n¼ ðklqÞ values. Upon each solution, the
column elements of the T-matrix corresponding to n are
obtained via the contraction in Eq. (29). The algorithm is
described in detail in [9].

2.5. Random orientation

The random orientation cross sections can be obtained
by using the matrix relationships for the scattered and
incident field, Eqs. (11) and (28), in Eqs. (21) and (24) and
integrating the incident field over all propagation and
polarization directions. Because the transformation
between PW and GB representations in Eq. (9) is inde-
pendent of propagation direction, the integration can be
performed in a general manner without considering the
specific form of the incident field. This results in

/fmnp ðfm0n0p0 Þ
�S¼ dm�m0dn�n0dp�p0g

2
n ð30Þ

where / . . .S denotes orientation averaging and gn is
given by Eq. (10); note that the plane wave case will have
gn-1. The formulas for the individual sphere random
orientation cross sections are then

/Cabs,iS¼
2p
k2

X
m

X
n

b
i

m Ti
mn

��� ���2 g2
n ð31Þ

/Cext,iS¼�
2p
k2

Re
X
m

X
n

J0�i
n m Ti

mn g2
n ð32Þ

As before, the total orientation-averaged absorption and
extinction cross sections for the cluster will be the sum of
the individual sphere values, and the total scattering cross
section will be the difference between the total extinction
and absorption cross sections.

The random-orientation scattering matrix can be
obtained analytically from operations on the T-matrix,
and is represented as an expansion of generalized sphe-
rical functions [9]. The formulas for the expansion coeffi-
cients were originally derived for plane wave excitation,
yet for GB excitation the generalized spherical function
expansion for the scattering matrix can be calculated by
making the simple transformation

T
0

mnp klq ¼ Tmnp klq g l ð33Þ

and then applying the plane wave formulas to T 0.

3. Multiple sphere T-matrix (MSTM) code

3.1. Structure and compilation

In revising the multiple sphere scattering codes, our
programming goals were to develop a code which
�
 is as compiler – and machine – independent as
possible,

�
 can be compiled and run on both serial and distributed

memory parallel processing platforms,

�
 optimally uses the memory and (for parallel platforms)

processor resources of the machine, and

�
 allows for a wide range of calculation and output

options without modification and recompilation of
the code.

In meeting these goals, we have used the Fortran-90
programming language and its dynamic memory alloca-
tion and vector arithmetic features. By doing so, it is no
longer necessary to explicitly define array dimensions in
the code corresponding to the maximum number of
spheres, maximum harmonic order, etc. The code also
incorporates message passing interface (MPI) commands
to implement execution on distributed memory, multiple
processor compute clusters. The source code and support-
ing documentation are available for free download at [19].
The reader is advised to refer to the manual contained in
the distribution at [19] for updates, revisions, and bug
fixes to the code.
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The code is organized into the following five com-
ponents:

mstm-modules.f90: Contains modules for data input,
special function calculation, iterative linear
equation solving, and scattering property
calculation.

mstm-main.f90: The prepackaged main program,
which reads input parameters from an input
file, calls the subroutines corresponding to the
calculation options, and writes output files.

mpidefs-parallel.f90: A module which defines the
MPI commands appearing in the mstm-modu-

les.f90 and mstm-main.f90 code blocks for
use on multiprocessor platforms.

mpidefs-serial.f90: A module which defines MPI
commands for use on single processor (serial)
platforms.

mstm-intrinsics.f90: Compiler-specific (non-stan-
dard Fortran) functions for command-line argu-
ment retrieval and system time operations. The
users must modify this module to suit their
specific compiler.

Compilation of the code using the GNU g95 on a MS-
Windows, single processor machine would involve
g95 -o mstm.exe mpidefs-serial.f90 mstm-intrinsics.f90
mstm-modules.f90 mstm-main.f90
This places the executable in the file mstm.exe. Compila-
tion using the MPICH2 package for execution on a parallel
machine would use
mpif90 -I/opt/mpich2-1.2.1p1/include -g -o mstm.out
mpidefs-parallel.f90 mstm-intrinsics.f90
mstm-modules.f90 mstm-main.f90
and would put the executable in mstm.out.
Other compilers follow the same basic plan. It is impor-

tant to compile the module files in the order they are given.

3.2. Prepackaged main program

The mstm-main.f90 program included with the dis-
tribution is designed to offer the most common calcula-
tion options and output formats, and should serve the
computational purposes of most users. Modification of
the main program for more specialized types of calcula-
tions should be straightforward for the programmer with
moderate Fortran experience. The code employs a highly
modular structure, in which the various tasks involved in
the solution are performed in specialized subroutines, and
modification of the code to perform a specific task, such as
averaging scattering matrix values over several target
configurations or calculating near-field values along a
non-rectangular domain, will typically involve rearran-
ging subroutine calls to produce the desired output.

In using the code with the default main program, the
properties of the sphere cluster and run variables are
passed to the code using an input file. An input file can be
designated by a command-line argument, i.e.,

mstm inputfile
The input file must be in the same directory as
the executable. The default input file is mstm.inp; this
file must be present if no command-line argument
is given.

The input file consists of paired lines; the first line of a
pair representing a parameter ID, and the second repre-
senting the value or option for that parameter. The order
of the paired lines is not important. If a pair correspond-
ing to a particular parameter is not present, the code will
use the default value.

An example of an input file, showing the first few input
parameters, is shown below:
number_spheres

100

sphere_position_file

ran100.pos

output_file

test.dat

length_scale_factor

2.d0

real_ref_index_scale_factor

1.6d0

imag_ref_index_scale_factor

0.01d0

mie_epsilon

1.d-3
Note that the parameter ID, i.e., number_spheres or
output_file, must appear as written above. A description
of the parameters follows; default values are given in
parentheses.
3.2.1. General options

number_spheres: NS, the number of spheres in the
cluster.

sphere_position_file: File name containing the
sphere size, position, and (optionally) refractive
index data. If the filename is blank, or if it is
given the value at_bottom, sizes, positions, and
refractive indices appear as the last lines in the
input file, following a parameter ID of spher-
e_sizes_and_ positions. The position file, or
the appended position information at the bot-
tom of the input file, should have NS lines; if the
number of lines is smaller than the input NS,
then NS will be reduced to match the number of
lines. Each line has either four or six columns.
The first four correspond to the radius and X, Y, Z

positions of the i-th sphere in the list. Units are
arbitrary yet must be consistent for radius and
position. The 5th and 6th columns, if present,
denote the real and imaginary refractive indices
of the sphere. If these columns are not present
the refractive index of the spheres is taken to be
the same for all spheres and given by the scaling
factors (see below).

output_file: File name for file to which final calcula-
tion results are written.

run_print_file: File name for file to which intermedi-
ate output results are written. If blank, results
are written to standard output (the screen).
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length_scale_factor: Dimensionless length scale
factor; the radii and positions obtained from
the position file are multiplied by this factor,
so that the size parameter of the i-th sphere is
the scale factor times the radius.

real_ref_index_scale_factor: Multiplies the sphere
real refractive index value from the position file; if
refractive index values are explicitly given in the
position file, then set this parameter to 1. If
refractive index values do not appear in the
position file (i.e., 4 column option), then the scale
factor becomes the real refractive index value for
all spheres.

imag_ref_index_scale_factor: Same idea as the
above, except now applied to the imaginary part
of the refractive index.

mie_epsilon: Convergence criterion for determining
the number of orders to include in the Mie
expansions for each sphere (10�4). Setting
mie_epsilon to a negative integer �L forces
all sphere expansion to include L orders.

translation_epsilon: Convergence criterion for esti-
mating the maximum order of the T-matrix for
the cluster (10�3).

solution_epsilon: Error criterion for solution of the
interaction equations; solution is obtained when
the normalized mean square error of the solu-
tion decreases below this value (10�10).

max_number_iterations: The maximum number of
iterations used in the biconjugate gradient
scheme for a particular right-hand side. The
code will send a message if the maximum
number of iterations is exceeded (2000).

max_memory_per_processor: The maximum memory
used for translation matrix storage for each
processor, in MB. Relevant only for parallel runs,
this quantity should be somewhat less than the
total memory available to a single processor
(1500).

min_scattering_angle_deg: The starting value of the
scattering angle for scattering matrix computa-
tions, in degrees (0.0).

max_scattering_angle_deg: Ending value of scatter-
ing angle, in degrees (180.0).

number_scattering_angles: Scattering matrix
values are calculated at number_scatterin-
g_angles evenly spaced angles (181).

gaussian_beam_focal_point: X, Y, and Z coordinates
of the Gaussian-profile incident beam, relative
to the origin and scaling in the sphere position
file (i.e., before length_scale_factor has
been applied). This array defines the origin of
the target coordinate system (0.0,0.0,0.0).

gaussian_beam_constant: Dimensionless parameter
CB ¼ 1=ko0 (Eq. (8)) which characterizes the
inverse width, at the focal point, of an incident
Gaussian profile beam. Setting CB¼0 selects
plane wave incidence. The localized approxima-
tion used to represent the Gaussian beam is
accurate for CBr0:2. Default is the plane wave
condition (¼0.0), and this number is not scaled
by the length scaled factor. Note that Gaussian
beam options apply to both fixed orientation
and random-orientation calculations.

fixed_or_random_orientation: Integer switch: ¼0 for
a fixed orientation, ¼1 for random-orientation
results via the T-matrix scheme. When ¼0, input
parameters corresponding to the T-matrix solu-
tion are not pertinent to the run, and likewise for
the fixed orientation parameters when ¼1 (0).

3.2.2. Options for fixed orientation calculations

incident_azimuth_angle_deg: The azimuth angle a
of the incident field propagation direction, rela-
tive to the sphere cluster coordinate system, in
degrees (0.0).

incident_polar_angle_deg: Polar angle b for propa-
gation direction, degrees (0.0).

scattering_plane_angle_deg: Angle g which sets
the scattering plane for scattering matrix calcu-
lations, per Fig. 2 and accompanying discussion.
Note that if a¼ b¼ 0, g corresponds to the
azimuth angle f of the scattering plane relative
to the cluster coordinate system (0.0).

calculate_scattering_coefficients: Integer
switch selecting whether the sphere scattering
coefficients ai

mnp are calculated from solution to
Eq. (4) (¼1), or read from a file generated from a
previous solution (¼0). The latter option is
useful for generating near-field maps on differ-
ent planes without having to recalculate the
scattering coefficients (1).

scattering_coefficient_file: File name for the file
to which the scattering coefficients are written
and/or read (amn-temp.dat).

calculate_near_field: Integer switch for calculation
of near field: ¼0 for no near-field calculations,
¼1 to select near-field calculations. The follow-
ing six input parameters are pertinent only
when the near field is calculated (0).

near_field_plane_coord: Near-field values are calcu-
lated in a rectangular grid lying in the plane
denoted by this integer value, ¼ 1: ŷ2ẑ plane;
¼ 2: ẑ2x̂ plane; ¼3: x̂2ŷ plane. (1).

near_field_plane_position: The distance of the cal-
culation plane from the cluster coordinate ori-
gin, scaled by k (0.0).

near_field_plane_vertices: Two pairs of numbers,
ðX01,Y 01Þ, ðX

0
2,Y 02Þ, which denote the vertices

(opposite corners) of the rectangular region, in
the near-field plane, in which field calculations
are made. The coordinates in the first pair must
be smaller than that in the second pair. The
coordinates are not scaled by the length scale
factor; they are implicitly in size parameter
units (i.e., scaled by k) (�10.0,�10.0,10.0,10.0).

spacial_step_size: The spacial step size Dx of calcu-
lation grid points, scaled by k (0.1).

polarization_angle_deg: A specific polarization
state of the incident field is needed to calculate
the near field. The field is taken to be linearly
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polarized, with a polarization angle of g relative
to the k̂–ẑ plane. When b¼ 0, g becomes the
azimuth angle of the incident electric field
vector relative to the cluster coordinate
system (0.0).

near_field_output_file: File name for the output elec-
tric field values. The file will contain NFþ1 lines.
The first line contains the grid dimensions NF,X0

and NF,Y 0 , and the following NF lines contain the
position and complex electric field vector values.
The dimensions are given by

NF ¼NF,X0 � NF,Y 0

NF,X0 ¼ 1þ
X02�X01
Dx

, NF,Y 0 ¼ 1þ
Y 02�Y 01
Dx

The first two columns in a data row are the X0,Y 0

position of the calculation point, scaled by k, and
the remaining six lines denote the real and
imaginary components of the x, y, z components
of the electric field (in the cluster coordinate
frame). Field values are scaled to the amplitude
of the incident field at the target origin (nf-
temp.dat).

plane_wave_epsilon: The incident field component
for the near-field calculations – for either the
plane wave or Gaussian beam models – is
calculated using a single, regular VWH expan-
sion centered about the beam focal point. The
plane wave epsilon is a convergence criterion for
this expansion (0.01).

3.2.3. Options for random-orientation calculations

calculate_t_matrix: Integer switch selecting
whether the T-matrix is read from a file (¼0),
calculated in its entirety and written to a file
(¼1), or calculated beginning with the next
largest order of a partially calculated T-matrix
read from a file, and appended to the same file
(¼2). Option 0 allows for calculation of random
properties for different incident beam configura-
tions (plane wave or Gaussian) without having
to recalculate the T-matrix. Option 1 calculates
the T-matrix elements using the sequential solu-
tion of Eq. (27) until a set convergence criterion
is reached. Option 2 is included for situations in
which option 1 is interrupted prior to conver-
gence; the calculations will pick up where the
interrupted run left off and continue until
convergence (1).

t_matrix_file: File name for the file to which the
T-matrix is read (option 0), written (option 1),
or read and appended (2). Note that the T-matrix
will be written to a file regardless of whether it
is intended to be used again in subsequent runs:
the file serves as temporary storage of T-matrix
columns during calculation (tmatrix-temp.
dat).

t_matrix_convergence_epsilon: Calculation of the
T-matrix is accomplished by solution of the
interaction equations for a sequence of right-
hand sides, with each RHS corresponding to the
order l, degree k, and mode q component of a
generalized plane wave expansion centered
about the focal point. For each order l the
random-orientation extinction and scattering
efficiencies of the cluster are calculated, and a
converged T-matrix is identified when the abso-
lute difference in the efficiencies, from one order
to the next, decreases below this convergence
epsilon (10�4).

3.2.4. Termination of input data

Reading of options from the input file will terminate
without error when the end of file is reached. Alterna-
tively, the input can be terminated by using the para-
meter ID of end_of_options; the input process will be
closed when this line is reached, and ID/parameter values
located after this line will have no influence on the run.
This statement is useful for quick modification of an input
file, in that ID/parameter pairs can be shuffled either
before or after the end_of_options line within the same
file to set up different runs. The sphere_sizes_and_
positions ID has the same effect as end_of_options
when sphere sizes and positions are read from a separate
file, yet when the sizes/positions are appended to the
input file the ID preceding the data must be sphere_
sizes_and_positions.

3.3. Parallel considerations

The code employs parallelization during four compu-
tational tasks: (1) the matrix–vector product Hi�jaj

appearing in Eq. (4); (2) the solution of Eq. (27) for the
different right-hand side vectors; (3) computation of the
expansion coefficients for the random-orientation scatter-
ing matrix representation; and (4) calculation of the near-
field values. The last two steps involve a straightforward
distribution of non-recursive computational tasks among
the NP processors used in the run. The first two tasks,
however, occur simultaneously during calculation of the
T-matrix. The strategy used is to subdivide the NP pro-
cessors via NP ¼N1 � N2. Each member of the N2 group is
involved in a solution, for given right-hand side, to
Eq. (27), and associated with this member are the N1

processors which are used to perform the matrix–vector
product during iteration. The maximum efficiency is
obtained when N1 is made as small as possible and, by
extension, N2 as large as possible; this minimizes the
overall amount of data transfer among processors required
to complete a T-matrix calculation. In general, the mini-
mum value of N1 will be determined by the ratio of the
memory required to store the complete set of translation
matrix elements to the memory available to a single
processor, with the latter quantity user-set by the variable
max_memory_per_processor.

In fixed orientation calculations the matrix–vector
product in Eq. (4) is computed using the minimum of
(NS, NP) processors. That is, for a calculation involving 10
spheres, run on 30 processors, 20 of the processors will be
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idle during solution of Eq. (4). All processors will be put to
use for subsequent near-field calculations, if performed.

4. Application examples

Our intention, in writing this report, has been to
introduce the features and basic use of the MSTM
code—as opposed to using the code to examine the
characteristics of scattering by multiple sphere systems.
Indeed, most of the input parameters and calculated
observables generated by the code are not fundamentally
new or different from those provided in earlier formations
and codes, and in this respect the MSTM code provides a
single convenient package for calculating multiple sphere
scattering properties under a wide range of configurations.

In our opinion, the most significant aspect of the new
code pertains to its potential when run on parallel compute
clusters. Specifically, such platforms allow the code to
calculate scattering properties, for both fixed and random
orientations, of targets containing thousands of spheres.
This capability makes feasible the use of the multiple
sphere scattering formulation to perform direct simulations
of radiative transfer in discretely inhomogeneous media.
That is, the code can be applied to calculate the detailed,
microscopic-level EM characteristics of systems that are of
sufficient overall size as to model a radiative continuum,
and the macroscopic-level characteristics of the continuum
can be derived from spatial and/or configurational aver-
aging of the microscopic-level characteristics.

We will conclude this report by presenting a few
examples of such calculations. In all cases, the code was
executed on the Auburn University College of Engineering
(COE) High Performance Compute Cluster (HPCC) [20].
The code was run on up to 128 2.8 GHz processors, with
approximately 2 GB of memory storage available per
processor.

4.1. Direct simulation of coherent backscattering and

polarization opposition

One of the first applications of the parallelized MSTM
code was to examine, via direct simulation ‘‘numerical
experiments’’, the effects of multiple scattering in a
Fig. 3. Spherical targets: NS¼375, c¼0
random particulate medium on the Stokes vector in the
backwards scattering directions. The targets for the simu-
lations consisted of spherical volumes containing a ran-
dom dispersion of monodisperse spheres. Two such
targets are illustrated in Fig. 3. For both cases the ratio
of the target and single sphere radii is at=aS ¼ 15:54, and
the left and right targets contain 375 and 1875 spheres,
corresponding to volume fractions c of 0.1 and 0.5. Since
the number of spheres in the target is large and their
positions random, we found that an analytical orientation
averaging of the scattering matrix for a single target
configuration yielded results that were equivalent to
those obtained by the averaging, over a large set of target
realizations, of the single-orientation scattering matrix
[10]. The former method was also much more computa-
tionally efficient than the latter; single-orientation scat-
tering calculations for the large clusters are characterized
by a high degree of speckle – which can be viewed as a
microscopic-level phenomenon – and a considerable
degree of configurational averaging is required to average
out the speckle patterns to a point that reveals the
macroscopic scattering characteristics of the medium.

A sample of the results obtained from the calculations
is shown in Fig. 4. The results correspond to sphere size
parameters of xS¼2 and refractive index m¼ 1:31, and NS

ranging from 1 to 1875. The volume fraction for each NS

corresponds to c¼NS=ð15:54Þ3. Four orders were retained
in the individual sphere scattered field expansions, and
for the NS¼1875 case the interaction equations contained
9�104 unknowns. For the set xS the size parameter of the
target sphere is xt¼31.1, and calculating the T-matrix to a
converged order of 40 required solution of the interaction
equations for 3360 right-hand sides. Around 6 days of run
time on the HPCC were required to complete the T-matrix
calculation for the largest NS value. It should be noted that
the calculations for the largest NS values would not have
been feasible on a single processor, serial machine in view
of the memory requirements necessary to store the
translation matrix elements; it is precisely the feature of
distributed memory, and the ability to partition the
translation matrix storage among the different processors,
which makes possible the large-scale calculations. For the
smaller values of NS the entire set of translation matrices
.1 (left); NS¼1875, c¼0.5 (right).



Fig. 5. NS¼3000 sphere target.

Fig. 4. Direct simulation calculations of backscattering phase function (left) and linear polarization (right).
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could be stored in the memory for a single processor, and
the T-matrix calculation used each of the 128 processors
to perform an individual solution to Eq. (27) for a specific
right-hand side. For this condition, calculation of the
T-matrix on the HPCC was performed on the order of
100 times faster than that for a serial calculation.

Shown in Fig. 4 are plots of the scattering phase
function S11, normalized by the value at 1801, and the
degree of linear polarization �S21=S11 as a function of
scattering angle y for scattering directions near the back-
wards direction and with target NS as a parameter. As NS

increases, the plots show an emergence of coherent
backscattering (CB) and brightness and polarization oppo-
sition effects which reach a maximum for volume frac-
tions c� 0:220:3 (corresponding to NS ¼ 75021125).
Further increase of NS actually lead to an extinction of
the CB and PO effects as the target becomes effectively
homogeneous. The results shown in Fig. 4 are consistent
with the microphysical theory of radiative transfer and
are discussed in detail in [21–23].

4.2. Near-field distributions

The MSTM code can also calculate the detailed, micro-
scopic-level field patterns within a multiple sphere target.
Such calculations do not involve calculation of a target
T-matrix – rather, they involve a solution of Eq. (4) for a
fixed incident orientation – and this increases the upper
limit on the size (in sphere size parameter and number) of
the target. Our experience with the COE HPCC was that
the target size limit was controlled more by the available
memory storage than by the computational time.

The example run described here calculates the electric
field distribution in and about a cylindrically shaped
cluster. The target, illustrated in Fig. 5, consists of
NS¼3000 spheres with xS¼4, m¼ 1:6þ0:01i, randomly
packed into a circular cylinder of radius ¼ axial length,
with an average volume fraction of 0.5. The target is
excited with an x̂-polarized Gaussian profile beam of
width ko0 ¼ 20 (gaussian_beam_constant¼0.05)
which propagates along the axis of the cylindrical target
and is focussed on the target center. Seven orders were
used to model the sphere scattered field expansions,
and the interaction equations contained 3.78� 105

unknowns. Solution of the interaction equations required
around 10 h on the HPCC.

Fig. 6 provides a demonstration of the level of detail
obtainable from such calculations. The figure shows the
real value of the x̂ component of electric field on the X¼0
plane, with the circles denoting the intersections of the
sphere surfaces with the plane. The plotted component of
electric field can be viewed as being perpendicular to the
paper, and will also be tangential to the surfaces of
spheres that are split into half by the X¼0 plane. Such
spheres will correspond to the largest circles on the plot,
and the fields about these spheres display the required
continuity conditions. The quantitative information that
can be gathered from calculations of the sort used to
construct Fig. 6 is considerable, and ranges from an
identification of field localization (seen most apparently
in the right-hand plot) to determination of the macro-
scopic, bulk extinction and absorption coefficients of the
medium.



Fig. 6. Re x̂ � E distributions, y–z plane, x¼0.
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5. Summary

The topic of electromagnetic wave scattering is rele-
vant to a wide variety of scientific and engineering
disciplines – ranging from astrophysics and atmospheric
sciences to combustion diagnostics and the engineering of
nanoscale, photonic materials – and the development of
new understanding and new technologies in these areas
will certainly benefit from improved computational algo-
rithms and hardware. It is our hope that the MSTM code
becomes a useful resource in these areas, and that the
code makes feasible computational examinations that
were previously viewed as intractable or inaccessible.
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