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a b s t r a c t

Measurements with directional radiometers and calculations based on the radiative transfer

equation (RTE) have been at the very heart of weather and climate modeling and terrestrial

remote sensing. The quantification of the energy budget of the Earth’s climate system

requires exquisite measurements and computations of the incoming and outgoing electro-

magnetic energy, while global characterization of climate system’s components relies

heavily on theoretical inversions of observational data obtained with various passive and

active instruments. The same basic problems involving electromagnetic energy transport

and its use for diagnostic and characterization purposes are encountered in numerous other

areas of science, biomedicine, and engineering. Yet both the discipline of directional

radiometry and the radiative transfer theory (RTT) have traditionally been based on

phenomenological concepts many of which turn out to be profound misconceptions.

Contrary to the widespread belief, a collimated radiometer does not, in general, measure

the flow of electromagnetic energy along its optical axis, while the specific intensity does

not quantify the amount of electromagnetic energy transported in a given direction.

The recently developed microphysical approach to radiative transfer and directional

radiometry is explicitly based on the Maxwell equations and clarifies the physical nature

of measurements with collimated radiometers and the actual content of the RTE.

It reveals that the specific intensity has no fundamental physical meaning besides being

a mathematical solution of the RTE, while the RTE itself is nothing more than an

intermediate auxiliary equation. Only under special circumstances detailed in this

review can the solution of the RTE be used to compute the time-averaged local Poynting

vector as well as be measured by a collimated radiometer. These firmly established facts

make the combination of the RTE and a collimated radiometer useful in a well-defined

range of applications. However, outside the domain of validity of the RTT the practical

usefulness of measurements with collimated radiometers remains uncertain, while the

theoretical modeling of these measurements and the solution of the energy-budget

problem require a more sophisticated approach than solving the RTE.
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1. Introduction

One cannot imagine modern weather, climate, and
remote-sensing science without the radiative transfer the-
ory (RTT) and directional radiometry (DR). Indeed, accurate
quantification of the Earth’s energy budget necessitates
precise measurements and computations of the incoming
and outgoing electromagnetic energy [1,2], while regional
and global characterization of the Earth’s atmosphere and
surface has been based traditionally on theoretical inver-
sions of ground-based, airborne, and satellite measurements
of transmitted, scattered, and emitted radiation [3,4].
The same basic problems involving electromagnetic energy
transport and its use for non-invasive diagnostic and char-
acterization purposes are common to a great variety of
science, biomedicine, and engineering disciplines [5–20].

According to the majority of existing monographs and
textbooks, both RTT and DR are essentially complete
disciplines, the remaining unresolved issues being of
purely technical character. For example, in the second
edition of Atmospheric Radiation, Goody and Yung [21]
remarked that the 25 years that had passed since the first
edition was published, there had been many altered
perceptions, usually direct results of changing technolo-
gies, but fewer advances in fundamental ideas. Similarly,
Thomas and Stamnes [22] claimed that ‘‘the subject of
radiative transfer has matured to the point of being a
well-developed tool’’, Zdunkovski et al. [23] noted that
‘‘radiative transfer theory has reached a high point of
development’’, while Kokhanovsky [24] emphasized the
well-established nature of the radiative transfer equation
(RTE) by remarking that ‘‘the derivation of this equation
for random media with discrete particles is simple’’.

Given this unanimity of climate and remote-sensing
experts, it should be quite striking to find the following
statement in a recent monograph written by leading
authorities on classical and quantum optics: ‘‘In spite of
the extensive use of the theory of radiative energy trans-
fer, no satisfactory derivation of its basic equation (i.e., the
RTE) from electromagnetic theoryy has been obtained up
to now’’ [25]. In fact, detailed analyses have exposed the

phenomenological theories of DR and radiative transfer to
be eclectic combinations of ad hoc concepts and principles
that may appear to be plausible at first sight but fall apart
upon systematic scrutiny [26–30]. This situation is, of
course, quite unfortunate, given the widespread use of
the RTE for almost 125 years [31,32].

The objective of this review is to draw the attention of
a broad range of climate, atmospheric radiation, remote-
sensing, and biomedical scientists as well as optical,
electrical, and mechanical engineers to the recent emer-
gence of a microphysical paradigm in DR and RTT based on
direct and self-consistent application of the Maxwell
equations.1 This paradigm solves the long-standing
problem of establishing the fundamental physical link
between the RTT and DR on the one hand and macroscopic
electromagnetics on the other. This development allows
one to clarify the physical content of a measurement with
a directional (i.e., well-collimated) radiometer (hereafter
WCR) and its relation to the solution of the RTE. It also
suggests that in many cases the reading of a WCR must be
modeled using a much more sophisticated approach than
the RTE and that the very applicability of WCRs in
quantifying the energy budget of the Earth’s climate
system or any particulate medium can be problematic
and requires a detailed analysis based on first principles.

2. Specific intensity: is it a fundamental physical
quantity?

2.1. Phenomenological specific intensity

Alongside Henri Poincaré’s principle of relativity, Max
Planck’s energy quanta represent the most profound
paradigm-changing concept of the 20th century physics
[33]. It is, therefore, not surprising that virtually all

1 The word ‘‘microphysical’’ serves to emphasize the direct trace-

ability of the new DR and RTT concepts from fundamental physics (in

this case from the macroscopic Maxwell equations, or MMEs) not

afforded by the phenomenological approach (see the detailed discussion

in Ref. [30]).
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accounts of the phenomenological RTT and DR and the
underlying concept of the specific intensity (SI) are rooted
in Max Planck’s famous treatise on heat radiation [34].
On page 1 of the English edition of this book [35], one can
find the following manifesto: ‘‘The state of the radiation at
a given instant and at a given point of the medium cannot
be representedy by a single vector (that is, a single
directed quantity). All heat rays which at a given instant
pass through the same point of the medium are perfectly
independent of one another, and in order to specify
completely the state of the radiation the intensity of
radiation must be known in all the directions, infinite in
number, which pass through the point in question.’’ Based
on this premise, Planck gave the classical definition of the
SI Iðr,q̂Þ by stating that the amount of radiant energy dE

transported through an arbitrarily chosen differential
element of area dS in the interior of a medium in
directions confined to a differential element of solid angle
dOq̂, centered at the propagation direction q̂, during a
differential time interval dt is given by

dE¼ Iðr,q̂ÞcosydSdt dOq̂, ð1Þ

where r is the position vector of the differential surface
element and y is the angle between q̂ and the normal n̂ to
dS (Fig. 1a). This definition was eventually adopted in the
classical works by Milne [36], Hopf [37], and Chandrase-
khar [38] as well as in virtually all subsequent mono-
graphs on RTT and DR (e.g., [3,4,11,12,16,19–24,39–45]).
Although in his treatise Planck specifically considered
black-body electromagnetic radiation, his concept of the
SI was extrapolated to encompass diffuse multiple scat-
tering of light by cloudy and other particulate media. The
typical physical model of this situation is the scattering of
a quasi-monochromatic parallel beam of light (e.g., sun-
light) by a cloud, as shown in Fig. 2. It is this physical
model that will be the subject of our review.

It is important to recognize that Planck [34,35] used what
is now called the semi-classical approach (e.g., [25,46,47]),
wherein the matter is quantized while the electromagnetic
field remains purely classical. This implies that Planck’s
concept of the polydirectional SI contradicts one of the
fundamental laws of classical electromagnetics according to
which at any given moment t the propagation of the
electromagnetic energy at any observation point r is fully
described by the Poynting vector given by the vector product
of the local electric and magnetic field vectors: Sðr, tÞ ¼

Eðr, tÞ �Hðr, tÞ [48–51]. The direction and magnitude of this
vector can change in time, but at any given moment t the
propagation of the electromagnetic energy at any point r is
monodirectional. Averaging over time also yields a monodir-
ectional vector /Sðr,tÞSt ¼/Eðr,tÞ�Hðr,tÞSt .

The traditional phenomenological way of addressing
this profound inconsistency is to claim that, in fact, the
electromagnetic field must also be quantized, which,
allegedly, results in the emergence of photons as localized
and ‘‘independent’’ particles of the electromagnetic field
forming a ‘‘photon gas’’ [52–55]. For example, Bohren and
Clothiaux [56] write explicitly on page 186 that ‘‘radio-
metry is based on approximating electromagnetic radia-
tion as a gas of photons’’. The SI is then claimed to
quantify the instantaneous directional distribution of all

the photons passing through the differential surface
element dS in Fig. 1a. This approach, however, faces an
equally insurmountable problem [26,28,57]. Indeed, the
real photons appearing in quantum electrodynamics
(QED) are neither Newtonian corpuscles nor Einstein’s
energy quanta localized at points in space [58–63]. Each
QED photon is a quantum of a single normal mode of the
electromagnetic field and as such occupies the entire
quantization volume (e.g., the entire cloud) and cannot
be localized [25,64]. As a consequence, the photons
cannot be used to define the SI at an observation point r
[26]. It is, therefore, not surprising that the RTE has never
been derived directly from QED.

2.2. Preisendorfer’s radiance function

Preisendorfer [65] and Ishimaru [66] attempted
another way of relating the heuristic SI to the Poynting
vector by admitting that the former cannot be defined at a
specific moment t but rather must be the result of
averaging over a sufficiently long period of time. They
observed that in a turbid medium, particles are in
constant motion and can also change their sizes, shapes,
and orientations, thereby rendering the direction and
magnitude of the Poynting vector at an observation point
(Fig. 2) random functions of time. At certain moments the
direction of the instantaneous Poynting vector can fall
within the differential solid angle dOq̂ in Fig. 1a. There-
fore, Preisendorfer and Ishimaru concluded that an appro-
priate definition of the SI could be the time-averaged
length of the Poynting vectors at r with directions falling
within dOq̂: More specifically, Preisendorfer’s radiance
function is defined as follows (see Fig. 1a):

Nðr,q̂Þ ¼
1

cosy
lim
DS-0

1

DS
lim

DOq̂-0

1

DOq̂
lim

T-1

1

T

�

Z
DS

dS0
Z tþT

t
dt09Sðr0, t0Þ9w½DOq̂,ŝðr0,t0Þ�, ð2Þ

where ŝðr,t0Þ ¼ Sðr,t0Þ=9Sðr,t0Þ9 is the unit vector in the
direction of Sðr0,t0Þ and

w½DOq̂,ŝðr0,t0Þ� ¼
1 if ŝðr0,t0Þ 2 DOq̂,

0 otherwise:

(
ð3Þ

In the chapter ‘‘Connections with the Mainland’’,
Preisendorfer [65] summarized the most fundamental
weakness of the phenomenological RTT from the stand-
point of ‘‘mainland physicists’’, viz., the absence of a
detailed derivation of the RTE from first principles.
Indeed, the traditional back-of-an-envelope ‘‘derivation’’
amounts to little more than the postulation of the RTE
based on the belief that the SI exists as a fundamental
physical quantity, a priori possesses the desirable proper-
ties, and can be used to evaluate the energy balance of a
vaguely defined ‘‘small volume element’’ [28]. Preisen-
dorfer attempted to use the MMEs in order to demon-
strate that his radiance function Nðr,q̂Þ satisfies the RTE.
However, his derivation failed for several reasons, includ-
ing the incorrect assumption that the instantaneous
electric and magnetic field vectors at any point inside a
turbid medium are always mutually orthogonal.
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There is no doubt that if the SI was a fundamental,
physically meaningful quantity then Nðr,q̂Þ would be its
most appropriate representation in terms of the Poynting
vector. The unquestionable virtue of Nðr, q̂Þ is that it
possesses, by its very definition, one of the intended
properties of the SI, viz., the integral of Nðr,q̂Þq̂ over all
directions q̂ yields the time-averaged Poynting vector at
the observation point r:

/Sðr,tÞSt ¼

Z
4p

dq̂q̂Nðr,q̂Þ: ð4Þ

However, the decisive drawbacks of this quantity, as
we shall see later, are that it cannot be measured with
conventional WCRs and does not satisfy the RTE.

3. Directional radiometers: what do they actually
measure?

A hypothetical instrument capable of measuring the
radiance function Nðr,q̂Þ is shown in Fig. 1c. The sensitive
surface of this instrument Sd is exposed directly to the
incoming radiation and is assumed to react to the local

S1

S2

S3

 Sensitive
surface Sd

q̂

Objective
     lens

Relay
 lens

Diaphragm

Photodetector
q̂

q̂'
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q1ˆPlan
e w

av
e

Plane wave

q2ˆ

H1 H2

H

E1, E2, E
S

q1ˆ
q2ˆ
q3ˆ
q4ˆ
q5ˆ
q6ˆ
q7ˆ

q̂

V

ΔVΔS

V

ΔV
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S S

q̂Δ�

q̂Δ�

Ωd

θ

dS

q̂n̂

q̂

Fig. 1. (a) Definition of the phenomenological specific intensity, (b) typical optical scheme of a WCR, (c) hypothetical radiance function meter

accumulating local Poynting vectors with directions falling within the acceptance solid angle DO q̂ . (d) The conventional WCR does not respond to the

Poynting vector directed along the optical axis of the instrument. (e) Response of a WCR to a superposition of plane electromagnetic waves. (f)

Instantaneous radiation budget of a volume element DV bounded by a closed surface DS: The arrows represent the instantaneous distribution of Sðr, tÞ

over DS corresponding to the specific multi-particle configuration occurring at the moment t. (g) Time-averaged radiation budget of the same volume

element.
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instantaneous Poynting vector only if this vector is direc-
ted normally or almost normally to the surface. Specifi-
cally, if the direction of Sðr0,tÞ at any point r0 of the
sensitive surface is within the small acceptance solid
angle DO q̂ of the detector (e.g., vector S1 in Fig. 1c) then
this vector contributes to the cumulative reading of the
instrument. Instantaneous local Poynting vectors with
directions outside DO q̂ (e.g., vectors S2 and S3) are
ignored by the instrument and do not contribute to its
reading. Obviously, accumulating the signal over a suffi-
ciently long period of time T and dividing it by Sd, DO q̂,
and T directly yields Nðr,q̂Þ:

Thus, this hypothetical instrument is directly applic-
able, by its very definition, to the measurement of the
radiance function Nðr,q̂Þ and the local time-averaged
Poynting vector via Eq. (4). If it were feasible, this
instrument would serve as an ideal bridge between
fundamental electromagnetics and the semi-empirical
field of DR. Unfortunately, to the best of the author’s
knowledge, such an instrument has never been built, and
it remains quite questionable whether it can be built in
principle. Obviously, assessing the very feasibility of an
instrument with directional sensitivity to the local instan-
taneous Poynting vector (Fig. 1c) requires an advanced
quantum-mechanical analysis of light-matter interaction.

The actual WCRs in use today are based on a
profoundly different physical principle, as shown in
Fig. 1b. Let us consider two plane electromagnetic waves
propagating in directions q̂ and q̂

0

, respectively. The
objective lens transforms both plane wavefronts into
converging spherical wavefronts with their respective
focal points located in the plane of the diaphragm. The
pink wavefront passes freely through the pinhole, is
relayed onto the sensitive surface of the photodetector,
and contributes to the resulting signal. On the other hand,

the blue wavefront gets extinguished by the diaphragm
and does not contribute to the reading of the detector.

Thus the combination {objective lens, diaphragm} serves
to select only wavefronts propagating in directions very
close to the optical axis of the instrument and falling within
its small ‘‘acceptance’’ solid angle DO¼ pd2=ð4f 2Þ, where d

is the diameter of the pinhole and f is the focal length of the
objective lens. The fundamental difference between the two
instruments shown in Fig. 1b and c is that the former
selects appropriately directed wavefronts, whereas the
latter selects appropriately directed Poynting vectors.
It can thus be said that the hypothetical radiance-function

meter operates in the Poynting-vector domain, whereas the

conventional WCR acts as a wave-domain filter [67].
This analysis implies that the typical WCR does not

necessarily react to the local Poynting vector at a point on
the objective lens even if this vector is directed along the
optical axis of the instrument. To demonstrate this, let us
consider two plane electromagnetic waves propagating in
directions q̂1 and q̂2 such that both form a 451 angle with
the optical axis of the WCR (Fig. 1d). The waves are
linearly polarized, with their electric vectors E1 and E2

oscillating perpendicularly to the paper, and fully coher-
ent in that at any moment in time E1¼E2 in the central
point of the objective lens. Let the local instantaneous
magnetic vectors of the waves be H1 and H2, respectively,
as shown by the magenta arrows, while the correspond-
ing instantaneous electric vectors E1¼E2 are directed
towards the reader. The cumulative local instantaneous
field is represented by the vectors E¼2E1 and H¼H1þH2,
the former again being directed towards the reader. One
can see that the resulting local instantaneous Poynting
vector S¼E�H, shown by the green arrow, is directed
along the optical axis of the instrument. Furthermore, it is
easily verified that the Poynting vector at the central
point is always directed along the optical axis of the WCR.
Yet the reading of the detector will be identically equal to
zero since neither plane wavefront is passed by the
{objective lens, diaphragm} combination.

The failure of the WCR to react to the instantaneous
Poynting vector in Fig. 1d can be traced to the following
fundamental fact: although the Poynting vector is sought
at points on the surface of the objective lens, the actual
photodetector is invariably located very far (compared
with the wavelength) from those points. What the optical
scheme of the WCR can relay from the entrance plane
onto the sensitive surface of the photodetector is a
suitable plane (or quasi-plane) wavefront but not the
Poynting vector of the total field. The only circumstance
in which the WCR relays the Poynting vector itself is
when the total field consists only of one or several plane
electromagnetic waves propagating along the optical axis
of the instrument.

This is true of any WCR irrespective of its particular
optical scheme. In fact, it is the very principle of serving as a
wavefront angular filter (rather than a Poynting-vector
angular filter) that allows one to build a WCR by using
easy-to-fabricate macroscopic optical elements (such as
lenses, mirrors, polarizers, prisms, diffraction gratings, etc.).

Thus, contrary to the widespread belief, a WCR cannot
be said to measure the directional distribution of the

Observation
    point

.

n̂ inc

V

S

Fig. 2. A random cloud of N particles illuminated by a plane electro-

magnetic wave or a parallel quasi-monochromatic beam of light propa-

gating in the direction of the unit vector n̂inc:
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electromagnetic energy flow at an observation point. It is,
therefore, very important to formulate precisely what it
does do. Let us assume that there are several plane
wavefronts illuminating the objective lens of a WCR
(Fig. 1e). According to the above discussion, the WCR
does the following:

� selects only those wavefronts whose propagation
directions fall within its small acceptance solid angle
DOq̂ (i.e., q̂3, q̂4, and q̂5, but not q̂1, q̂2, q̂6, and q̂7Þ;

� sums up the respective instantaneous electric and
magnetic fields: E0 ¼ E3þE4þE5 and H0 ¼H3þH4þ

H5; and finally
� accumulates the product S0 ¼ E0 �H0So (which is direc-

ted along the optical axis by definition) over time,
where So is the area of the objective lens.

Thus, a WCR performs a well-defined operation that is
by no means equivalent to accumulating appropriately
directed local instantaneous Poynting vectors of the total

field in the entrance plane (cf. Fig. 1c).

4. What are the actual problems one needs to solve?

Despite being poorly defined, the heuristic concept of
the polydirectional SI has been viewed by some as worth
keeping. This has led to several publications intended to
identify a microphysical quantity that would satisfy the
RTE and thereby might be considered a legitimate proxy
for the phenomenological SI (e.g., [68,69]). However,
those studies have not clarified the issue of the requisite
non-negativity and physical measurability of such
proxies, have not resolved the contradiction between
the monodirectionality of the actual electromagnetic
energy transport and the polydirectionality of the
phenomenological SI concept, and could not establish
the physical link between the RTT and the effect of
coherent backscattering (CB) discussed below.

Fortunately, recent research has demonstrated that
one does not need to use the SI as the fundamental point
of departure and contemplate it as a primordial physical
quantity a priori possessing certain desirable properties.
Instead, one needs to focus on addressing the following
well-defined problems of actual practical importance:

1. How to evaluate theoretically the time-averaged radia-
tion-energy budget of a macroscopic volume of parti-
culate medium?

2. Given the widespread practical use of WCRs, how to
model theoretically the particular measurement
afforded by a WCR and thereby clarify its ability to
serve as (i) an energy-budget instrument and/or (ii) a
diagnostic tool suitable for optical characterization of a
particulate medium in laboratory, in situ, or remote-
sensing studies?

Indeed, it is the solution of these two specific problems
that one needs in the final analysis, the hypothetical
‘‘angular distribution of the local electromagnetic energy
flow’’ being irrelevant and unnecessary in addition to

being unphysical. As explained below, both problems
can be and have been addressed by directly solving the
MMEs [28,67].

5. Radiation-budget problem

The gist of the radiation-budget problem is shown in
Fig. 1f and g paralleling Fig. 2. In order to characterize the
instantaneous local directional flow of electromagnetic
energy resulting from scattering by a complex particulate
object such as a cloud, one must calculate the Poynting
vector of the total electromagnetic field at a point r as the
vector product of the instantaneous total electric and
magnetic fields: Sðr, tÞ ¼ Eðr, tÞ �Hðr, tÞ: Then the instan-
taneous radiation budget of a macroscopic volume element
DV of the cloud bounded by a closed surface DS (Fig. 1f)
can be evaluated by integrating Sðr, tÞ over DS :

WDSðtÞ ¼�

Z
DS

dSSðr, tÞUn̂ðrÞ, ð5Þ

where WDSðtÞZ0 is the net amount of electromagnetic
energy entering the volume element DV per unit time, the
central dot denotes an inner product, and n̂ ðrÞ is the local
outward normal to the surface. If WDS ¼ 0 then the incom-
ing radiation is balanced by the outgoing radiation. Other-
wise there is absorption of electromagnetic energy inside
the volume element. The radiation budget of the entire
volume V occupied by the cloud is evaluated similarly,
except now the integral in Eq. (5) is taken over the closed
boundary S (Fig. 1f).

Both the direction and the magnitude of Sðr, tÞ change
in time owing to the following:

� time-harmonic dependence of the electric and mag-
netic fields,
� random phase and/or amplitude fluctuations of the

incident quasi-monochromatic light, and
� temporal changes of the multi-particle configuration.

The result is a complex speckle pattern rapidly fluctu-
ating in time (Fig. 1f). However, in the majority of
practical applications one is interested in the time-aver-
aged energy-flow pattern. To suppress the speckle and
thereby isolate the static pattern relevant to radiation-
budget applications (Fig. 1g), one must average Sðr, tÞ

over a sufficiently long time interval.

6. The Poynting–Stokes tensor

It is important to recognize that at any moment, the
pair of the electric and magnetic fields fEðr, tÞ,Hðr, tÞg is
the solution of the MMEs for the specific instantaneous
multi-particle configuration such as that shown in Fig. 1f.
If the numerically exact solution of the MMEs at all
moments in time for the respective multi-particle config-
urations was known then the computation of the time-
averaged Poynting vector /Sðr, tÞSt would be quite
straightforward. This is, however, not the case in the
majority of practical situations. Therefore, one has
to resort to simplifying assumptions that enable a
quasi-analytical solution of the MMEs leading to a
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quasi-analytical computation of /Sðr, tÞSt : The latter
would ideally be formulated in terms of a closed-form
equation for /Sðr, tÞSt allowing one to express /Sðr, tÞSt

directly in the Poynting vector of the incident beam and,
thus, to bypass an explicit numerical solution of the
MMEs for a multi-particle group.

However, to accomplish this objective one needs to
address first the following fundamental issue: forming the
vector product of the electric and magnetic field vectors
results in a quantity that does not carry specific informa-
tion about the participating fields. This makes the Poynting
vector a non-traceable quantity. Indeed, since quite differ-
ent combinations of electric and magnetic field vectors can
yield the same Poynting vector of the incident radiation,
the latter cannot uniquely define the time average of the
total Poynting vector at the observation point.

As was demonstrated in [67], this obstacle can be
overcome by introducing a more fundamental and infor-
mative quantity than the Poynting vector, viz., the so-
called Poynting–Stokes tensor (PST):

P
2
ðr,tÞ ¼ Eðr,tÞ �Hðr,tÞ, ð6Þ

where � denotes a dyadic product of two vectors. Indeed,
this quantity turns out to be fully traceable by virtue of
carrying sufficient information about the participating
fields. Furthermore, it contains sufficient information to
compute any actual optical observable. In particular, one
has in Cartesian coordinates:

Sðr,tÞ ¼ ½Pyzðr,tÞ�Pzyðr,tÞ�x̂þ½Pzxðr,tÞ�Pxzðr,tÞ�ŷ

þ½Pxyðr,tÞ�Pyxðr,tÞ�ẑ, ð7Þ

where x̂, ŷ, and ẑ are the corresponding unit vectors.
Taking the time average of both sides of this formula
yields /Sðr, tÞSt in terms of / P

2

ðr,tÞSt :

7. Solution of the energy-budget problem

In general, the computation of the time-averaged PST
is a very difficult problem. It can, however, be simplified
by making several well-defined and traceable approxima-
tions, as summarized below. The complete derivation can
be found in Refs. [28,67,70,71].

7.1. Hierarchy of typical time scales

The first approximation is to introduce a hierarchy
T15T25T3 of three typical time scales, resembling the
famous Bogoliubov’s hierarchy of relaxation times under-
lying modern physical kinetics [72]. The first time scale,
T1, is the period of time-harmonic oscillations of the
purely monochromatic electromagnetic field described
directly by the MMEs [48–51]. The second time scale, T2,
is the typical period of random fluctuations of the ampli-
tudes and phases of the electric and magnetic fields of the
incident quasi-monochromatic beam of light (Fig. 2).
The third time scale, T3, characterizes significant changes
in the cloud such as variations in particle positions and/or
orientations. The inequality T15T2 allows one to apply
the monochromatic MMEs to quasi-monochromatic inci-
dent light, whereas the inequality T25T3 allows one to

separate averaging over random fluctuations of the quasi-
monochromatic incident light from averaging over parti-
cle characteristics such as positions, orientations, sizes,
refractive indices, etc., as described below.

7.1.1. Monochromatic fields

The time-harmonic dependence of a monochromatic
electromagnetic field is conveniently factorized by intro-
ducing complex electric and magnetic field vectors:

Eðr,tÞ ¼ Re½EðrÞexpð�iotÞ�,

Hðr,tÞ ¼ Re½HðrÞexpð�iotÞ�, ð8Þ

where Re denotes the real part, i¼ ð�1Þ1=2, and o is the
angular frequency such that T1 ¼ 2p=o: The frequency-
domain monochromatic Maxwell curl equations for the
time-independent complex electric and magnetic field
vectors E(r) and H(r) are as follows [48,50,51]:

r � EðrÞ ¼ iom0HðrÞ

r �HðrÞ ¼�ioe1EðrÞ

)
r 2 VEXT, ð9aÞ

r � EðrÞ ¼ iom0HðrÞ

r �HðrÞ ¼�ioe2ðr,oÞEðrÞ

)
r 2 VINT: ð9bÞ

In these equations, VINT is the cumulative ‘‘interior’’ volume
occupied by the particulate scattering object (Fig. 2):

VINT ¼ [
N

i ¼ 1
Vi, ð10Þ

where Vi is the volume occupied by the ith particle; VEXT is
the infinite exterior region such that VINT [ VEXT ¼ R3,
where R3 denotes the entire three-dimensional space; the
host medium and the scattering object are assumed to be
nonmagnetic; m0 is the permeability of a vacuum; e1 is the
real-valued electric permittivity of the host medium; and
e2 ðr,oÞ is the complex permittivity of the object. Note that
the host medium is assumed to be non-absorbing.

Let us assume that the incident light is a plane
electromagnetic wave propagating in the direction of
the unit vector n̂inc (Fig. 2):

Einc
ðrÞ ¼ Einc

0 expðik1n̂inc
UrÞ, ð11aÞ

Hinc
ðrÞ ¼Hinc

0 expðik1n̂inc
UrÞ ¼

k1

om0

n̂inc�Einc
ðrÞ, ð11bÞ

where k1 ¼oðe1m0Þ
1=2 is the wave number. The linearity

of the MMEs implies that the electric and magnetic field
vectors of the total field can be expressed in those of the
incident field everywhere in space via the corresponding

dyadic operators E
2

and H
2

:

EðrÞ ¼ E
2

ðr, n̂incÞUEinc
0 , ð12aÞ

HðrÞ ¼ H
2

ðr,n̂incÞUHinc
0 : ð12bÞ

Let us now introduce the corresponding complex PSTs
[67]:

P
2inc

¼ 1
2Hinc

0 � ½E
inc
0 �
�, ð13Þ

P
2

ðrÞ ¼ 1
2HðrÞ � ½EðrÞ��, ð14Þ
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where the asterisk denotes a complex-conjugate value.
From Eqs. (12) to (14), one easily derives

P
2

ðrÞ ¼ H
2

ðr,n̂incÞU P
2inc

U½ E
2

ðr,n̂incÞ�T�, ð15Þ

where T denotes a transposed dyadic. Thus, if the dyadics
E
2

and H
2

are known2 then Eq. (15) yields the complex PST
of the total field at any point in space. Furthermore,
Eq. (15) implies the existence of a linear operator T̂

transforming the PST of the incident wave into that of
the total field:

P
2

ðrÞ ¼ T̂ðr, n̂incÞP
2inc

, ð16Þ

where T̂ðr, n̂incÞ is independent of Einc
0 and Hinc

0 and is fully
determined by the incidence direction and the specific
instantaneous configuration of the N particles forming
the cloud.

It is easily seen that there are no analogs of Eqs. (15)
and (16) for the Poynting vector. This factor makes the
Poynting vector a non-traceable quantity, as was dis-
cussed in Section 6.

As usual [48–51], the frequency-domain formula (14)
implies that the real-valued PST averaged over a time
interval Dt1 much longer than the period of time-harmo-
nic oscillations T1 is given by

/ P
2

ðr,tÞSDt1
¼ Re½ P

2

ðrÞ�T: ð17Þ

7.1.2. Quasi-monochromatic light

Although the complex fields E(r) and H(r) are indepen-
dent of time for perfectly monochromatic radiation (e.g., a
continuous laser beam), they may vary with time implicitly
by fluctuating around their respective mean values in the
more general case of quasi-monochromatic light (e.g., sun-
light). However, these random oscillations occur over time
intervals of the order of T2bT1, i.e., much more slowly than
the time-harmonic oscillations of the factor exp ð� iotÞ:

The inequality T2bDt1bT1 allows one to formulate the
scattering problem at any moment in terms of the mono-
chromatic frequency-domain MMEs (9a) and (9b). The
corresponding near-instantaneous (i.e., averaged over a
sufficiently large number of time-harmonic oscillations
captured by the time interval Dt1Þ solution of the radia-
tion-budget problem is then given by Eqs. (16) and (17).

Furthermore, if the N-particle configuration remains
fixed over a time interval Dt2 such that T25Dt25T3 then
the linear transformation operator T̂ remains constant,
and averaging Eq. (16) over Dt2 yields

/ P
2

ðrÞSDt2
¼ T̂ðr,n̂incÞ/P

2inc

SDt2
: ð18Þ

In other words, the complex PSTs of the incident and total
fields in Eq. (16) are replaced by their respective time
averages. Eq. (17) now takes the form

/ P
2

ðr,tÞSDt2
¼ Re½/P

2

ðrÞSDt2
�T: ð19Þ

7.1.3. Configuration averaging

Finally, averaging Eq. (18) over a time interval Dt3bT3

does not affect / P
2inc

SDt2
but changes T̂ðr, n̂incÞ: The

result is as follows:

/ P
2

ðrÞSDt3
¼/T̂ðr, n̂incÞSDt3

/ P
2inc

SDt2
, ð20Þ

/ P
2

ðr, tÞSDt3
¼ Re½/ P

2

ðrÞSDt3
�T: ð21Þ

Eq. (20) makes it quite explicit that the operator

T̂ðr, n̂incÞ is computed by solving the frequency-domain
MMEs and that averaging this operator over time is totally
separated from averaging over time the complex PST of
the incident quasi-monochromatic light. In the particular

case of purely monochromatic incident light, P
2inc

is
constant:

/ P
2

ðrÞSDt3
¼/T̂ðr,n̂incÞSDt3

P
2inc

: ð22Þ

Comparison of Eq. (22) with Eq. (20) demonstrates that
the solution of the time-averaged radiation-budget pro-
blem in the case of quasi-monochromatic incident light is
reduced to the solution of the same problem for the case
of a plane incident wave followed by the replacement of

P
2inc

with /P
2inc

SDt2
: Obviously, this simplification is quite

important and useful.

7.2. Ergodicity, randomness, and statistical uniformity

Although a random multi-particle group can be
described at any given moment in terms of a specific
fixed configuration, during the time interval Dt3 the group
goes through an infinite sequence of evolving discrete
configurations. This temporal evolution is often defined
by an intricate system of equations representing the
various physical and chemical processes in action. To
incorporate the solution of this system of equations for
each moment into the theoretical averaging procedure
can be a formidable task and is almost never done. A far
more practical approach in most cases is based on the
assumption of ergodicity. Specifically, it is assumed in
what follows that:

� the multi-particle scattering system can be adequately
characterized at any moment by a finite set of physical
parameters; and
� the scattering system is sufficiently variable in time

and the time interval Dt3 is sufficiently long that
averaging the PST over this interval is essentially
equivalent to averaging over an appropriate analytical
probability distribution of the physical parameters
characterizing the scattering system.

In other words, the second major approximation used in
the solution of the radiation-budget problem is to assume
that averaging over time for one specific realization of a
random scattering process is equivalent to ensemble

2 Note that according to Eqs. (9a) and (9b), these dyadics are not

independent; one can be expressed in terms of the other.
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averaging. This assumption can be summarized as follows:

/ P
2

ðrÞSDt3
¼/ P

2

ðrÞSR,x ¼/T̂ðr,n̂incÞSR,x/P
2inc

SDt2
, ð23Þ

where the subscript R denotes averaging over all particle
coordinates and the subscript x denotes averaging over all
particle states (i.e., morphologies, orientations, sizes, and
refractive indices).

The assumption of ergodicity is supplemented by the
assumptions of randomness and uniformity. Specifically,
it is assumed that:

� the position and state of each particle are statistically
independent of each other and of those of all the other
particles, and
� the spatial distribution of the particles throughout the

volume V is random and statistically uniform.

It is obvious that these latter assumptions imply a rather
low packing density of the multi-particle group, since
otherwise the positions and states of different particles as
well as the position and state of an individual particle could
become correlated. However, they simplify the problem in
hand quite substantially by (i) allowing one to split the
ensemble averaging of the PST into the averaging over
particle states and that over particle positions; (ii) allowing
one to average the PST over the state and position of each
particle independently of all the other particles; and (iii)
making all the positions of the N particles throughout the
entire cloud volume V equally probable.

7.3. Far-field approximation

The differential form of the frequency-domain MMEs
(9a) and (9b) does not offer an obvious analytical way of

computing / P
2

ðrÞSDt3
by exploiting the fact that the

scattering target shown in Fig. 2 consists of non-over-
lapping and potentially widely separated bodies (particles).
The integral form of the MMEs (the so-called Foldy–Lax
equations) turns out to be much more convenient since it
allows one to decompose the total electric and magnetic
fields at the observation point into the respective incident
fields and ‘‘individual-particle contributions’’ [28,73–77]:

EðrÞ ¼ Einc
ðrÞþ

XN

i ¼ 1

EiðrÞ ð24Þ

and similarly for HðrÞ: Each ith partial field can, in turn, be
represented mathematically as a superposition of contri-
butions from all imaginable particle sequences ending at
particle i:

Ei ¼ Ei0þ
XN

jðaiÞ ¼ 1

Eijþ
XN

jðaiÞ ¼ 1

XN

kðajÞ ¼ 1

Eijkþ � � � , ð25Þ

where Ei0 is the ‘‘direct response’’ of particle i to the incident
field. Examples of such ‘‘multiple-scattering’’ sequences are
shown in Fig. 3a. Combining Eqs. (24) and (25) yields

EðrÞ ¼ Einc
ðrÞþ

XN

i ¼ 1

Ei0þ
XN

i ¼ 1

XN

jðaiÞ ¼ 1

Eij

þ
XN

i ¼ 1

XN

jðaiÞ ¼ 1

XN

kðajÞ ¼ 1

Eijkþ � � � : ð26Þ

Note that decomposition (26) is purely mathematical and
does not imply that multiple scattering is an actual physical
phenomenon [57]. In other words, at any instant the MMEs
‘‘perceive’’ the entire cloud as a single scatterer rather than a
collection of scatterers, even though the human eye classifies
the cloud as consisting of ‘‘separate particles’’.

The explicit analytical expressions for the individual
terms in decomposition (26) are still quite complex. They
can, however, be drastically simplified upon making the
following two assumptions:

� The N particles forming the group are separated widely
enough that each of them is located in the far-field
zones of all the other particles.
� The observation point is located in the far-field zone of

any particle forming the group.

Specifically, we now have [28]

EðrÞ ¼ Einc
ðrÞþ

XN

i ¼ 1

expðik1riÞ

ri
A
2

iðr̂i,n̂
incÞUEinc

ðRiÞ

þ
XN

i ¼ 1

XN

jðaiÞ ¼ 1

expðik1riÞ

ri
A
2

iðr̂i,R̂ijÞU
expðik1RijÞ

Rij

�A
2

jðR̂ij,n̂
incÞUEinc

ðRjÞþ � � � , ð27Þ

where ri is the distance between the origin of particle i

and the observation point, r̂i is the unit vector directed
from the origin of particle i towards the observation point,
Ri is the position vector of the ith particle origin, Rij is the
distance between the origins of particles j and i, and R̂ij is
the unit vector directed from the origin of particle j

towards the origin of particle i (see Fig. 4). The quantity
A
2

iðq̂,q̂
0

Þ is the standard scattering dyadic describing far-
field scattering of a plane electromagnetic wave by
particle i in the absence of all the other particles [28,76].

The obvious advantage of the far-field ‘‘order-of-scat-
tering’’ expansion (27) (and the analogous decomposition
of the magnetic field) is that the individual-particle
scattering dyadics can be calculated by solving the MMEs
for each particle separately, i.e., in the absence of all the
other particles. The price for this simplicity is the require-
ment of low packing density: the particles must be
separated widely enough to ensure that two neighboring
particles are located in the far-field zones of each other.

7.4. The limit N - N and the Twersky approximation

The ‘‘order-of-scattering’’ expansions (26) and (27)
allow one to represent the total electric (magnetic) field
at a point in space as a sum of contributions arising from
all possible particle sequences. The next major assump-
tion, called the Twersky approximation [28,78], is that all
sequences involving a particle more than once can be
neglected. For example, the ‘‘self-avoiding’’ sequences
(i)–(iii) in Fig. 3a are kept, whereas sequence (iv) is
excluded. It is straightforward to demonstrate that the
Twersky approximation is justified provided that the
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number of particles in the scattering volume is very large.
Thus, instead of Eq. (26), we have

EðrÞ ¼ Einc
ðrÞþ

XN

i ¼ 1

Ei0þ
XN

i ¼ 1

XN

j ¼ 1

jai

Eijþ
XN

i ¼ 1

XN

j ¼ 1

jai

XN

k ¼ 1
kai
kaj

Eijkþ � � � :

ð28Þ

Eq. (27) is simplified analogously. Note that the very
applicability of the Twersky approximation makes the
limit N-N an explicit assumption in the solution of the
energy-budget problem for a multi-particle cloud.

7.5. The ladder approximation

It is clear from the above that the computation of the
time-averaged PST involves ensemble averaging of dyadic
products of the type Hi:::k � E�l:::m: Each such product can be
depicted diagrammatically as shown in Fig. 3b. The
magnetic-field term H4321 is represented by blue arrows,

while the electric-field term E�765 is shown by yellow
arrows. The essence of the so-called ladder approximation
is to keep only a certain class of diagrams. The simplest
ladder diagram is shown in Fig. 3c and corresponds to the
product Hn,n�1,...2,1 � E�n,n�1,...2,1: In other words, all n

particles are common to the corresponding magnetic-
and electric-field terms and appear in exactly the same
order. Fig. 3d shows a more complicated ladder diagram
in which the same n particles are common to both terms
and appear in the same order. However, the magnetic-
field sequence contains an additional uncommon particle,
while the electric-field sequence contains two uncommon
particles. Obviously, this diagram corresponds to the
product Hn,l,n�1,...,2,1 � E�n,n�1,...,2,i,j,1: Thus, the main char-
acteristic of the ladder diagrams is that all common
particles appear in corresponding magnetic- and elec-
tric-field sequences in exactly the same order.

The main justification for using the ladder approxima-
tion is that averaging over random positions of participat-
ing particles can be expected to extinguish the
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Fig. 3. (a) Examples of multi-particle sequences contributing to Eqs. (26) and (27). (b) Diagrams contributing to the PST of the total field. (c, d) Ladder

diagrams. (e, f) Cyclical diagrams.
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contribution of any multi-particle diagram with no com-
mon particles appearing in the same order, like, e.g., the
diagram shown in Fig. 3b.

7.6. The final result

The above assumptions and approximations make it
possible to solve the time-averaged radiation-budget
problem analytically using the MMEs as the fundamental
point of departure. Again, the complete derivation can be
found in Refs. [28,67], while here we present only the
final result.

Specifically, the time-averaged Poynting vector at the
observation point r (Fig. 2) is given by the following
integral over all directions of the unit vector q̂ :

/Sðr,tÞSDt3
¼/Sðr,tÞSR,x ¼

Z
4p

dq̂q̂~Iðr,q̂Þ: ð29Þ

The non-negative function ~Iðr,q̂Þ appearing in the inte-
grand is the first element of a four-element real-valued
column ~Iðr,q̂Þ which satisfies the following integro-differ-
ential equation:

q̂Ur~Iðr,q̂Þ ¼�n0/Kðq̂ÞSx
~Iðr,q̂Þþn0

Z
4p

dq̂
0

/Zðq̂,q̂
0

ÞSx
~Iðr,q̂

0

Þ:

ð30Þ

In this equation, n0 ¼N=V is the average number of
particles per unit volume, /Kðq̂ÞSx is the 4�4 single-
particle extinction matrix averaged over all states of all
the N particles, and /Zðq̂,q̂

0

ÞS is the 4�4 single-particle
phase matrix, also averaged over all particle states.
All elements of the extinction and phase matrices are
real-valued. Eq. (30) must be supplemented by appro-
priate boundary conditions on the closed surface S (Fig. 2)
specifying the illumination conditions.

7.7. Discussion

The final result summarized in Section 7.6 is in fact
quite remarkable. Indeed, Eq. (30) is mathematically the
same as the standard vector RTE (VRTE) introduced
phenomenologically by Rosenberg [79] (the simplified
form of the VRTE corresponding to the case of Rayleigh
particles was introduced by Chandrasekhar [38]). It is also
seen that Eq. (29) is mathematically the same as Eq. (4).
Furthermore, all elements of the four-component column
~Iðr,q̂Þ, including ~Iðr,q̂Þ, have the standard dimension of the
phenomenological SI: W m–2 sr–1. Therefore, one may
be tempted to equate the phenomenological SI Iðr,q̂Þ and
the auxiliary mathematical function ~Iðr,q̂Þ: One should
remember, however, that despite being numerically the
same, these two quantities have profoundly different
physical definitions: the former is postulated to be a
primordial physical quantity, whereas the latter emerges
as the solution of an intermediate mathematical equation.

Indeed, as we have already discussed, the traditional
phenomenological definition of the SI states that Iðr,q̂Þ
gives the amount of electromagnetic energy transported
in the direction q̂ per unit area normal to q̂ per unit time
per unit solid angle. This notion of the SI implies that at
the observation point r, the instantaneous flow of electro-
magnetic energy occurs simultaneously in all directions
according to the angular distribution function Iðr,q̂Þ:
Our microphysical solution of the radiation-budget pro-
blem reveals that this phenomenological notion is pro-
foundly incorrect. Indeed, the quantity ~Iðr,q̂Þ appears only
in the context of averaging the PST over a sufficiently long
time interval Dt3bT3 rather than characterizes the
instantaneous radiation field. Furthermore, the instanta-
neous local flow of electromagnetic energy as well as any
time average of this flow is inherently monodirectional.

This fundamental discrepancy between the phenom-
enological and microphysical approaches is not surpris-
ing. Indeed, the computation of the local electromagnetic
energy flow in the framework of the microphysical
approach is based on a step-by-step solution of the MMEs
without invoking any ad hoc principles and concepts not
contained in macroscopic electromagnetics. As a conse-
quence, ~Iðr,q̂Þ emerges as a purely mathematical quantity
entering Eq. (29) and satisfying the auxiliary Eq. (30).
As such, ~Iðr,q̂Þ has no independent physical meaning.
To state otherwise is equivalent to claming independent
physical meaning for expansion coefficients appearing in
an ad hoc mathematical expansion of a function in, e.g.,
Legendre or Chebyshev polynomials. The same is true of
Eq. (30): it is just an intermediate mathematical equation
that one has to solve in order to complete the computa-
tion of /Sðr, tÞSR,x in the framework of macroscopic
electromagnetics.

The phenomenological approach turns everything
upside down:

� the existence of the SI as a fundamental physical
quantity is postulated at the very outset;
� the scalar RTE is ‘‘derived’’ as an outcome of verbal

‘‘energy balance considerations’’ and then modified to
account for polarization by postulating the VRTE; and

j

Rij

O
y

z

x

i

Ri

ri

r

Observation
point

ri

Rij

ˆ

ˆ

Fig. 4. Notation used in Eq. (27).
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� the MMEs are invoked only at the very last stage in
order to compute, on an ad hoc basis, the average
single-particle extinction and phase matrices.

In other words, the MMEs are treated as a supplement to
the phenomenological theory rather than as primordial
physical equations fully controlling all aspects of the
interaction of macroscopic electromagnetic fields with a
macroscopic particulate medium.

To illustrate the purely mathematical and auxiliary
nature of the function ~Iðr, q̂Þ, let us consider the radiance
function introduced by Preisendorfer [65]. As we have
seen in Section 2.2, this function yields the time-averaged
Poynting vector according to Eq. (4), the latter being
mathematically the same as Eq. (29). Yet, Nðr,q̂Þa~Iðr,q̂Þ:
To show that, let us recall that the microphysical deriva-
tion of the time-averaged Poynting vector is based on the
complex-vector frequency-domain formalism. This
approach allows one to conveniently factor out the
time-harmonic dependence of the electric and magnetic
fields, but necessitates the primordial definition of the
Poynting vector and the PST as averages over a sufficiently
large number of time-harmonic oscillations captured by
the time interval Dt1 (Section 7.1.1). This means that the
frequency-domain formalism cannot be used to evaluate
the integrals in Eq. (2). Indeed, time-harmonic oscillations
of the electric and magnetic vectors cause a rapidly
oscillating Poynting vector at the observation point.
At certain moments Sðr, tÞ can be directed along q̂ and
thereby contribute to Nðr,q̂Þ, while at other moments it
can be directed along � q̂ and contribute to Nðr,�q̂Þ:
While these ‘‘opposing’’ contributions are accounted for
and accumulated in the computation of Nðr,q̂Þ and

Nðr,�q̂Þ, they substantially (but, of course, not comple-
tely) cancel each other in the frequency-domain compu-
tation of ~Iðr,q̂Þ and ~Iðr,�q̂Þ owing to the primordial
averaging over a large number of time-harmonic oscilla-
tions. Of course, the inequality Nðr,q̂Þa~Iðr,q̂Þ coupled with
the mathematical uniqueness of solution of Eq. (30)
implies that Nðr, q̂Þ does not satisfy the standard RTE.
It remains unknown whether a closed-form analytical
equation for Nðr, q̂Þ exists, but if it were derived then it
would offer an alternative way of solving the time-
averaged radiation-budget problem via Eq. (4).

This example illustrates the following important corol-
lary of the microphysical approach: actual physical signifi-
cance can be attributed only to the integral of q̂ ~Iðr, q̂Þ over
all directions q̂ rather than to the particular values of ~Iðr,q̂Þ
corresponding to individual directions. For example,
one can add to ~Iðr, q̂ Þ any function f ðr,q̂Þ such thatR

4pdq̂q̂f ðr,q̂Þ ¼ 0 and obtain another ‘‘specific intensity’’
yielding the same /Sðr,tÞSR,x: A simple example would
be any symmetric function such that f ðr,�q̂Þ ¼ f ðr,q̂Þ:

8. Theoretical modeling of measurements with
directional radiometers

Let us now apply the same microphysical approach to
model theoretically the reading of a WCR placed inside
the random N-particle cloud (Fig. 5). Again, the instanta-
neous real electric and magnetic vectors at the surface of
the objective lens can be represented as superpositions
of the respective vectors of the incident field and the
partial fields coming from all the individual particles

ΔV

q̂

q̂

Fig. 5. A directional radiometer placed inside a random particulate medium.
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(cf. Eq. (24)):

Eðr,tÞ ¼ Einc
ðr,tÞþ

XN

i ¼ 1

Eiðr,tÞ,

Hðr,tÞ ¼Hinc
ðr,tÞþ

XN

i ¼ 1

Hiðr,tÞ: ð31Þ

Since the observation point is assumed to be in the far-
field zone of any particle, each pair fEiðr,tÞ,Hiðr,tÞg repre-
sents an outgoing spherical wavelet originating at the
center of the respective particle. At a large distance from
the particle this wavelet can be considered locally flat.
Therefore, the radiometer will select only those wavelets
that come from the particles located within the ‘‘accep-
tance volume’’ of the radiometer DVq̂ defined by its
acceptance solid angle DO q̂ (Fig. 5) and will integrate
the resulting Poynting vector over the surface of the
objective lens So: Assuming for simplicity that DO q̂ does
not subtend the propagation direction of the incident
light n̂inc, we conclude that the instantaneous reading of
the WCR is given by So

P
l0
P

m0El0 ðr,tÞ �Hm0 ðr,tÞ, where the
primed indices l0 and m0 number particles located inside
the acceptance volume DVq̂ : Note that since DO q̂ is very
small, each term in this sum is a vector directed essen-
tially along the unit vector q̂ in Fig. 5. Accumulating this
reading over the time interval Dt3, dividing the result by
Dt3, and assuming ergodicity yields the following average
signal per unit area of the objective lens:

X
l0

X
m0

El0 ðr,tÞ �Hm0 ðr,tÞ

* +
Dt3

¼
1

2
Re

X
l0

X
m0

El0 ðrÞ � ½Hm0 ðrÞ�
�

* +
R,x

, ð32Þ

where the subscripts R and x denote averaging over coordi-
nates and states of all the N particles constituting the
scattering medium and not just those located inside DVq̂ :

The right-hand side of Eq. (32) can be expressed in
terms of the following PST:

P
2

ðr;DVq̂Þ ¼
1

2

X
l0

X
m0

Hl0 ðrÞ � ½Em0 ðrÞ�
�

* +
R,x

: ð33Þ

We can compute this quantity by making all the standard
assumptions invoked in Section 7 to calculate / P

2

ðrÞSR,x
and in addition requiring that the end particle of any
scattering sequence in Eq. (27) be located inside the
acceptance volume DVq̂ : The result of this computation
[67] is quite profound and implies that the reading of the
WCR in Fig. 5 per unit time is given by the product
SoDO q̂

~Iðr, q̂Þ, where the unit vector q̂ is directed along
the optical axis of the WCR and, as before, ~Iðr, q̂Þ is the
first element of the four-element column ~I ðr, q̂ Þ satisfy-
ing Eq. (30).

The fundamental importance of this result, which
applies to the case of quasi-monochromatic as well as
monochromatic incident radiation, is difficult to over-
state. Indeed, it means, first and foremost, that if all the
above assumptions about the scattering particulate
medium are valid then the WCR such as that shown in
Fig. 5 measures the function ~Iðr, q̂Þ provided that the

reading of the radiometer is averaged over a sufficiently
long period of time. Therefore, by sampling all incoming
directions q̂ , one can determine the local electromagnetic
energy flow according to Eq. (29) and thereby solve the
radiation-budget problem experimentally.

Secondly, the angular dependence of the measured
function ~Iðr, q̂Þ can be analyzed by solving Eq. (30) for a
representative range of physical models of the scattering
medium, which may yield certain information about the
medium. Furthermore, since the WCR selects only locally
plane wavefronts propagating in essentially the same
direction q̂ , one can add special optical elements and
convert the WCR into a directional photopolarimeter
capable of measuring the entire column vector ~I ðr, q̂Þ:
This measurement can contain additional implicit infor-
mation about particle microphysics which can often be
retrieved since the solution of Eq. (30) yields all four
elements of ~I ðr, q̂ Þ at once.

9. Discussion and conclusions

In the paper titled ‘‘Anti-photon’’ [63], Willis Lamb Jr.
famously stated: ‘‘There is no such thing as a photon. Only
a comedy of errors and historical accidents led to its
popularity among physicists and optical scientists.’’ What
Lamb meant is that in most cases the word ‘‘photon’’ is
taken out of its proper QED context and is used without
clear understanding of what a QED photon actually is and,
in particular, without realizing that it is not a localized
particle of light. The QED photon represented a new
paradigm brought about by the development of quantum
electrodynamics by Paul Dirac, Werner Heisenberg, and
Pascual Jordan in the late 1920s to the early 1930s
[80–83], and the consequences of this major paradigm
shift are still being evaluated [84].3

Paraphrasing Lamb, it can be said that ‘‘there is no
such thing as specific intensity.’’ Indeed, the very notion
of polydirectional propagation of electromagnetic energy
at a point in space contradicts basic laws of classical
electromagnetics and does not follow from quantum
electrodynamics. Furthermore, there is no practical need
whatsoever to postulate the SI as a fundamental physical
quantity in the first place; all relevant problems of actual
practical significance can be solved without assuming the
existence of the SI with its a priori defined properties.

As discussed in Section 4, there are two well-defined
classes of practically important problems: radiation-bud-
get problems and optical-characterization problems. Both
types of problem can be addressed, in principle, by
directly solving the MMEs. This solution yields the full
electric and magnetic fields which can be used to com-
pute the spatial and temporal distribution of the Poynting
vector as well as to compute any optical observable.

In practice, this direct approach is often problematic,
which calls for the introduction of appropriate simplifying

3 I use the concepts of a scientific paradigm and a paradigm shift

according to Gaston Bachelard. He introduced these profound notions in

the 1930s using somewhat different terminology [85,86]. Kuhn [87]

popularized Bachelard’s ideas and re-instituted the use of the term

‘‘paradigm’’ introduced in Plato’s dialog Timaeus.
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assumptions. In the case of a sparse discrete random
medium, the assumption listed in Section 7 allow one to
address both classes of problem by expressing the spatial
distribution of the time-averaged Poynting vector as well
as the time-averaged reading of a WCR in terms of the
solution of Eq. (30). Of course, one may be tempted to
continue calling Eq. (30) ‘‘the radiative transfer equation’’
and the auxiliary mathematical function ~Iðr,q̂Þ ‘‘the spe-
cific intensity’’ since Eq. (30) formally coincides with the
phenomenologically postulated RTE and because ~Iðr,q̂Þ
happens to be mathematically identical to the phenomen-
ologically postulated SI. One should always remember,
however, that ~Iðr,q̂Þ does not exist as a fundamental
physical quantity allegedly describing an instantaneous
polydirectional flow of electromagnetic energy at a point
in space and that Eq. (30) is nothing more than an
intermediate equation that one needs to solve in order
to complete the computation of the time-averaged Poynt-
ing vector or to model the time-averaged reading of a
WCR in the framework of classical electromagnetics.

Thus, our analysis reveals that the SI is not what it is
postulated to be in the phenomenological RTT and that,
contrary to a widespread belief, a WCR is not a universal
radiance-function meter capable of yielding the time-
averaged local Poynting vector via Eq. (4). It turns out,
however, that in the case of electromagnetic scattering by
an ergodic sparse discrete random medium:

� the time-averaged local Poynting vector can be found
by evaluating the right-hand side of Eq. (29) in which
~Iðr, q̂Þ (or, more generally, ~Iðr, q̂ ÞÞ is the solution of
Eq. (30), the latter equation formally coinciding with
the phenomenological VRTE; and
� the time-averaged reading of a WCR (or a directional

photopolarimeter) is proportional to ~Iðr, q̂Þ (or ~Iðr, q̂ ÞÞ:

These firmly established facts make the combination of
Eqs. (29) and (30) and a directional radiometer/photo-
polarimeter useful in a substantial range of radiation-
budget and optical-characterization applications.

If one (or more) of the assumptions listed in Section 7
is violated then the solution of a radiation-budget or
optical-characterization problem may require a more
sophisticated theoretical approach and/or instruments
other that a WCR. For example, the microphysical deriva-
tion of Eqs. (29) and (30) from the MMEs ignores the
contribution of the so-called cyclical diagrams exempli-
fied in Fig. 3e and f [88]. In this case particles 1, 2, y, n–1,
n common to a pair of multi-particle sequences appear
in the reverse order (cf. Fig. 3c and d). These cyclical
diagrams can cause a significant CB effect [28,89–96]
modifying the reading of a remote external WCR centered
at the exact backscattering direction q̂¼�n̂inc: The micro-
physical theory of CB and its relation to the microphysical
RTT are outlined in detail in Refs. [18,28,97–104], while
the remote-sensing implications of CB in planetary astro-
physics are discussed in Refs. [18,105–121].

Another example is a densely packed particulate medium,
in which case the far-field approximation (Section 7.3) may
become inapplicable [117,122–126], thereby necessitating
direct computer solutions of the MMEs [117,125–127].

Yet another example is near-field (micro- or nano-
scale) electromagnetic energy transport [19,128–130]. In
this case the very concept of a WCR as an energy-budget
or optical-characterization instrument becomes funda-
mentally meaningless.
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