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a b s t r a c t

We consider the scattering model in the form of a vertically and horizontally

homogeneous particulate slab of an arbitrary optical thickness composed of widely

separated fractal aggregates built of small spherical ice monomers. The aggregates are

generated by applying three different approaches, including simulated cluster–cluster

aggregation (CCA) and diffusion-limited aggregation (DLA) procedures. Having in mind

radar remote-sensing applications, we report and analyze the results of computations of

the backscattering circular polarization ratio obtained using efficient superposition

T-matrix and vector radiative-transfer codes. The computations have been performed at

a wavelength of 12.6 cm for fractal aggregates with the following characteristics:

monomer refractive index m=1.78+i0.003, monomer radius r=1 cm, monomer packing

density p=0.2, overall aggregate radii R in the range 4rRr10 cm and fractal

dimensions Df=2.5 and 3.

We show that for aggregates generated with simulated CCA and DLA procedures, the

respective values of the backscattering circular polarization ratio differ weakly for

Df=2.5, but the differences can increase somewhat for Df=3, especially in case of an

optically semi-infinite medium. For aggregates with a spheroidal overall shape, the

dependence of the circular polarization ratio on the cluster morphology can be quite

significant and increases with increasing the aspect ratio of the circumscribing

spheroid.

Published by Elsevier Ltd.

1. Introduction

Scattering of electromagnetic waves by a particulate
medium composed of clusters of ice monomers is a
subject of potential importance to the discipline of remote
sensing of the Earth and other solar system objects. For
example, the knowledge of the scattering properties of
such a medium is needed for the interpretation of mono-
static radar observations of terrestrial snow and ice
surfaces [1], the Galilean satellites of Jupiter [2], and

Saturn’s rings [3]. The conventional approach to solving
this problem involves the calculation of single-scattering
characteristics of an ice cluster with one of the numeri-
cal techniques developed over the past decades [4–9]
followed by a vector radiative-transfer/coherent-back-
scattering computation [10–14]. It is clear that when per-
forming such computations, a specific theoretical model
of the aggregate structure must be adopted, and it should
be expected that scattering characteristics of clusters can
be affected in some way by their morphology. A relevant
question is how strong these effects can be.

In this paper, we consider a simple model of a particu-
late scattering medium in the form of a slab composed of
fractal aggregates built of small spherical ice monomers.
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Having in mind radar remote-sensing applications, we
examine potential effects of the cluster morphology on
the behavior of the backscattering circular polarization
ratio mC. This quantity is typically measured with mono-
static polarimetric radars and has been demonstrated to
be highly indicative of microphysical characteristics of the
scattering medium (e.g., [12,15] and references therein).
Another motivation for selecting this quantity for a sensi-
tivity analysis is the issue of measurement accuracy—

while absolute measurements of radar cross sections may
suffer from several sources of errors and uncertainties,
most systematic uncertainties cancel out in the computa-
tion of the circular polarization ratio mC, thereby resulting
in a more reliably determined quantity (see, e.g. [3]).

2. Ice cluster models and computational techniques

Let the scattering medium be a plane-parallel slab
composed of randomly and sparsely distributed aggre-
gates built of spherical ice monomers. The slab is illumi-
nated by a parallel beam of light, with pairs (y0, j0) and
(y, j) of zenith (polar) and azimuth angles specifying the
directions of incidence and reflection, respectively [12]. As
usual, the zenith angles are measured with respect to the
outward normal to the upper boundary of the slab.

The first step in the computation of single-scattering
characteristics of an ice aggregate is to generate random
monomer positions. As an initial model of ice aggregates
we adopt a fractal cluster that can be described by the
following statistical scaling law [16]:

Ns ¼ k0
Rg

r

� �Df

, ð1Þ

where r is the monomer radius, 1rDfr3 is the fractal
dimension, k0 is the pre-factor, Ns is the number of
spherical monomers in the cluster, and Rg, called the
radius of gyration, is a measure of the overall cluster
radius. The parameters Ns, Df, and k0 specify the morphol-
ogy of a fractal aggregate.

In this study, we apply the following two algorithms to
generate monomer positions in a fractal cluster.

1. The simulated cluster–cluster aggregation (CCA) pro-
cedure [17]. This is a sequential algorithm for building
pseudo-random monomer coordinates for a fractal
aggregate. At any point in the sequence, the method

generates a set of N=N1+N2 monomer coordinates by
the aggregation of sets containing N1 and N2 coordi-
nates, subject to the constraints that the positions of
the new set satisfy Eq. (1) identically for given k0 and
Df and that each monomer touches at least one other
monomer.

2. The simulated diffusion-limited aggregation (DLA)
method [18] in which the generation procedure starts
with a pair of spheres in contact for pre-set k0 and Df

values and adds a single monomer at a time. Compared
with the CCA procedure, the DLA algorithm is less
realistic, but it can be used for a wider range of values
of the fractal parameters.

We also use an alternative approach capable of gen-
erating clusters with spheroidal as well as nearly sphe-
rical overall shapes. Specifically, this procedure generates
clusters composed of spherical monomers that lie ran-
domly within the surface of a spheroid, subject to the
constraints that no two spheres overlap and that each
sphere is in contact with at least one neighbor. Note that
such clusters are not described by Eq. (1). The respective
monomer packing density p is defined by

p¼
Nsr3

ER3
a

, ð2Þ

where Ra is the axial radius of the spheroid and E is the
axial ratio such that E41 represents a prolate spheroid.

Note that the overall shape of fractals generated by
using both the CCA and DLA algorithms for fractal
dimension values close to 3 is nearly spherical. Therefore,
Eq. (2) with E=1 also applies to such CCA- and DLA-
generated clusters.

Fig. 1 shows examples of aggregates generated by using
the CCA procedure and Eq. (2). The overall radius R (i.e., the
radius of the smallest circumscribing sphere) and packing
density p are equal to 8 cm and 0.2, respectively.

In recent years, the numerically exact superposition
T-matrix method [19] has been applied extensively to the
computation of single scattering by a multi-sphere cluster
in random orientation (see, e.g., [20] and references
therein). Therefore, we compute the elements of the
single-scattering Stokes matrix for the generated clusters
using the corresponding FORTRAN program publicly
available on-line [21]. Then the resulting ensemble-aver-
aged single-scattering characteristics of fractal clusters
are used to compute the elements of the diffuse Stokes

Fig. 1. Aggregate particles with (a) nearly spherical, (b) oblate, and (c) prolate shapes.
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reflection matrix

R¼

R11 R12 0 0

R12 R22 0 0

0 0 R33 R34

0 0 �R34 R44

2
66664

3
77775 ð3Þ

corresponding to the case of an exact backscattering
direction (i.e., y=p–y0 and j=j0+p). For this purpose
we employ a vector radiative-transfer code based on the
numerical solution of Ambarzumian’s nonlinear integral
equation [22,23] in the case of a semi-infinite homoge-
neous slab, whereas for a finite slab we use a numerically
exact computer code based on the invariant imbedding
technique [24]. Then the backscattering circular polariza-
tion ratio is computed according to the formula (see,
e.g., [12])

mC ¼
R1

11þR1
44þ2RM

11þ2RM
44

R1
11�R1

44þRM
11þRM

22�RM
33�RM

44

, ð4Þ

where the superscript ‘‘1’’ denotes the contribution of the
first-order-scattering and ‘‘M’’ denotes the diffuse multi-
ple-scattering contribution. Note that Eq. (4) incorporates
fully the effect of coherent backscattering.

3. Numerical results

In this section we present the results of computations
performed for a plane-parallel homogeneous slab com-
posed of fractal ice aggregates. The refractive index
m=mR+imI (with i being the square root of minus one)
is adopted to be equal to 1.78+i0.003, which corresponds
to weakly contaminated water ice at a wavelength of
12.6 cm [25]. Note that this wavelength was used exten-
sively in radar polarimetric measurements of Saturn’s
rings [3,26]. The monomer packing density p is fixed at
0.2, the monomer radius is r=1 cm, and the overall cluster
radius R is varied from 4 up to 10 cm. As stated above, we
consider three types of aggregates—clusters of nearly

spherical overall shape described by Eq. (1) and generated
by using the CCA and DLA procedures as well as clusters
of spheroidal (including spherical) overall shape descri-
bed by Eq. (2). Below we depict and discuss the results
obtained.

3.1. Aggregate particles of nearly spherical overall shape

In this case, the number of monomers Ns and the
fractal pre-factor k0 can be found from the relations

Ns ¼
pR3

r3
, ð5Þ

Ns ¼ k0
R�r

r

� �Df

: ð6Þ

In Table 1 we list the values of Ns and k0 derived from
Eqs. (5) and (6) for several values of the overall fractal
radius in the range 4 cmrRr10 cm and Df=2.5 and 3. In
order to obtain the requisite single-scattering character-
istics of fractals for each value of the overall radius R and
the specified fractal parameters, we generated an ensem-
ble of ten fractal-parameter-equivalent realizations of an
aggregate, computed the orientation-averaged single-
scattering characteristics for each realization using the
superposition T-matrix method, and then averaged the
results over the ensemble. The necessity of performing
such ensemble averaging was discussed in [27]. A similar
ensemble-averaging procedure was applied to nearly
spherical clusters generated using Eq. (2).

Table 1
Fractal parameters used to model nearly spherical clusters.

R (cm) 4 6 8 10

Ns 13 43 102 200

k0 (Df=2.5) 0.83 0.77 0.79 0.82

k0 (Df=3) 0.48 0.34 0.30 0.27

Df = 2.5
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Fig. 2. Angular dependence of backscattering circular polarization ratio mC for a plane-parallel slab composed of ice clusters with the fractal dimension

Df=2.5. The slab optical thickness is 2 (top row) and N (bottom row).
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Fig. 3. As in Fig. 2, but for the fractal dimension Df=3.

Fig. 4. Ensemble-averaged single-scattering matrix elements versus scattering angle for Df=2.5.
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Figs. 2 and 3 depict the computed dependences of
the backscattering circular polarization ratio mC on the
so-called tilt angle B=p/2–y. Here, we present the results
of computations performed for slabs with two values of
optical thickness: t=2 and N. The slabs are composed of
fractals with Df=2.5 (Fig. 2) and 3 (Fig. 3) generated by
employing the CCA and DLA procedures as well as by
using Eq. (2) with E=1 (the E=1 curves are the same
in Figs. 2 and 3). It should be noted that for the fractal
parameters adopted, the CCA procedure fails to generate
aggregates with Df=3 and R48 cm.

We see a significant angular dependence of the polar-
ization ratio, which becomes more pronounced with
increasing t but weakens with increase in the value of
the overall radius R for t=2. For Df=2.5 and t=2, one can
see that for the clusters generated with the CCA and DLA
algorithms, the values of mC are very close, weak devia-
tions occurring only for R=10 cm and B4601. In the case

of a semi-infinite medium, the respective mC curves
almost overlap. The results depicted in Figs. 2 and 3 show
that the differences in the values of mC due to the
application of different cluster-generating procedures
increase somewhat with Df, especially in the case of a
semi-infinite medium.

As regards the case of clusters described by Eq. (2),
significant differences in the values of mC can be observed
relative to the respective CCA and DLA values. Note that
when t=2, maximal differences occur for the overall
fractal radius R=6 cm, while for a semi-infinite layer, the
respective mC values differ significantly for almost all
values of R considered. Furthermore, it is seen that for
t=N, the dependence of mC on the type of cluster-
generation procedure is much stronger (except in the
case of R=10 cm).

In order to give a plausible explanation for these differ-
ences in the computed mC-values, we depict in Figs. 4 and 5

Fig. 5. As in Fig. 4, but for Df=3.
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the elements of the ensemble-averaged normalized single-
scattering Stokes matrix F [5] as functions of the scattering
angle (the E=1 curves are the same in Figs. 4 and 5).
According to Section 14.3 of [12], the elements of the first-
order-scattering reflection matrix entering Eq. (4) are pro-
portional to the respective elements of F:

R1
¼
$½1 � expð�2t=cos yÞ�

8cos y
Fð1801Þ, ð7Þ

R1

����
t - 1

¼
$

8cos y
Fð1801Þ, ð8Þ

where $ is the single-scattering albedo. One can see that
among the three cluster-generating procedures used, the
differences in the corresponding backscattering values of
the diagonal elements F22, F33, and F44 entering Eq. (4) are
very small, while F44 is very close to �F11. This is consis-
tent with the fact that in the limit y-901 (or B-01 i.e.,
when the first-order-scattering contribution to the reflec-
tion matrix dominates) the differences between all three
circular polarization ratios and the ratios themselves
essentially vanish. We can thus conclude that the main
contribution to the differences in the respective circular
polarization ratios is caused by multiple scattering.

3.2. Aggregate particles of spheroidal overall shape

In Table 2 we list the values of Ns derived from Eq. (2)
for the packing density p=0.2 and various values of the
overall radius of spheroids R and the axial ratio E (we
remind that values E41 correspond to prolate spheroids).
Note that for the same values of R the number of spherical
monomers forming the cluster differs substantially for
oblate and prolate spheroids having the same aspect ratio.
Therefore, it is natural to expect that the corresponding
values of the circular polarization ratio will also differ
noticeably.

Figs. 6 and 7 visualize the results of computations of
the backscattering circular polarization ratio mC obtained
for various values of the aggregate overall radius R, optical
thickness values t=2 and N, and axial ratios E=1.2 and
1/1.2 (Fig. 6) as well as E=2 and 1/2 (Fig. 7). Again,

in these computations we used the same ensemble aver-
aging of the single-scattering characteristics as for the
nearly spherical clusters. One can see that with a few
exceptions, the values of mC differ substantially for the
slabs composed of fractals of overall oblate and prolate
spheroidal shapes with the same aspect ratio. As could be
expected, the magnitude of these differences grows with
increasing asphericity of the overall cluster shape. How-
ever, the character of this difference is not monotonous
and depends on the value of R, especially for E=2 and 1/2.
Specifically, mCðE¼ 1=1:2ÞomCðE¼ 1:2Þ and mCðE¼ 1=2Þo
mCðE¼ 2Þ for smaller R, while mCðE¼ 1=1:2Þ4mCðE¼ 1:2Þ
and mCðE¼ 1=2Þ4mCðE¼ 2Þ for larger R. This suggests
strongly that the differences in the respective Ns values
(Table 2) are not the main cause of the observed differ-
ences in the backscattering circular polarization ratios.

4. Discussion and conclusion

The results of our computations performed with the
superposition T-matrix method and numerically exact
vector radiative-transfer codes demonstrate that for
media composed of aggregates generated by the simu-
lated CCA and DLA procedures, the respective values of
the backscattering circular polarization ratio differ from
each other rather weakly in the case of the fractal
dimension Df=2.5. For Df=3, this difference can increase
somewhat, especially for a semi-infinite medium. If,
however, nearly spherical aggregates are generated using
Eq. (2) then the corresponding mC values can differ quite
substantially from the respective CCA and DLA values.

Table 2
Number of monomers Ns in spheroidal clusters.

R (cm) E

1.2 2 1/1.2 1/2

4 16 26 11 7

6 52 87 36 22

8 123 205 86 51
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Fig. 6. Angular dependence of backscattering circular polarization ratio mC for a plane-parallel slab composed of ice clusters with oblate (E=1/1.2) and

prolate (E=1.2) spheroidal overall shapes. The slab optical thickness is 2 (top row) and N (bottom row).
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Interestingly, the phase-function differences in the
upper rows of Figs. 4 and 5 can exceed a factor of 3 at
some scattering angles. Since in all cases the same
numbers of spherical monomers were packed into iden-
tical spherical volumes, these phase-function differences
illustrate once again the potentially strong residual effect
of a specific aggregation process on light scattering.

Eq. (2) can also be used to generate clusters with
spheroidal overall shapes. Then the resulting dependence
of mC on the aggregate morphology can be quite signifi-
cant and complex and increases with increase in the
degree of asphericity of the overall aggregate shape.

Taking into account that our numerical simulations
were performed for clusters composed of ice monomers at
a wavelength of 12.6 cm, we expect that the above results
and conclusions can be useful in future analyses of radar
polarimetric observations of ice-covered surfaces of solar
system bodies (such as Saturn’s rings, the Galilean satel-
lites of Jupiter, etc.).
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Fig. 7. As in Fig. 6, but for spheroidal aggregates with E=1/2 and 2.
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