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Abstract:  This paper solves the long-standing problem of establishing the 
fundamental physical link between the radiative transfer theory and macro-
scopic electromagnetics in the case of elastic scattering by a sparse discrete 
random medium. The radiative transfer equation (RTE) is derived directly 
from the macroscopic Maxwell equations by computing theoretically the 
appropriately defined so-called Poynting–Stokes tensor carrying informa-
tion on both the direction, magnitude, and polarization characteristics of lo-
cal electromagnetic energy flow. Our derivation from first principles shows 
that to compute the local Poynting vector averaged over a sufficiently long 
period of time, one can solve the RTE for the direction-dependent specific 
intensity column vector and then integrate the direction-weighted specific 
intensity over all directions. Furthermore, we demonstrate that the specific 
intensity (or specific intensity column vector) can be measured with a well-
collimated radiometer (photopolarimeter), which provides the ultimate 
physical justification for the use of such instruments in radiation-budget and 
particle-characterization applications. However, the specific intensity cannot 
be interpreted in phenomenological terms as signifying the amount of elec-
tromagnetic energy transported in a given direction per unit area normal to 
this direction per unit time per unit solid angle. Also, in the case of a 
densely packed scattering medium the relation of the measurement with a 
well-collimated radiometer to the time-averaged local Poynting vector re-
mains uncertain, and the theoretical modeling of this measurement is likely 
to require a much more complicated approach than solving an RTE.    
©2010 Optical Society of America  
OCIS codes: (030.5620) Radiative transfer; (290.4210) Multiple scattering; (290.5850) Scat-
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1.  Introduction  

The problem of electromagnetic scattering by a macroscopic medium composed of randomly 
distributed particles is a subject of great importance to many science and engineering disci-
plines. If the number of particles is not too large and the overall size of the scattering medium 
is sufficiently small then this problem can be addressed by means of a direct numerical solu-
tion of the Maxwell equations [1–4]. This solution allows one to compute any optical observ-
able anywhere in space. However, the computation of electromagnetic scattering by a medium 
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consisting of a very large number of particles, such as a cloud or a particulate surface, still has 
to be based on a simplified approximate approach. One of such frequently used approaches is 
the radiative transfer theory (RTT) intended to describe the transport of electromagnetic en-
ergy in a medium consisting of sparsely and randomly distributed particles [5–23].   

Until quite recently, the traditional way to introduce the radiative transfer equation (RTE) 
had been purely phenomenological and essentially required the postulation of the RTE as an 
artificial supplement to basic physical laws controlling the interaction of macroscopic elec-
tromagnetic fields with particles. The numerous inconsistencies and the overall inadequacy of 
the phenomenological approach have been exposed and discussed thoroughly in [24–27].  
Recently, this uncomfortable situation has been rectified by deriving the most general form of 
the RTE (i.e., applicable to arbitrarily shaped and arbitrarily oriented particles and fully ac-
counting for the vector nature of light) directly from the macroscopic Maxwell equations 
(MMEs) [28,29]. In contrast to the traditional phenomenological introduction of the RTE, the 
derivation in [28,29] can be called microphysical since it uses no ad hoc concepts or quanti-
ties not already contained in the MMEs [26].  

Still, that microphysical derivation was based on the computation of the ensemble-
averaged coherency dyad of the total electric field at an observation point, which is not an 
actual optical observable. Therefore, the physical meaning of the specific intensity column 
vector as well as that of the very RTE had to be inferred indirectly, through an a posteriori 
analysis of the resulting RTE. While it was argued on the basis of the integral form of the 
RTE that the specific intensity column vector had a well-defined physical meaning consistent 
with that in [5], that argument suffered from the coherency dyad being a purely mathematical 
construction without explicit physical content.  

Because of the use of the coherency dyad of the electric field only, the derivation of the 
RTE in [28,29] can still be considered incomplete. Indeed, it is well known from classical 
electromagnetics that the instantaneous local directional flow of electromagnetic energy is 
described by the Poynting vector involving both the electric and the magnetic field at the ob-
servation point [30–32]. Therefore, it would be fundamentally important to establish the 
physical relationship between the specific intensity column vector and the time-averaged (or, 
assuming full ergodicity, ensemble-averaged) Poynting vector.  

This overarching problem was formulated by Rudolph Preisendorfer 55 years ago ([33], 
Chapter XIV “Connections with the mainland”), but has never been solved. Preisendorfer 
himself defined an ad hoc specific intensity that could be linked to the Poynting vector and 
expected this quantity to satisfy the RTE. However, it remains questionable whether the spe-
cific intensity, as defined by Preisendorfer, can even be measured. Also, Preisendorfer’s deri-
vation suffered from the incorrect assumption that the instantaneous electric and magnetic 
field vectors at any point inside a discrete random medium are always mutually orthogonal (p. 
393). It is, therefore, not surprising that Preisendorfer failed to solve the fundamental problem 
that he himself so eloquently posed. 

Unfortunately, by virtue of being a vector product of the electric and magnetic fields, the 
Poynting vector does not carry explicit information on the polarization state of the scattered 
electromagnetic field and the field itself. As a consequence, it cannot be used to describe the 
scattering of electromagnetic waves by particles (particles scatter the electromagnetic field 
rather than the Poynting vector) and, thus, to derive the RTE. 

In this paper we identify and use a more general quantity such that it has the dimension of 
electromagnetic energy flux, on the one hand, and carries sufficient information about the 
electric and magnetic fields in order to describe multiple scattering and calculate the resulting 
Poynting vector at any observation point, on the other hand. The quantity satisfying these re-
quirements in the framework of the frequency-domain formalism is the dyadic product of the 
magnetic field and the complex conjugate of the electric field. We will call this quantity the 
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Poynting–Stokes tensor (PST).  
The main objective of this paper is to obtain a complete and self-consistent microphysical 

derivation of the RTE directly from the MMEs. We show that the RTE emerges as a bi-
product of the theoretical computation of the time (or, equivalently, the ensemble) average of 
the PST at the observation point and, ultimately, of the expression of the PST in terms of the 
angular integral of the specific intensity column vector. Our derivation demonstrates that the 
specific intensity column vector has no fundamental physical meaning and is just an interme-
diate mathematical quantity in the derivation of a closed-form analytical expression for the 
ensemble-averaged PST and Poynting vector at the observation point. In particular, the spe-
cific intensity is not interpretable in terms of quantifying the amount of electromagnetic en-
ergy propagating at a given point in a given direction. Obviously, this outcome is fundamen-
tally at odds with the standard phenomenological notion of the specific intensity as formulated 
in [5,34] as well as in virtually all subsequent monographs on radiative transfer (RT). Al-
though this result does not negate the RTE, it provides a profoundly different perspective on 
its physical meaning in the case of electromagnetic scattering by a random particulate me-
dium.  

Despite the fact that the specific intensity column vector has no definite physical meaning, 
this quantity can still be a useful optical characteristic of a turbid medium directly observable 
with a well-collimated detector of electromagnetic energy. We will demonstrate this by com-
bining the microphysical approach to RT with the physical representation of a well-collimated 
radiometer as a filter that passes only quasi-plane wavefronts coming from particles located 
within the acceptance solid angle of the instrument. This result will also explain why the inte-
gration of the reading of a well-collimated radiometer over all viewing directions yields the 
average Poynting vector (and, thus, the net electromagnetic energy flux) at an observation 
point located inside or outside a sparse random particulate medium. 

Consistent with the above rationale, one needs to analyze three fundamental and interre-
lated aspects of the RTT. The first one deals with the theoretical evaluation of the radiation 
budget of the entire turbid medium or any part of it. The second one concerns the identifica-
tion of specific measurement approaches that could be used to quantify the radiation budget 
experimentally and thereby supplement and/or verify the RTT prediction. The third one is 
related to specific physical information on the scattering medium that can be imbedded in the 
solution of the RTE and can potentially be retrieved by using the RTE in the inversion of cer-
tain laboratory, in situ, or remote-sensing observations. The following discussion will deal 
with these three fundamental aspects of the RTT in succession.  

In order to avoid redundancy and save space, we use consistently the terminology and no-
tation introduced in [20,28,35]. We denote vectors using the Times bold and Times bold italic 
fonts and matrices using the Arial bold font. Unit vectors are denoted by a caret, whereas dy-
ads and tensors are denoted by the symbol ↔. The Times italic font is reserved for scalar 
quantities.      

2.  General framework 

In contrast to various phenomenological approaches to RT, the microphysical theory of elec-
tromagnetic scattering by a discrete random medium rests on well-defined assumptions in-
tended to formulate the overall problem in strict physical terms. These assumptions are as 
follows:  

1. At each moment in time t, the entire scattering object (e.g., a cloud of water droplets) 
can be represented by a specific spatial configuration of a number 1≥N  of discrete finite 
particles, as illustrated in Fig. 1. The unbounded host medium surrounding the scattering ob-
ject is homogeneous, linear, isotropic, and nonabsorbing (the more general case of an absorb-
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ing host medium was discussed in [36] and references therein). Each particle is sufficiently 
large so that its atomic structure can be ignored and the particle can be characterized by opti-
cal constants appropriate to bulk matter. In electromagnetic terms, the presence of a particle 
means that the optical constants inside the particle volume are different from those of the sur-
rounding host medium. The shape and morphology of the particles can be arbitrary.  
 2. Nonlinear optics effects are excluded by assuming that the optical constants of the scat-
tering object and the surrounding medium are independent of the electric and magnetic fields.  
 3. The phenomenon of thermal emission is excluded. This assumption is usually valid for 
objects at room or lower temperature and for short-wave infrared and shorter wavelengths.  
 4. It is assumed that over time intervals T1 much longer than ,2 ωπ  the time dependence 
of the electric and magnetic fields is harmonic and described, in the complex-field representa-
tion, by the simple complex exponential ),i(exp tω−  where ω  is the angular frequency and 

.)1(i 21−=  In other words, it is assumed that the complex electric and magnetic fields can be 
factorized as )()i(exp) ,( rErE tt ω−=  and ),()i(exp) ,( rHrH tt ω−=  respectively, where r is 
the position vector. The actual real-valued electric and magnetic fields ) ,( trE  and ) ,( trH  
are given by the real parts of the vectors ) ,( trE  and ), ,( trH  respectively. The amplitudes 
E(r) and H(r) may vary with time implicitly by fluctuating around their respective mean val-
ues, but do so over time intervals longer than T1, i.e., much more slowly than the time-
harmonic factor ).i(exp tω−  Time-independent amplitudes E(r) and H(r) correspond to per-
fectly monochromatic radiation (e.g., a continuous laser beam), while the more general case of 
slowly fluctuating E(r) and H(r) represents quasi-monochromatic radiation (e.g., sunlight).  
 In addition, we will assume that any significant changes in the scattering object (e.g., 
changes in particle positions and/or orientations with respect to the laboratory reference 
frame) occur  
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Fig. 1. A cloud consisting of N particles and illuminated by a plane electromagnetic 
wave propagating in the direction of the unit vector .̂s  
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● over time intervals T2 much longer than the period of time-harmonic oscillations of the 
monochromatic electromagnetic field: T2 >> ;2 ωπ  and  

● much more slowly than temporal fluctuations of the amplitudes E(r) and H(r) of quasi-
monochromatic radiation: T2 >> T1. 

These two basic assumptions imply that over time intervals long compared to ωπ2  but short 
compared to typical periods of fluctuations of the amplitudes E(r) and H(r), all fields and 
sources of fields can be considered to be perfectly time-harmonic. As a consequence, the elec-
tromagnetic field at any moment in time everywhere in space can be found by solving the 
frequency-domain differential MMEs [30–32] subject to certain boundary conditions. The 
specific dependence of the optical constants on spatial coordinates and the corresponding 
boundary conditions at any moment t are fully defined by the instantaneous geometrical con-
figuration of the N particles (Fig. 1).  
 Specifically, the frequency-domain monochromatic Maxwell curl equations describing the 
scattering problem in terms of the time-independent electric and magnetic field amplitudes 
E(r) and H(r) can be written as follows: 

  ,  )(i    )(
)(i    )(

EXT
1

0 V∈
⎭
⎬
⎫

−=×∇
=×∇

rrErH
rHrE

εω
ωμ

      .  )() ,(i    )(
)(i    )(

INT
2

0 V∈
⎭
⎬
⎫

−=×∇
=×∇

rrErrH
rHrE
ωεω

ωμ
 (1) 

In these equations, INTV  is the cumulative “interior” volume occupied by the particulate scat-
tering object (Fig. 1); EXTV  is the infinite exterior region such that EXTINT VV ∪ ,3ℜ=  where 

3ℜ  denotes the entire three-dimensional space; the host medium and the scattering object are 
assumed to be nonmagnetic; 0μ  is the permeability of a vacuum; 1ε  is the real-valued electric 
permittivity of the host medium; and ) ,(2 ωε r  is the complex permittivity of the object.   
 It can be proven that given the standard boundary conditions for the electric and magnetic 
fields defined by the specific spatial distribution of the refractive index as well as the so-called 
radiation condition at infinity, Eqs. (1) have a solution, this solution being unique [37,38]. 
This fundamental factor makes the MMEs a self-sufficient basis of the electromagnetic scat-
tering theory in general and of the microphysical RTT in particular.  
 It is important to recognize that there are two sources of randomness of the radiation field 
in a turbid scattering medium. The first one is the potential quasi-monochromaticity of the 
incident radiation, as exemplified by sunlight. The second one is the randomness of the parti-
cle configuration caused by random changes in particle positions, morphologies, orientations, 
sizes, and/or refractive indices. However, conventional radiation-budget and remote-sensing 
applications deal with what can be called the “static” component of the radiation field and are 
based on the averaging of relevant scattering and absorption characteristics of a turbid me-
dium over time intervals T much longer than T2. Therefore, the hierarchy T >> T2 >> T1 >> 

ωπ2  allows one to split the theoretical computation of electromagnetic scattering by a turbid 
medium into the following three consecutive steps: 
 1. Assume that the incident radiation is a fully monochromatic plane electromagnetic wave 
and find an analytical solution of the MMEs valid for an arbitrary multi-particle configuration. 
This solution can be simplified, e.g., by assuming that each particle is located in the far-field 
zones of all the other particles and that the observation point is also located in the far-field 
zones of all the particles constituting the turbid medium. The result is the representation of the 
total electromagnetic field at the observation point in the form of a far-field order-of-
scattering expansion (Section 8.1 of [20]).  
 2. Use the above analytical solution to derive the corresponding expression for an observ-
able characteristic O having the dimension of electromagnetic energy flux, e.g., the Stokes 
column vector. This expression typically involves a linear operator T̂  transforming the ob-
servable characteristic of the incident radiation incO  into that of the scattered radiation :scaO  
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  .ˆ incsca OTO =  (2) 

The linearity of this expression makes it applicable to quasi-monochromatic as well as per-
fectly monochromatic light over time intervals much shorter than T2 but much longer than T1. 
Specifically, the linear transformation operator remains constant, whereas the observable 
characteristics of the incident and scattered radiation are replaced by their averages over a 
time interval tΔ  such that T1 << tΔ  << T2:   

  .ˆ incsca OTO =  (3) 

 3. Average Eq. (3) over a time interval much longer than T2, which does not affect incO  
but modifies T̂  and, thus, .scaO  This latter time averaging is usually replaced by configura-
tion averaging assuming full ergodicity of the turbid medium [26] and typically involves addi-
tional simplifying assumptions. The result can be summarized as follows: 

  ,ˆ inc,,sca OTO ξξ RR 〉〈=〉〈  (4) 

where the subscript R denotes averaging over all particle coordinates and the subscript ξ  de-
notes averaging over all particle states (i.e., morphologies, orientations, sizes, and refractive 
indices). Quite often this procedure results in a closed-form equation for ξ,sca R〉〈O  or ξ,ˆ R〉〈T  
that is much easier to solve than the original MMEs, the RTE being a prime example. 

3.  Radiation budget of a macroscopic volume element of turbid medium  

Let us first consider the radiation-budget problem. In order to characterize the local direc-
tional flow of electromagnetic energy resulting from scattering by a complex particulate ob-
ject such as a cloud, one must calculate the Poynting vector of the total electromagnetic field 
at the observation point r. The instantaneous value of the Poynting vector is given by the vec-
tor product of the real-valued electric and magnetic fields: ).,(),(),( ttt rrr HES ×=  In the 
framework of the frequency-domain scattering formalism, the quasi-instantaneous (i.e., aver-
aged over a time interval ωπ2 << tΔ << T1) value of the real-valued Poynting vector is equal 
to the real part of the complex Poynting vector given by      

  ,)]([)(    )(
2
1 ∗×= rHrErS  (5) 

where the asterisk denotes a complex-conjugate value. If the MMEs have already been solved 
for the specific particle configuration then S(r) can be evaluated at any observation point, and 
the instantaneous radiation budget of a macroscopic volume element VΔ  of turbid medium 
bounded by a closed surface SΔ  (Fig. 2a) can be evaluated by integrating S(r) over :ΔS   

  ),(ˆ)(dRe
Δ

Δ rnrS ⋅SW
S

S ∫−=  (6) 

where 0Δ ≥SW  is the net amount of electromagnetic energy entering the volume element VΔ  
per unit time, the central dot denotes an inner product, and )(ˆ rn  is the local outward normal to 
the surface. If 0Δ =SW  then the incoming radiation is balanced by the outgoing radiation. 
Otherwise there is absorption of electromagnetic energy inside the volume element. The radia-
tion budget of the entire turbid medium is evaluated similarly, except now the integral in Eq. 
(6) is taken over the closed boundary S (Fig. 2a).    
 However, both the direction and the magnitude of S(r) change in time owing to temporal 
changes of the multi-particle configuration, thus resulting in a complex speckle pattern rapidly 
fluctuating in time (Fig. 2a). To suppress the speckle and thereby isolate a static pattern rele-
vant to radiation-budget applications, one needs to average S(r) over a sufficiently long time 
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interval or, equivalently, over all particle positions and states as described in the preceding 
section. Ideally this would be done by deriving and then solving a closed-form RTE-type 
equation for ξ,)( RrS 〉〈  and thereby avoiding the impossible task of solving the MMEs directly 
for a large and statistically representative set of different multi-particle configurations. 

4.  The Poynting–Stokes tensor 

Unfortunately, the Poynting vector carries no information about the polarization state of the 
field and cannot be used to fully characterize electromagnetic scattering and derive a self-
contained equation such as the RTE. A standard descriptor of polarization is the Stokes col-
umn vector [39], but it contains no explicit information about the direction of energy propaga-
tion and is defined only for transverse electromagnetic waves, whereas the total electromag-
netic field at any observation point inside a turbid medium is never a transverse wave.  
 Another quantity used to describe electromagnetic scattering is the coherency dyad 

,)]([)( ∗⊗ rErE  where ⊗  denotes the dyadic product of two vectors [20,40,41]. This quantity 
does preserve polarization information, can be applied to an arbitrary field, provides a conven-
ient characterization of scattering by time-variable objects, and can be used to analyze situa-
tions in which an object is illuminated by two or more sources of radiation. However, it is 
defined in terms of the local electric field only and as such does not provide a definitive char-
acterization of the propagation direction and may cause unphysical results in some cases [20].   
 It is, therefore, necessary to define an alternative quantity which also has the dimension of 
electromagnetic energy flux while providing a complete and self-contained description of 
electromagnetic scattering by a turbid medium in the context of practical optical analysis. It is 
rather obvious that a quantity combining the attributes of all the previously mentioned de-
scriptors of electromagnetic radiation is the PST defined as 

V

ΔV

ΔS

V

ΔVΔS

S S

(a) (b)

Fig. 2. (a) Quasi-instantaneous radiation budget of a volume element VΔ  bounded by a 
closed surface .ΔS  The arrows represent the distribution of Re[S(r)] over the closed 
boundary SΔ  corresponding to the specific multi-particle configuration. (b) Configura-
tion-averaged radiation budget of the same volume element evaluated for a statistically 
uniform spatial distribution of particle positions inside V. 
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  .)]([)(    )(
2
1 ∗⊗= rErHrP  (7) 

Indeed, by definition, the PST is applicable to an arbitrary time-harmonic electromagnetic 
field. Furthermore, it can be used to find both the Poynting vector and, whenever applicable, 
the Stokes parameters. Indeed, one has in laboratory Cartesian coordinates (Fig. 1): 

  ,ˆ)(ˆ)(ˆ)( zyxS ∗∗∗∗∗∗ −+−+−= xyyxzxxzyzzy PPPPPP  (8) 

where ,x̂ ,ŷ  and ẑ  are the corresponding unit vectors. Also, for a transverse electromagnetic 
wave propagating in the direction of a unit vector ,q̂  ).(ˆ)()( 21

01 rEqrH ×= με  Therefore, 
one has in local spherical coordinates (Fig. 3): 

  ,ˆ)( qS ∗∗ −= θϕϕθ PP  (9) 

                                     , 
2
1

0

1

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

∗

∗

∗

∗

∗

∗

∗

∗

θϕ

ϕϕ

θθ

ϕθ

ϕϕ

θϕ

ϕθ

θθ

μ
ε

P
P
P

P

EE
EE
EE
EE

J  (10)   

  ,

)(i)    (i
    

    
    

  
2
1

0

1

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
−
+
−

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−
+

=

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

ϕϕθθ

ϕϕθθ

θϕϕθ

θϕϕθ

ϕθθϕ

θϕϕθ

ϕϕθθ

ϕϕθθ

μ
ε

PP
PP
PP
PP

EEEE
EEEE

EEEE
EEEE

I  (11) 

where J is the coherency column vector and I is the Stokes column vector [20,35].  
 Thus, the radiation-budget problem for a turbid medium can be fully solved if one can 
compute theoretically the configuration-averaged PST according to   

  ξξ ,, )]([)(    )(
2
1

RR rErHr 〉⊗〈=〉〈 ∗P  (12) 

ϕ

θ

x'

y'

z'

ϕ̂

q̂ ×= ϕ̂θ̂ θ̂

Observation
point

 
Fig. 3. Local spherical coordinates. The local Cartesian frame },,{ zyx ′′′  has the same 
spatial orientation as the laboratory Cartesian frame {x, y, z}. 
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since Eq. (8) still applies. Alternatively, as follows from the first equality of Eq. (1), the con-
figuration-averaged PST can be expressed as 

  ,)],([
i2

1    )(
0

, rrrR rrr
=′′ ′×∇=〉〈 CP

ωμξ  (13) 

where 

  ξ,)]([)(),( RrErErr 〉⊗′〈=′ ∗C  (14) 

is the configuration-averaged so-called dyadic correlation function. 

5.  Radiative transfer equation 

Let us now assume that  
● the incident field is a plane electromagnetic wave propagating in the direction of the unit 

vector ŝ  (Fig. 1); 
● the number of particles N is very large (i.e., tends to infinity); 
● the position and state of each particle are statistically independent of each other and of 

those of all the other particles;  
● the spatial distribution of the particles throughout the volume V is random and statistically 

uniform;  
● the scattering medium is convex (which assures that a wave exiting the medium cannot re-

enter it); 
● all scattering paths going through a particle more than once can be neglected (the so-called 

Twersky approximation [42]); 
● all diagrams with crossing connectors in the diagrammatic expansion of the configuration-

averaged dyadic correlation function can be neglected (the so-called ladder approxima-
tion).  

Then the configuration-averaged dyadic correlation function is given by the diagrammatic 
formula on page 191 of [20] (see also Fig. 16 of [28]). The explicit expanded form of this 
formula is as follows: 

  ∗⊗′=′ )]([)(),( cc rErErrC  
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where the following notation is used (see Fig. 4):  
● T denotes a transposed dyadic; 
● VNn =0  is the number of particles per unit volume; 
● the indices 1, 2, 3,… number individual particles; 
● Ri is the position vector of the ith particle; 
● iξ  denotes collectively the state of the ith particle (i.e., its morphology, orientation, size, 

and refractive index); 
● the vector 1r  connects the origin of particle 1 with the observation point r;  
● the vector 1r′  connects the origin of particle 1 with the observation point ;r′  
● |,| 11 r=r  |,| 11 r′=′r  ,ˆ 111 rrr =  ;ˆ 111 r′′=′ rr  
● the vector ijR  connects the origin of particle j with that of particle i;  
● |,| ijijR R=  ;ˆ ijijij RRR =  

V
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2112 RR −=
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r
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Fig. 4.  Geometry showing the quantities appearing in Eq. (15). 
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● )ˆ,ˆ( qq′iA  is the far-field scattering dyadic of the ith particle computed in the particle refer-
ence frame for the incidence and scattering directions q̂  and ,q̂′  respectively [20,35]; 

● ])ˆ,ˆ(2iiexp[),ˆ( 1
101 ξπη 〉〈+= − qqq AlknIlkl  is the coherent transmission dyadic, where 1k  

21
01 )( μεω  is the wave number, I  is the unit dyadic, and ξ〉〈 )ˆ,ˆ( qqA  is the forward-

scattering dyadic averaged over all particle states;  
● )()](,ˆ[)( inc

c As ErsrE ⋅η=  is the so-called coherent field, where s(r) is the distance between 
an observation point r and the corresponding entrance point A measured along the direc-
tion of incidence (Fig. 4) and )(inc AE  is the incident field at the entrance point; and  

● .)]([)()( ccc
∗⊗= rErErC   

 Let us now take into account the far-field condition 11rk ′  >> 1 as well as assume that 
)ˆ,ˆ( 11 qr′A  is a rather slowly varying function of 1r′  and all elements of the dyadic 

ξπ 〉〈− )ˆ,ˆ(2 1
10 qqAkn  are much smaller (in the absolute sense) than the wave number .1k  Then  
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where we have used the formulas CfCfCf ×∇+×∇=×∇ )()(  and  

  =∇ − )]iexp([ 1 rkr .ˆ)iexp(iˆ)iexp()i( 1

1

11 rr rkrkrkrrk
rk

−

>>

−− →−   

Let us also integrate over all positions of particle 1 using a local coordinate system with origin 
at the observation point r, integrate over all positions of particle 2 using a local coordinate 
system with origin at the origin of particle 1, integrate over all positions of particle 3 using a 
local coordinate system with origin at the origin of particle 2, etc. Using the notation intro-
duced in Fig. 4 and taking into account that ,ˆddd 2

1 pp pr=  ,ˆddd 2121
2
1221 RR RR=  and so on, 

we get from Eqs. (13), (15), and (16): 

  ∫ −×−=〉〈
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where )ˆ,(L pr −Σ  is the ladder specific coherency dyadic defined by 
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Note that p ranges from zero at the observation point r to the corresponding value at the point 
where the straight line in the p̂  direction crosses the boundary of the medium (point 1C  in 
Fig. 4), 21R  ranges from zero at the origin of particle 1 to the corresponding value at point 

,2C  etc. Importantly, the ladder specific coherency dyadic has the dimension of specific in-
tensity or radiance (W m–2 sr–1) rather than that of intensity (W m–2).  
 It can be readily verified that the ladder specific coherency dyadic satisfies the following 
closed-form integral RTE: 

          )ˆ,ˆ;(),ˆ(dˆdd)()ˆˆ(δ)ˆ,( 0cL pppprsppr ′−−−′++=− ∫ ξηξΣ AppnC ⋅  

                                                          .)],ˆ([)]ˆ,ˆ;([)ˆ,( TT
L

∗∗ −′−−′−+ pA pppppr ηξΣ ⋅⋅⋅  (19) 

Indeed, using )()ˆˆ(δ c rsp C+  as an initial approximation for ),ˆ,(L pr −Σ  we can substitute it in 
the integral on the right-hand side of Eq. (19) and obtain an improved approximation. By con-
tinuing this iterative process, we arrive at Eq. (18), which is simply the Neumann order-of-
scattering expansion of the ladder specific coherency dyadic with the coherent field serving as 
the effective initial source of multiple scattering.  
 The interpretation of Eq. (19) is very transparent: the ladder specific coherency dyadic for 
a direction p̂−  at a point r consists of a coherent part and an incoherent part. The latter is a 
cumulative contribution of all particles located along the straight line in the direction-p̂  and 
scattering radiation coming from all directions p′− ˆ  into the direction .p̂−  
 It is easily verified that the well-known transversality of the scattering dyadic causes the 
transversality of the ladder specific coherency dyadic [20]: )ˆ,(ˆ L qrq Σ⋅ qqr ˆ)ˆ,(L ⋅Σ= ,0=  
where 0 is a zero vector. This allows one to introduce the specific coherency column vector 
consisting of the four non-zero elements of ),ˆ,(L qrΣ  
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where )ˆ(ˆ qθ  and )ˆ(ˆ qφ  are unit vectors in the local coordinate system corresponding to the 
propagation direction q̂  (Fig. 3), as well as the specific intensity column vector 
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where )ˆ,(~ qrI  is traditionally called the specific intensity (cf. Eqs. (10) and (11)). Note that 
we use tildes to denote quantities having the dimension of radiance. Equation (19) implies that 
either specific column vector satisfies an RTE, the classical integro-differential form of the 
RTE for )ˆ,(~

 qrI  being as follows:     

  ),ˆ,(~)ˆ,ˆ(ˆd )ˆ,(~)ˆ()ˆ,(~ˆ
4  

00 qrqqqqrqqrq ′〉′〈′+〉〈−=∇⋅ ∫ IZIKI ξ
π

ξ nn  (22) 

where ξ〉〈 )ˆ(qK  and ξ〉′〈 )ˆ,ˆ( qqZ  are the 44×  extinction and phase matrices, respectively, av-
eraged over all particle states [20,35]. Importantly, the uniqueness of solution of the RTE 
(22), when supplemented by appropriate boundary conditions, and the fact that both ξ〉〈 )ˆ(qK  
and ξ〉′〈 )ˆ,ˆ( qqZ  are real-valued implies that all elements of )ˆ,(~

 qrI  are real-valued. This is 
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straightforward to demonstrate using an order-of-scattering expansion of the RTE. Further-
more, ξ〉〈 )ˆ(qK  and ξ〉′〈 )ˆ,ˆ( qqZ  are sums of pure Mueller matrices [43,44], which implies that 

)ˆ,(~ qrI  is always positive. 
 All results of this section remain valid if one replaces the incident plane electromagnetic 
wave with a quasi-monochromatic parallel beam of light of infinite lateral extent (cf. Section 
8.15 of [20]). 

6.  Solution of the radiation-budget problem 

Rewriting Eq. (17) as 

  ,)ˆ,(ˆˆd)(
4  

L01, 2
1 ∫ ×=〉〈

π
ξ Σμε qrqqr RP  (23) 

using local spherical coordinates to compute the integrand, and recalling Eqs. (20) and (21) 
yields: 

  ).ˆ,(~ˆˆd)(
4

, qrqqrS R I∫=〉〈
π

ξ  (24) 

To the extent that the specific intensity )ˆ,(~ qrI  is real-valued and positive, ξ,)( RrS 〉〈  is also 
real-valued, while )ˆ,(~ˆ qrq I  represents a Poynting-vector component in the direction of the 
unit vector .q̂   
 Equation (24) completes the microphysical solution of the radiation-budget problem posed 
above. Indeed, the RTE (22) follows directly from the MMEs upon making specific assump-
tions about the scattering particulate medium. Therefore, Eq. (24) is also a direct corollary of 
the MMEs and implies that to compute the local Poynting vector averaged over a sufficiently 
long period of time one can solve the RTE for the direction-dependent specific intensity col-
umn vector and then integrate the direction-weighted first element of )ˆ,(~

 qrI  over all direc-
tions. This result is valid for quasi-monochromatic incident radiation as well. 

7.  Physical meaning of specific intensity 

The traditional definition of the specific intensity in the phenomenological RTT states that 
)ˆ,(~ qrI  gives the amount of electromagnetic energy transported in the direction q̂  per unit 

area normal to q̂  per unit time per unit solid angle (e.g., Chandrasekhar 1950). This notion of 
the specific intensity implies that at the observation point r, electromagnetic energy propa-
gates simultaneously in all directions and does it according to the angular distribution function 

).ˆ,(~ qrI  
 Our microphysical derivation of Eqs. (23) and (24) directly from the MMEs reveals that in 
the case of radiative transfer in a turbid medium this interpretation of )ˆ,(~ qrI  is profoundly 
incorrect. Indeed, the instantaneous local flow of electromagnetic energy is given by a mono-
directional real Poynting vector ).,(),( ),( ttt rrr HES ×=  Averaging over a time interval 

ωπ2 << tΔ << T1 in the framework of the frequency-domain formalism also yields a monodi-
rectional vector })]([)(Re{)21(  )](Re[ ∗×= rHrErS  (Fig. 2a). Averaging over a time interval 

tΔ >> T2 (or, equivalently, over all particle positions and states) still yields a monodirectional 
Poynting vector given by Eq. (24). Thus under no circumstances is the local flow of electro-
magnetic energy polydirectional.   
 This fundamental disagreement between the microphysical and phenomenological ap-
proaches is not surprising. Indeed, the computation of the local electromagnetic energy flow 
in the framework of the microphysical RTT is based on the solution of the MMEs. As a con-
sequence, )ˆ,(~ qrI  emerges as a purely mathematical quantity entering Eq. (24) and is found 
by solving an auxiliary intermediate equation, viz., the RTE. As such, )ˆ,(~ qrI  has no inde-
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pendent physical meaning. To state otherwise is equivalent to claming independent physical 
meaning for expansion coefficients appearing in an ad hoc mathematical expansion of a func-
tion in, e.g., Legendre or Chebyshev polynomials. The same is true of the RTE itself: it is just 
an intermediate mathematical equation that one has to solve in order to complete the computa-
tion of ξ,)( RrS 〉〈  in the framework of macroscopic electromagnetics. 
 The phenomenological approach turns everything upside down: the actual existence of the 
specific intensity as a fundamental physical quantity is postulated, the RTE is “derived” as an 
outcome of verbal “energy balance considerations”, and the MMEs are invoked on an ad hoc 
basis only at the very last stage in order to compute the single-particle scattering and absorp-
tion characteristics entering the RTE. In other words, the MMEs are treated as a supplement to 
the phenomenological theory rather than as primordial physical equations fully controlling all 
aspects of the interaction of macroscopic electromagnetic fields with particulate media. 

8.  Collimated detector of electromagnetic energy flux 

Although the specific intensity is not a fundamental physical quantity, it proves to be very 
useful in practice. To demonstrate that, we need to discuss the physical nature of a measure-
ment with a typical well-collimated detector of electromagnetic energy flux, as shown sche-
matically in Fig. 5a. Let us first consider two plane electromagnetic waves propagating in 
directions q̂  and ,q̂′  respectively. The objective lens of the well-collimated radiometer trans-
forms both plane wavefronts into converging spherical wavefronts with their respective focal 
points located in the plane of the diaphragm. The pink wavefront passes through the pinhole 
and is eventually relayed onto the sensitive surface of the photodetector, whereas the blue 

Objective
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Relay
 lens

Diaphragm

Photodetector
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q̂'

q1ˆ
Pla
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Fig. 5. (a) Optical scheme of a well-collimated detector of electromagnetic energy flux. 
(b) The well-collimated detector does not always respond to the Poynting vector di-
rected along the optical axis of the instrument. 
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wavefront gets extinguished by the diaphragm. Thus the combination {objective lens, dia-
phragm} serves to select only wavefronts propagating in directions very close to the optical 
axis of the instrument and falling within its small “acceptance” solid angle .ΔΩ  It is funda-
mentally important that this directional filter operates in the “wave domain” rather than in the 
“Poynting-vector domain”.   
 This analysis implies that the well-collimated radiometer does not necessarily react to the 
local Poynting vector at a point on the objective lens even if this vector is directed along the 
detector axis. Indeed, let us consider two plane waves propagating in directions 1q̂  and ,ˆ 2q  
respectively (Fig. 5b). Let the instantaneous values of their real magnetic vectors be H1 and 
H2, as shown by the magenta arrows, while their instantaneous real electric vectors E1 and E2 
are normal to the paper and are directed towards the reader. The cumulative instantaneous 
field is represented by the vectors E = E1 + E2 and H = H1 + H2, the former again being nor-
mal to the paper and directed towards the reader. The resulting instantaneous real Poynting 
vector S = E×H is shown by the green arrow and is directed along the optical axis of the in-
strument. However, neither plane wavefront will be passed by the {objective lens, diaphragm} 
combination, and the instantaneous reading of the detector will be zero.  
 Of course, the instantaneous electric and magnetic vectors of the two plane waves rotate 
around the respective propagation directions, and the instantaneous Poynting vector can oscil-
late in both the magnitude and the direction. Nevertheless, the well-collimated radiometer 
does not respond even when S is directed along its optical axis and does not accumulate the 
corresponding component of the time-averaged Poynting vector. 
 The failure of the well-collimated radiometer to react to the instantaneous Poynting vector 
in Fig. 5b can be traced to the following fundamental fact: although the Poynting vector is 
sought at points on the surface of the objective lens, the actual photodetector is invariably 
located very far from those points. The only circumstance under which the optical system of 
the well-collimated radiometer can relay the Poynting vector from the surface of the objective 
lens onto the sensitive surface of the photodetector is when the incident plane wavefront 
propagates along (or almost along) the optical axis of the radiometer (Fig. 5a). This is true of 
any well-collimated radiometer irrespective of its specific optical scheme.            
 Let us now assume that there are several plane wavefronts incident on the objective lens of 
the well-collimated radiometer in directions ,ˆ,ˆ 21 qq … (Fig. 6). The above discussion implies 
that the radiometer will select only those wavefronts whose propagation directions fall within 
the small acceptance solid angle ΩΔ  (i.e., ,ˆ,ˆ 43 qq  and ),ˆ 5q  and the reading of the detector 
will be given by the integral of the Poynting vector resulting from the superposition of these 
“qualifying” wavefronts over the surface of the objective lens.           
 The implications of this analysis for the case of a well-collimated radiometer measuring 
electromagnetic scattering by a random particulate medium (Fig. 7) are profound. Indeed, the 
instantaneous real electric and magnetic vectors at the surface of the objective lens can be 

q1ˆ
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q3ˆ
q4ˆ
q5ˆ
q6ˆ
q7ˆ

ΔΩ

 

Fig. 6. Response of a well-collimated radiometer to multidirectional illumination. 
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represented as superpositions of the respective vectors of the incident field and the partial 
fields coming from all the individual particles:  

  ,),(),(),(,),(),(),(
1

inc

1

inc ∑∑
==

+=+=
N

i
i

N

i
i tttttt rrrrrr HHHEEE  (25)     

where the index i numbers the particles. Since the observation point is assumed to be in the 
far-field zone of any particle, each pair )},(),,({ tt ii rr HE  represents an outgoing spherical 
wavelet originating at the center of the respective particle. At a large distance from the parti-
cle this wavelet can be considered locally flat. Therefore, the radiometer will select only those 
wavelets that come from the particles located within the “acceptance volume” of the radiome-
ter q̂ΔV  defined by its acceptance solid angle q̂ΔΩ  (Fig. 7) and will integrate the resulting 
Poynting vector over the surface of the objective lens .dS  Assuming for simplicity that q̂ΔΩ  
does not subtend the propagation direction of the incident light ,ŝ  we conclude that the instan-
taneous reading of the well-collimated radiometer is given by ,),(),(d∑ ∑′ ′ ′′ ×l m ml ttS rr HE  
where the primed indices l′  and m′  number particles located inside the acceptance volume 

.Δ q̂V  Note that since ΩΔ  is very small, each term in this sum is a vector directed essentially 
along the unit vector q̂  in Fig. 7. Accumulating this reading over a sufficiently long time in-
terval ,Δt  dividing the result by ,Δt  and assuming ergodicity yields the following average 
signal per unit area of the objective lens:  

  ,)]([)(Re),(),(
,2

1
ξR

rHrErr ∑ ∑∑ ∑ ′ ′
∗

′′′ ′ ′′ ×=× l m mll m ml tt HE  (26) 

ΔV

2

1

q̂

q̂

 

Fig. 7. A well-collimated radiometer placed inside a random particulate medium. The 
sizes of the detector and the particles relative to that of the medium are exaggerated for 
demonstration purposes. 
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where the subscripts R and ξ  denote averaging over coordinates and states of all the N parti-
cles constituting the scattering medium and not just those located inside .Δ q̂V  

9. Practical meaning of specific intensity and specific intensity column vector 

The right-hand side of Eq. (26) can be expressed in terms of the Poynting–Stokes dyadic 

  .)]([)()Δ;(
,

ˆ 2
1

ξR
q rErHr ∑ ∑′ ′

∗
′′ ⊗= l m mlVP  (27) 

The far-field order-of-scattering expansion of the total field at on observation point r (see Sec-
tion 8.1 of [20]) implies that each partial field )}(),({ rHrE ii  with Ni ≤≤1  is a superposition 
of contributions corresponding to all possible sequences of particles ending at particle i. We 
can compute )Δ;( q̂r VP  by making the standard assumptions invoked previously to calculate 

ξ,)( Rr 〉〈P  and in addition requiring that the end particle of any scattering sequence be located 
inside the acceptance volume .Δ q̂V  The outcome of this lengthy yet straightforward computa-
tion is as follows: 

  ),ˆ,(ˆΔ)Δ;( L01ˆ qrqr q ΣμεΩ ×=VP  (28) 

where the unit vector q̂  is directed along the optical axis of the well-collimated radiometer 
(Fig. 7). It can be verified that Eq. (28) remains valid even if ,ˆˆ sq =  which implies that q̂ΔΩ  
subtends the incidence direction. Furthermore, Eq. (28) applies to the case of quasi-
monochromatic as well as monochromatic incident radiation.    
 The importance of Eq. (28) is difficult to overstate. Indeed, comparing it with Eq. (23) 
shows, first and foremost, that if all the above assumptions about the scattering particulate 
medium are valid then the well-collimated radiometer such as that shown in Fig. 7 measures 
the specific intensity )ˆ,(~ qrI  provided that the reading of the radiometer is averaged over a 
sufficiently long period of time. Therefore, by sampling all incoming directions ,q̂  one can 
determine the local electromagnetic energy flow according to Eq. (24) and thereby solve the 
radiation budget problem experimentally.  
 Secondly, the angular dependence of the measured specific intensity can be analyzed by 
solving the RTE for a representative range of physical models of the scattering medium, 
which may yield certain information about the medium. Furthermore, since the well-
collimated optical instrument selects only locally plane wavefronts propagating in essentially 
the same direction ,q̂  one can add special optical elements and convert the radiometer into a 
photopolarimeter capable of measuring the entire specific intensity column vector ).ˆ,(~

 qrI  
This measurement can contain additional implicit information about particle microphysics 
which can often be retrieved since )ˆ,(~

 qrI  can also be calculated theoretically by solving the 
RTE (23).  

10. Discussion and conclusions 

Equations (17) and (20)–(22) establish, for the first time, the fundamental physical relation 
between the MMEs and the RTT by clarifying unequivocally how the solution of the RTE 
enters the local energy budget computation. Furthermore, Eq. (28) demonstrates that well-
collimated radiometers (or, more generally, photopolarimeters) measure the specific intensity 
(specific intensity column vector) entering the RTE and thereby provides the ultimate physical 
justification for the use of such instruments in radiation-budget and particle-characterization 
applications. These are the main results of our paper. They are based on specific assumptions 
listed in Sections 2, 3, and 5 (see also the discussion in [26]) and can be readily extended to 
the case of an external observation point along the lines of [29]. In what follows, we will dis-
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cuss these results and their implications, especially in relation to old phenomenological RT 
concepts and more recent developments.       

10.1. The Poynting–Stokes tensor versus the coherency dyadic 

Following [40], the microphysical approach to RT pursued in [20,28,29] was based on the 
calculation of the configuration-averaged coherency dyadic ξ,)]([)()( RrErEr 〉⊗〈= ∗C  rather 
than the configuration-averaged PST defined by Eq. (12). The outcome of that calculation, 

  ∫ −=〉〈
π

ξ Σ
4  

L, ),ˆ,(ˆd)( prpr RC  (29) 

involved the same specific coherency dyadic LΣ  satisfying the same RTE (19), but provided 
no explicit recipe how to compute the configuration-averaged Poynting vector. As a conse-
quence, the discussion of the physical meaning of the specific intensity in [20,28,29] remained 
qualitative and, in fact, questionable.  
 Equation (17) eliminates this remaining ambiguity and allows one to derive the definitive 
link (24) between the solution of the conventional RTE (22) and the configuration-averaged 
Poynting vector in the case of electromagnetic scattering by an ergodic turbid medium. Unlike 
Eq. (17), Eq. (29) lacks the vector pre-multiplication of the specific coherency dyadic by the 
unit vector ,p̂−  which does not allow for an explicit derivation of Eq. (24). Obviously, this 
deficiency of Eq. (29) can be traced back to the use of only the local electric field at the ob-
servation point and the resulting lack of explicit information on the local direction of electro-
magnetic energy flow. 

10.2. What is the specific intensity? 

We have already emphasized in Section 7 that although the local configuration-averaged 
Poynting vector ξ,)( RrS 〉〈  can be calculated by integrating the product )ˆ,(~ˆ qrq I  over all di-
rections q̂  according to Eq. (24), the specific intensity )ˆ,(~ qrI  obtained by solving the RTE 
cannot be said to represent the amount of energy per unit solid angle propagating in the direc-
tion .q̂  Indeed, it does not matter whether one considers a specific moment in time or aver-
ages over a long period of time: the local flow of electromagnetic energy at an observation 
point always remains monodirectional rather than being distributed over all “propagation di-
rections”. 
 It is important to recognize that actual physical significance can be attributed only to the 
integral of )ˆ,(~ˆ qrq I  over all directions rather than to the individual values of )ˆ,(~ qrI  corre-
sponding to different directions. For example, one can add to )ˆ,(~ qrI  any function )ˆ,( qrf  
such that 0qrqq =∫ π4 )ˆ,(ˆˆd f  and obtain another “specific intensity” yielding the same 

.)( ,ξRrS 〉〈  A simple example would be any symmetric function such that ).ˆ,()ˆ,( qrqr ff =−    
 To illustrate this point, let us discuss the definition of radiance proposed in Section 124 of 
[33]. This discussion invokes a hypothetical radiometer, called by Preisendorfer the “radiance 
flux meter” (Fig. 8), which now replaces the well-collimated radiometer in Fig. 7. The sensi-
tive surface of this instrument is assumed to react to the local instantaneous Poynting vector 

),( tr′S  only if this vector is directed normally or almost normally to the surface. Specifically, 
if the direction of ),( tr′S  at any point r′  of the sensitive surface Sd is within the small accep-
tance solid angle q̂ΔΩ  of the detector (e.g., vector S1 in Fig. 8) then this vector will contrib-
ute to the cumulative reading of the instrument. Instantaneous local Poynting vectors with 
directions outside q̂ΔΩ  (e.g., vectors S2 and S3) are ignored by the instrument and do not 
contribute to its cumulative reading. Note that unlike the well-collimated radiometer discussed 
previously, the hypothetical radiance flux meter is a directional filter operating in the 
Poynting-vector domain. Preisendorfer’s radiance is then defined as follows:         
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where q̂  is the unit vector specifying the orientation of the optical axis of the instrument and 
normal to its sensitive surface Sd centered at r (Fig. 8), |),(|),(),(ˆ ttt ′′=′ rrr SSs  is the unit 
vector in the direction of ),,( t′′rS  and  

  
⎩
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Note that the dependences on r′  over the detector surface Sd and on t vanish upon averaging 
over a sufficiently long period of time T. It is, of course, assumed that the diameter of the sen-
sitive surface Sd is much smaller than any dimension of the scattering medium. 
 It follows from the definition of )ˆ,(~ qrN  and from the assumption of ergodicity that    

  .)ˆ,(~ˆˆd)()ˆ,(~ˆˆd),(
4

,
4 ∫∫ =〉〈==

π
ξ

π
qrqqrSqrqqr R INtS  (32) 

Yet, ).ˆ,(~)ˆ,(~ qrqr IN ≠  Indeed, on one hand, the microphysical derivation of the RTE implies 
that pairs of multi-particle sequences ending, respectively, at particles 1 and 2 in Fig. 7 do not 
contribute to ).ˆ,(~ qrI  On the other hand, the above discussion of Fig. 5b implies that they can 
contribute to )ˆ,(~ qrN  at certain moments in time. This result suggests, of course, that )ˆ,(~ qrN  
is not a solution of the RTE (22).      
 At the first glance, this conclusion may appear a bit paradoxical. We should recall, how-
ever, that the microphysical derivation of the RTE is based on the complex-vector frequency-
domain formalism, which allows one to conveniently factor out the time-harmonic depend-
ence of the electric and magnetic fields. However, this forces one to define, at the very outset, 
the Poynting vector and related optical observables as averages over a sufficiently large num-
ber of time-harmonic oscillations (Section 3). As a consequence, the frequency-domain for-
malism cannot be used to model the measurement with an instrument such as the hypothetical 
Peisendorfer’s radiance flux meter shown in Fig. 8. Indeed, time-harmonic oscillations of the 
electric and magnetic vectors cause a rapidly oscillating Poynting vector at the detector sur-
face. At certain moments in time ),( trS  can be directed along q̂  and thereby contribute to 

),ˆ,(~ qrN  while at other moments it can be directed along q̂−  and contribute to ).ˆ,(~ qr −N  

S1

S2

S3

ΔΩ q̂

 Sensitive
surface Sd

q̂

 
Fig. 8. A hypothetical radiance flux meter accumulating local Poynting vectors with di-
rections falling within the acceptance solid angle .Δ q̂Ω  
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While these “opposing” contributions are accounted for and accumulated in the computation 
of the Presisendorfer’s radiance ),ˆ,(~ qrN  they substantially (but, of course, not completely) 
cancel each other in the frequency-domain computation of the specific intensity )ˆ,(~ qrI  ow-
ing to the primordial averaging over a large number of time-harmonic oscillations. 
 The frequency-domain modeling of the reading of a well-collimated radiometer, such as 
the one shown in Fig. 7, is free of this problem since all contributing wavefronts propagate in 
essentially the same direction q̂  at all times.    

10.3. Physical nature of radiance measurements 

The hypothetical Preisendorfer’s radiance flux meter is an instrument universally applicable, 
by its very definition, to the measurement of the local time-averaged Poynting vector via 

.)ˆ,(~ˆˆd),( 4∫= π qrqqr NtS  If it were feasible, this measurement would not require many of the 
assumptions one has to make in order to derive the RTE such as ergodicity and low packing 
density of the scattering medium. Furthermore, this instrument would serve as an ideal bridge 
between fundamental electromagnetics and the semi-empirical field of radiometry. 
 Unfortunately, to the best of the author’s knowledge, such an instrument has never been 
built, and it remains unclear whether it can be built in principle. Obviously, designing an in-
strument with sensitivity to the local instantaneous Poynting vector (Fig. 8) would require a 
detailed quantum-mechanical analysis of the localized and directional light-matter interaction.  
 Designing well-collimated radiometers and photopolarimeters is a much simpler problem 
since the selection of macroscopic quasi-plane wavefronts with specific propagation direc-
tions is much more straightforward than the directional selection of instantaneous local 
Poynting vectors and involves easy-to-manufacture macroscopic optical elements such as 
lenses. In this case, however, the measurement of the local time-averaged Poynting vector via 

),( trS  ≈ ∫ π4 )ˆ,(~ˆˆd qrqq I  is based on numerous assumptions listed in Sections 2, 3, and 5. 
These assumptions can be expected to be valid in the case of a sparse turbid medium, thereby 
enabling radiation-budget and particle characterization applications. However, most of these 
assumptions become quite questionable in the case of densely packed scattering media. Al-
though the well-collimated radiometer would still perform a directional selection of macro-
scopic quasi-plane wavefronts, the relation of this measurement to ),( trS  remains uncertain, 
and the theoretical modeling of this measurement is likely to require a more complicated ap-
proach than solving an RTE.               
 In summary, our detailed analysis has revealed that the specific intensity is not what it is 
postulated to be in the phenomenological RTT, and, contrary to a widespread belief, a well-
collimated radiometer is not a radiance flux meter universally capable of yielding the time-
averaged local Poynting vector. It turns out, however, that in the case of electromagnetic scat-
tering by an ergodic sparse discrete random medium,  
● the well-collimated radiometer (or photopolarimeter) measures )ˆ,(~ qrI  (or ));ˆ,(~ qrI   
● )ˆ,(~ qrI  can be computed by solving the conventional RTE; and  
● the time-averaged local Poynting vector can be found by evaluating the integral in Eq. 

(24). 
These firmly established facts make the combination of the RTE and a well-collimated radi-
ometer/photopolarimeter useful in a wide range of applications.     
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