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Azimuthal asymmetry of the coherent backscattering cone: Theoretical results
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The azimuthal asymmetry of the polarized backscattering cone and the intimately related polarization op-
position effect (POE) are corollaries of the theory of coherent backscattering (CB) valid in the asymptotic limit
of very small particle packing density. In this paper we use numerically exact solutions of the Maxwell
equations to study the evolution of these and other manifestations of CB as the packing density in a multipar-
ticle group increases from zero to values typical of actual particle suspensions and particulate surfaces. Our
results reveal a remarkable robustness of virtually all effects predicted by the low-density concept of CB and
allow us to conclude that the azimuthal asymmetry and POE observed in the laboratory for densely packed

discrete random media are indeed caused by CB.
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I. INTRODUCTION

The azimuthal asymmetry of the polarized backscattering
cone is a direct corollary [1,2] of the microphysical theory of
coherent backscattering (CB) valid in the asymptotic limit of
infinitesimally small packing density of Rayleigh scatterers
[3.4]. In other words, it is assumed that the scattering par-
ticles are located in the far-field zones of each other, thereby
letting the electromagnetic field scattered by one particle and
exciting another particle to develop into an outgoing spheri-
cal wavelet [2,5-7]. This allows one to assign a phase to the
wavelet propagating from one particle to another and ulti-
mately to talk about constructive or destructive interference
of pairs of multiply-scattered wavelets arriving at a remote
observation point. However, the azimuthal asymmetry of the
CB cone has allegedly been observed in controlled labora-
tory experiments for aqueous suspensions of small latex par-
ticles with a substantial volume packing density of 9.6%
[8.9]. Furthermore, the inherently related polarization oppo-
sition effect (POE) in the form of a very narrow negative-
polarization minimum at near-backscattering angles caused
by unpolarized incident light [1,10] appears to have been
observed for densely packed particulate surfaces [11-13].
This obviously raises the question of whether the low-
packing-density concept of CB can still be valid in the case
of densely packed particles.

In several recent papers [14—16] we have used numeri-
cally exact solutions of the Maxwell equations to demon-
strate that many manifestations of CB do prevail in the case
of packing densities exceeding 20%. However, direct com-
puter modeling of the azimuthal asymmetry has proven to be
more involved and has not been reported before. The main
objective of this paper is to fill this gap. In fact, we will use
direct solutions of the Maxwell equations to reproduce all
previously anticipated observable manifestations of CB for
discrete random media and trace their evolution as the vol-
ume density increases from essentially zero to more than
45%.
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II. BASIC CONCEPTS

The natural way to introduce the mathematical concept of
multiple electromagnetic scattering in a many-particle group
is to derive the exact Foldy-Lax equations (FLEs) from the
macroscopic Maxwell equations [2,17,18] and then convert
the FLEs into an infinite order-of-scattering expansion
[2,15,19]. In the framework of this formalism, each particle
is uniquely and completely characterized by the respective
dyadic transition operator. In many cases of practical interest
the original FLEs are intractable and have to be simplified.
One of such simplifications is the far-field version of the
FLEs wherein it is assumed that each particle is located in
the far-field zones of all the other particles forming the group
[2,20]. Three fundamental ingredients of the far-field FLEs
are as follows:

(i) Each particle is now characterized by the scattering
dyadic rather than by the dyadic transition operator;

(ii) The partial field scattered by any particle i and excit-
ing any particle j evolves into an outgoing spherical wavelet
by the time it reaches particle j; and

(iii) Instead of the original system of volume integral
equations one deals with a system of algebraic equations.

Each partial spherical wavelet is a transverse electromag-
netic field and as such is characterized by a phase. This
means that one can consider a multiple-scattering wave tra-
jectory and evaluate its phase accumulated by the time it
reaches the observation point. Furthermore, one can evaluate
the result of the interference of two multiply-scattered waves
at the observation point depending on the phase difference
between the waves. This ultimately leads to the introduction
of the ladder and cyclical diagrams [21,22] and to the deri-
vation of the microphysical vector theories of radiative trans-
fer (RT) and CB [2,15,20].

The vector RT theory is essentially the result of summing
up self-interference results, wherein a multiply-scattered
wave interferes constructively with itself. The physical origin
of CB is illustrated schematically in Fig. 1(a) which shows a
layer of discrete random medium illuminated by a plane-
wave incident in the direction of the unit vector A"™ and
observed from a distant observation point. Consider the in-
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FIG. 1. (Color online) (a) Interference origin of CB. The two wave paths go through the same chain of n particles, but in opposite
directions. (b) Origin of the azimuthal asymmetry of the CB cone. Particles 1-4 lie in the horizontal plane normal to the scattering (vertical)
plane. (c) Scattering by a kR=60 spherical volume randomly filled with 800 small spheres having a size parameter of kr=2. (d) Polarization
of scattered light for unpolarized incident light (in percent) vs scattering angle for a homogeneous spherical particle with several {refractive

index, size parameter} combinations.

terference of a pair of conjugate scattered waves going
through the same chain of n particles but in opposite direc-
tions. If the observation (scattering) direction given by a unit
vector 1% is far from the exact backscattering direction
given by —i"™ then the effect of the interference averaged
over varying particle positions is zero. Consequently, if the
scattered signal is averaged over a substantial time interval
then the detector responds only to the incoherent (diffuse)
intensity described by the RT equation. However, if the
phase angle « (i.e., the angle between the vectors i** and
—1'™) is zero then the phase difference between the conju-
gate paths involving any chain of particles vanishes. This
means that the interference is always constructive, thereby
resulting in the effect of CB [23-28]. It is clear that the
above interference explanation of CB explicitly relies on as-
signing a phase to the field scattered by one particle [e.g.,
particle 1 in Fig. 1(a)] and exciting another particle (particle
2), which is possible in the framework of the far-field FLEs.

The most frequently studied manifestation of CB is a nar-
row cone of intensity centered at the exact backscattering
direction. If the incident wave is linearly polarized then the
cone can become azimuthally asymmetric, provided that the
particles forming the medium are Rayleigh scatterers
[2,9,29,30]. In other words, the angular width of the back-

scattering cone depends on the angle between the scattering
plane (i.e., the plane through the vectors A" and 1*?) and
the polarization direction of the incident wave. The origin of
this effect is explained in Fig. 1(b). Particles 1-4 lie in a
plane normal to the illumination direction. Particles 1 and 2
lie in the scattering plane, while the line through particles 3
and 4 is perpendicular to this plane. The normalized single-
particle Rayleigh-scattering matrix in the standard (I, Q, U,
and V) representation of polarization [2,31] is given by

Fr(©)
2(1+cos?®) —3sin> @ 0 0
-34in2®  I(1+cos’@®) 0 0
B 0 0 %cos () 0 '
0 0 0 2cos O

(1)

where O is the scattering angle (i.e., the angle between the
unit vectors 1™ and 1*?). Let us first assume that the inci-
dent wave is polarized linearly such that the electric field
vector vibrates in the scattering plane. This means that the

incidence Stokes column vector is given by
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Iinc
Qinc — Iinc
0
0

IinC —

, (2)

provided that the scattering plane serves as the reference for
defining the Stokes parameters. Equations (1) and (2) imply
that in the close vicinity of the backscattering direction, the
two double-scattering trajectories going through particles 1
and 2 do not contribute to the outgoing diffuse intensity since
for the first scattering event ®=90°. To compute the contri-
bution of the two double-scattering trajectories going
through particles 3 and 4, one needs first to rotate the refer-
ence plane by 90° around the incidence direction, thereby
left-multiplying the Stokes column vector I'" by the rotation
matrix

1 0 0 0
0 cos2yp —-sin27np O
L(#n) = . 3)
0 sin2np cos2np O
0 0 0 1

with 7=90°. The cumulative result is nonzero and propor-
tional to 2 X (6/4)2. The constructive interference of the cor-
responding waves in the case of the exact backscattering di-
rection doubles this result.

Let us now assume that the polarization of the incident
wave is such that the electric field vector vibrates perpen-
dicularly to the scattering plane,

Iinc
Qinc —_ Iinc

Iinc — . 4
0 (4)

0

Now the contribution of the two trajectories going through
particles 3 and 4 vanishes, whereas the two trajectories going
through particles 1 and 2 cause a nonzero contribution to the
outgoing diffuse intensity proportional to 2 X (6/4)2. Again,
the constructive interference of the corresponding waves
doubles the backscattered intensity.

A fundamental distinction between these two scenarios is
that the phase difference between the two conjugate trajecto-
ries going through particles 3 and 4 is always zero, while that
between the conjugate trajectories going through particles 1
and 2 is zero at a=0° but then oscillates rapidly with in-
creasing «. Therefore, on average, CB will enhance the con-
tribution of the former trajectories over a wider range of
phase angles than that of the latter trajectories. As a conse-
quence, the angular width of the CB cone will be larger in
the scattering plane parallel to the direction of the incident
polarization than in the scattering plane normal to this direc-
tion. This effect was called in [8,9] “spatial (or azimuthal)
anisotropy of the polarized cone of enhanced backscatter-
ing.
A closely related phenomenon is the POE observable with
unpolarized incident light. Indeed, an unpolarized beam of
light can be represented as an incoherent superposition of
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FIG. 2. Angular profiles of the enhancement factor (dotted
curve) and the degree of linear polarization (solid curve) for a semi-
infinite homogeneous medium composed of sparsely distributed
nonabsorbing Rayleigh scatterers and illuminated by normally inci-
dent unpolarized light (after [10]). The horizontal axis shows the
dimensionless angular parameter g=kl«, where k is the wave num-
ber, « is the phase angle, and [ is the transport mean-free path. The
enhancement factor is defined as the ratio of the total scattered
intensity to that of the diffuse background.

two linearly polarized beams with mutually perpendicular
polarization directions. The above explanation of the azi-
muthal anisotropy then implies that in the vicinity of the
backscattering direction, CB can be expected to favor scat-
tered light polarized in the scattering plane [6,32]. The result
[1,10] is a narrow negative minimum in the degree of linear
polarization of the scattered light defined as

Qsca
- 2 : (5)

P=

The angular profile of this feature is shown in Fig. 2 along
with that of the CB intensity peak. One can see that the
polarization minimum is highly asymmetric and occurs at a
phase angle comparable to the angular width of the coherent
intensity peak.

As we have already emphasized, the very concept of CB
is inherently based on the notion of wave phase and relies on
the asymptotic far-field assumption. However, the conditions
of far-field electromagnetic scattering are rather strict [2],
require the particulate medium to have a very low-packing
density, and are obviously violated in the case of densely
packed scattering media wherein particles can be closely
spaced and even in direct contact with each other. Yet many
laboratory measurements for densely packed particle suspen-
sions and particulate surfaces appear to show unique features
predicted by the low-density theory of CB. This applies, in
particular, to the observation of the spatial anisotropy of the
polarized intensity cone in [8,9] as well as to the observation
of the POE in [11-13]. It is, therefore, important to perform
numerically exact computations of electromagnetic scatter-
ing directly based on the Maxwell equations in order to
evaluate the range of applicability of the low-packing-
density concept of CB. Indeed, in this case the theory can be
used as an idealized “controlled laboratory experiment” in
which all microphysical properties of the random particulate
medium are known precisely and can be varied one at a time.
As a consequence, the optical effects of increasing packing
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FIG. 3. Co-polarized scattered intensities defined by Egs. (8) and (11) for a macroscopic spherical volume randomly filled with N
identical particles. The particle refractive index in the five upper diagrams is fixed at m=1.31, while the volume size parameter kR varies
from 20 to 60. The particle refractive index m in the five lower diagrams varies from 1.194 to 1.6, while the volume size parameter is fixed

at kR=40.
density can be clearly isolated and quantified.

III. METHODOLOGY

Our model of discrete random medium is a spherical vol-
ume randomly filled with N identical nonoverlapping spheri-
cal particles as shown in Fig. 1(c). The dimension of the
volume is specified in terms of its size parameter kR, where
k is the wave number in the empty space surrounding the
particles and R is the volume radius. The size of the particles
is specified in terms of their size parameter kr, where r is the
particle radius. We vary the volume size parameter from 20
to 60 and the number of particles from 1 to 900. The particle

refractive indices used in our computations are m=1.194
(representing latex in water), 1.31 (representing ice at visible
wavelengths), 1.4, 1.5, and 1.6 (representing different min-
eral substances).

To model statistical randomness of particle positions
within the spherical volume, we follow the approach adopted
in our previous publications [14—-16]. Specifically, we use
one N-particle group configured randomly according to the
procedure described in [33] and then average all optical ob-
servables over the uniform orientation distribution of this
configuration with respect to the laboratory reference frame.
This approach yields, in effect, an infinite continuous set of
random realizations of the scattering volume and allows us to
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FIG. 4. (Color online) Optical characteristics of a kR=20 (six upper diagrams) and 30 (six lower diagrams) scattering volume randomly
filled with a varying number N of kr=2 spherical particles. The particle refractive index is fixed at m=1.31. The packing density p varies
between 1.14% (N=10) and 41.2% (N=300) for kR=20 and between 3.6% (N=100) and 32.8% (N=900) for kR=30.

use the highly efficient orientation averaging technique af-
forded by the superposition T-matrix method [34]. The latter
represents a direct computer solver of the macroscopic Max-
well equations for a multisphere group [35,36]. Within the
range of numerical convergence, the corresponding 7-matrix
computer program generates results with a guaranteed num-
ber of accurate decimals, which makes it numerically exact.

The relative simplicity of our model is somewhat of a
concession to the current practical (but not inherent) limita-
tions of all computer solvers of the Maxwell equations, in-
cluding the superposition 7-matrix method. As constructed,
our model cannot be expected to replicate exactly the diverse
morphologies of particulate media encountered in laboratory
and natural settings. However, it appears to be sufficiently
representative to permit a robust and instructive analysis of

the effects of packing density on multiple electromagnetic
scattering by discrete random media.

It is assumed that the statistically random particulate vol-
ume is illuminated by a plane electromagnetic wave or a
parallel quasimonochromatic beam of light propagating in
the direction of the unit vector A" [Fig. 1(c)]. The observa-
tion point is located in the far-field zone of the entire volume
in the direction of the unit vector i**. Since the scattering
properties of the particulate volume are averaged over all
orientations of an N-particle group, they depend only on the
scattering angle O (or on the phase angle a=m—-0) provided
that the scattering plane is used for defining the Stokes pa-
rameters of the incident and scattered light. The far-field
transformation of the Stokes parameters upon the scattering
by the entire volume is then written in terms of the normal-
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FIG. 5. (Color online) Optical characteristics of a kR=40 (six upper diagrams) and 50 (six lower diagrams) scattering volume randomly
filled with a varying number N of kr=2 spherical particles. The particle refractive index is fixed at m=1.31. The packing density p varies
between 1.5% (N=100) and 11.7% (N=800) for kR=40 and between 1.45% (N=200) and 4.3% (N=600) for kR=>50.

ized Stokes-scattering matrix of the volume F(O)[14,31,36],

52 Iinc

o< |

e *F(0) Line

Vsca Vinc
a,(®) b(®) 0 0 e
by(®) a)(®) 0 0 o
0 0  a;(0) by(O) || U™
0 0  —by(0O) ay®) [| Vi

(6)

This scattering matrix is a particular case of the Mueller

transformation matrix [37]. The zeros denote scattering ma-
trix elements negligibly small (in the absolute sense) relative
to the other elements at the same scattering angle. The (1,1)
element a,(0) is called the phase function and is normalized
according to the integral condition

lfwd® sin Oa,(0) =1. (7)

2Jo

The elements of the scattering matrix can be used to de-
fine specific optical observables corresponding to different
types of polarization state of the incoming light. If the inci-
dent radiation is unpolarized, then the phase function char-
acterizes the angular distribution of the scattered intensity,
while the ratio —b;(0)/a;(®) gives the corresponding degree
of linear polarization.
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FIG. 6. (Color online) Optical characteristics of a kR=60 scattering volume randomly filled with a varying number N of kr=2 spherical
particles. The particle refractive index is fixed at m=1.31. The packing density p varies between 1.6% (N=400) and 3.3% (N=800).

If the incident radiation is polarized linearly in the scat-
tering plane according to Eq. (2) then the angular distribu-
tions of the co-polarized and cross-polarized scattered inten-
sities are given by

I = 5P+ Q%) o 3[a,(©) +2b,(0) + ax(©)]  (8)
and

= 3P = 0°%) = 1[ay(©) - ay(®)], 9)

respectively. The linear polarization ratio y;, is defined as the
ratio of the cross-polarized to co-polarized scattered intensi-
ties and is given by

L a(®)-a)
P T @(0) +26,(0) + a,(©)

(10)

If the incident radiation is polarized linearly in the direction
normal to the scattering plane according to Eq. (4) then the
angular distribution of the co-polarized scattered intensity is
given by
Iy = 5%+ Q")  5[ay(8) - 2b,(©) +ax(O)].
(11)
If the incident radiation is polarized circularly in the
counterclockwise direction when looking in the direction of
propagation,
Iinc
0
0 9
Vinc — Iinc

Iinc —

(12)

then the angular distributions of the same-helicity and
opposite-helicity scattered intensities are given by

L= 3(F 4+ V) o 3[a,(0) +a,(0)] (13)
and
Ithé(Isca_Vsca) e %[al(®)_a4(®)], (14)

respectively. The circular polarization ratio uc is defined as
the ratio of the same-helicity to the opposite-helicity scat-
tered intensities,
_ha_ai0) +ay©) s
P I a(®)-a,(@)”

The direct computer modeling of the azimuthal asymme-
try and the POE is not quite straightforward since the polar-
ization of initially unpolarized light singly scattered by a
particle often has a negative branch at small phase angles
[36]. This makes it problematic to reliably distinguish be-
tween the singly- and multiply-scattered negative polariza-
tion in a numerical solution of the Maxwell equations
[38,39]. Therefore, for each value of m studied, we have
selected a size parameter that ensures that the single-
scattering polarization has a wide horizontal “shelf” of near-
zero values at backscattering angles, thereby making any
multiple-scattering polarization contribution readily identifi-
able and quantifiable. The resulting kr values and the corre-
sponding single-scattering polarization curves are shown in
Fig. 1(d).

The results of our extensive computations are summarized
in Figs. 3-7. For reference, we also show the results com-
puted for a single isolated spherical particle. Depending on
kR, the number of constituent particles in Figs. 3—7 varies up
to 900. The corresponding values of the filling factor (or
particle packing density) depend on the way the latter is de-
fined. If one defines the filling factor p as the ratio of the
cumulative volume of the constituent particles to 37R*/4
then p varies from almost zero for N=1 up to 34.6% for the
volume with kR=40, N=400, and kr=3.81 (m=1.194).
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FIG. 7. (Color online) Scattering characteristics of a kR=40 volume randomly filled with N identical spherical particles. In the upper six
diagrams, N is fixed at 500, while the particle refractive index m varies from 1.31 to 1.6. The particle refractive index in the lower six
diagrams is fixed at m=1.194, while the number of particles N varies from 1 to 400. The packing density p varies between 7.3%
(m=1.31) and 4.1% (m=1.6) in the upper six diagrams and between 5.8% (N=50) and 46.7% (N=400) in the lower six diagrams.

However, this definition underestimates the actual packing
density inside the volume since, by design, the constituent
particles are not allowed to cross the bounding sphere with
the radius R, which creates artificial empty space at the
boundary of the volume [see Fig. 1(c)]. We have found that
the actual packing density p inside the volume defined as if
the volume were infinite varies up to 46.7% for the volume
with kR=40, N=400, and kr=3.81 (m=1.194); up to 41.2%
for the volume with kR=20, N=300, and kr=2 (m=1.31);
and up to 32.8% for the volume with kR=30, N=900, and
kr=2 (m=1.31).

IV. DISCUSSION

In full agreement with the prediction of the low-density
theory of CB, the numerically exact results depicted in Fig. 3

reveal a pronounced azimuthal asymmetry of the back-
scattering cone. Indeed, both co-polarized intensities show a
strong backscattering enhancement, but the width of the 7, ;|
backscattering peak is systematically smaller than that of the
1)) peak. The theoretically computed azimuthal asymmetry
survives packing densities p as high as 35% (and, in fact,
even 46.7%), thereby implying that the azimuthal asymmetry
observed for 9.6%-dense aqueous suspensions of small latex
particles [8,9] was indeed caused by CB.

The co-polarized intensity peaks measured in [8,9] were
significantly narrower than those in Fig. 3, which is not sur-
prising. Indeed, the interference base for a finite scattering
volume is controlled by its size parameter kR [40], whereas
that for an optically thick nonabsorbing or weakly absorbing
layer of discrete random medium is controlled by the product
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of the wave number and the transport mean-free path [5].
The values of this product for the particulate media studied
in [8,9] can be expected to be much greater than the kR
values used in our computations, thereby resulting in much
narrower intensity peaks.

Two expected manifestations of confined scattering geom-
etry [40] can be clearly seen in the upper five diagrams of
Fig. 3. First, the angular width of the co-polarized peaks
decreases as 1/kR, thereby testifying again to the interfer-
ence origin of the peaks. Second, the peaks are rounded at
©=180°, whereas those for optically thick nonabsorbing me-
dia should have a sharp triangular cusp [3,4,7] (cf. the dotted
curve in Fig. 2).

As anticipated, all —b;(0®)/a(®) curves for N> 1 in Figs.
4-7 reveal the POE. Four morphological traits of the polar-
ization minima testify to their interference multiple-
scattering origin. First, the minima are absent in the single-
particle curves but are present in the curves for N>1.
Second, the phase angle of minimal polarization is indepen-
dent of N, scales as 1/kR, and is quite comparable to the
angular width of the CB peak in the normalized phase func-
tion a,(0)/a,(180°) (see Figs. 4-6). Third, the phase angle
of minimal polarization is independent of the particle refrac-
tive index (Fig. 7). Fourthly, the polarization minima in Figs.
4-6 become increasingly asymmetric with increasing kR and
start to resemble closely the polarization curve in Fig. 2 pre-
dicted by the asymptotic low-density theory of CB (note that
polarization in Fig. 2 does not become positive at larger
phase angles because the theoretical computation in [4] as-
sumed a phase-angle-independent ladder component).

The effect of increasing the number of particles N in a
fixed scattering volume can be expected to be twofold. On
one hand, it facilitates multiple scattering and thereby should
enhance the classical manifestations of CB. On the other
hand, it leads to increased packing density and can eventu-
ally cause changes in the backscattering features not implied
by the low-packing-density theory of CB [39]. The polariza-
tion curves clearly demonstrate both tendencies. Indeed, the
depth of the POE minimum first increases as N increases
from 1 to a certain kR-dependent saturation value. However,
a further increase in N causes packing densities that are large
enough to distort noticeably the shape of the POE minimum
and decrease significantly the scattering angle of zero polar-
ization (the so-called inversion point). The results shown in
Fig. 4 suggest that the effects of packing density on the POE
become significant at p~30%.

The results of our numerically exact computations for
densely packed discrete random media indicate that the ex-
tremely narrow backscattering polarization minimum mea-
sured by Lyot eighty years ago for a particulate MgO surface
[11] represents indeed the first laboratory observation of the
POE caused by CB. Importantly, Lyot’s polarimetric results
have recently been reproduced and accompanied by intensity
measurements [13]. These new laboratory results have re-
vealed an equally narrow backscattering intensity peak, in
full agreement with our numerically exact theoretical results.

Figures 4—7 also reveal other important backscattering ef-
fects implied by the asymptotic theory of CB [2], all of them
becoming increasingly pronounced with growing N. In fact,
the peaks in the %(al—az), %(a1+a4), ML, and ue curves are
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even more indicative of their multiple-scattering origin than
that in the normalized scattered intensity a;(®)/a;(180°)
since they are absent completely for a single spherical par-
ticle. For a fixed kR, the angular widths of all these peaks are
approximately equal and are independent of the number of
particles and their refractive index. Furthermore, they scale
as 1/kR, thereby confirming their CB nature. Interestingly,
CB can cause either a backscattering enhancement or a back-
scattering “depression” in the linear polarization ratio w; de-
pending on particle microphysical properties and on the op-
tical thickness of the particulate medium (see Figs. 47 and
[2,14,16,41,42]). These results illustrate the limited validity
of the speculative belief existing in planetary remote sensing
that CB can cause only a backscattering minimum in g .

Our results show that the CB peaks in the
a,(®)/a,(180°), %(al—az), %(al+a4), and u; curves are re-
markably immune to the effects of packing density. How-
ever, the backscattering peak in the uc angular profile be-
comes noticeably suppressed when p exceeds ~30% (Fig.
4), thereby revealing the same susceptibility to large filling
factor values as the degree of linear polarization.

V. CONCLUDING REMARKS

The indisputable advantages of the direct computer mod-
eling of multiple scattering by discrete random media are
that it yields numerically exact results, does not involve the
simplifying assumption of a small packing density, and al-
lows one to vary all physical parameters of the scattering
medium one at a time [14-16,43,44]. As a result, one is able
to trace unambiguously the onset of multiple scattering as the
particle number deviates from one, the evolution of various
manifestations of CB with increasing N, and the eventual
onset of packing density effects distorting the angular pro-
files of the POE and circular polarization ratio predicted by
the low-density theory of CB. Based on our numerical data,
we can conclude that the azimuthal asymmetry of the polar-
ized backscattering cone and the POE observed in
[8,9,11-13] for densely packed particulate media are indeed
caused by CB. Another important implication is that CB is
the likely cause of the uniquely narrow photometric and po-
larization opposition effects observed simultaneously for a
class of high-albedo solar system bodies [45-51].

Our results pose an important question as to why the vari-
ous manifestations of CB are so remarkably immune to pack-
ing density effects. Although the definitive answer to this
question is not immediately obvious, one could speculate
that even in densely packed discrete random media, the par-
tial multiply-scattered waves [Fig. 1(a)] that involve widely
separated particles still provide a significant contribution to
the total scattered signal sufficient to make quite pronounced
the classical multiple-scattering and CB features.
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