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We describe an approximate method for the calculation of all characteristics of coherent

backscattering for a homogeneous, semi-infinite particulate medium. The method

allows one to transform a system of integral equations describing coherent back-

scattering exactly into a system of linear algebraic equations affording an efficient

numerical solution. Comparisons of approximate theoretical results with experimental

data as well as with benchmark numerical results for a medium composed of

nonabsorbing Rayleigh scatterers have shown that the method can be expected to give

a good accuracy.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Multiple scattering of electromagnetic waves by discrete random media is the focus of interest in various science and
engineering disciplines (see, e.g. [1–4] and references therein). At present, the theory of multiple scattering is adequately
developed only for the case of sparse media in which scatterers are located in the far-field zones of each other [1–4].
Scattering characteristics of such discrete random media are primarily determined by the so-called ladder and cyclical
diagrams [1–3]. The sum of all ladder diagrams characterizes diffuse multiple scattering and reduces to the vector radiative
transfer equation. Methods for the solution of this equation in the case of isotropic and homogeneous particulate media in
the form of a plane-parallel layer are now well developed, and computer codes for the calculation of the reflection matrix
are available on-line (e.g. [5]).

The sum of the cyclical diagrams characterizes coherent multiple scattering which leads to the effect of coherent
enhancement of backscattering (see, e.g. [2] and references therein). The calculation of characteristics of this effect
constitutes a very complicated problem even in the case of a homogeneous and isotropic particulate layer. This problem is
fully solved only for a semi-infinite medium composed of nonabsorbing Rayleigh scatterers provided that the incident
radiation propagates normally to the boundary of medium [2,6]. A rigorous equation describing coherent backscattering for
a plane-parallel medium consisting of arbitrary randomly oriented and randomly positioned scatterers has been obtained
in [7,8]. A qualitative analysis and an approximate numerical solution of this equation based on retaining only several
initial orders of scattering show a strong dependence of coherent backscattering on properties of the particles forming the
scattering medium [8–10]. This factor is important for the interpretation of remote-sensing data obtained for various
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ishkovets), mmishchenko@giss.nasa.gov (M.I. Mishchenko).

www.sciencedirect.com/science/journal/jqsrt
www.elsevier.com/locate/jqsrt
dx.doi.org/10.1016/j.jqsrt.2008.09.005
mailto:tishkovets@ri.kharkov.ua
mailto:mmishchenko@giss.nasa.gov


ARTICLE IN PRESS

V.P. Tishkovets, M.I. Mishchenko / Journal of Quantitative Spectroscopy & Radiative Transfer 110 (2009) 139–145140
objects of interest. The exact numerical solution of the equation for the coherent part of the scattered radiation represents
an extremely complicated problem. Therefore, numerical modeling of coherent backscattering is sometimes based on
Monte-Carlo methods [11]. Unfortunately, this requires considerable expenses of computer time and becomes
impracticable in the case of a medium composed of nonspherical particles.

In this paper we propose a simple approximate method for the numerical solution of the equation for the coherent part
of the reflected radiation in the case of a semi-infinite medium illuminated by external radiation propagating
perpendicularly to the boundary of the medium. Comparisons of approximate theoretical results with laboratory data as
well as with benchmark numerical results obtained for a medium composed of nonabsorbing Rayleigh scatterers will
demonstrate that the new approach is sufficiently accurate for many practical applications.
2. Basic definitions and equations

Let a homogeneous and isotropic semi-infinite particulate medium be illuminated by a plane electromagnetic wave
propagating perpendicularly to the boundary of the medium. In this case the coherent part of the reflected radiation is
described by the following matrix (see, in [8, Eqs. (46)–(49)]):

SðCÞpnmn ¼
2pu2

k4
0

X
qq1LM

ð�1ÞLz�ðq1mÞðqpÞ
LM

Z 1
0

bðzÞðqnÞðq1nÞ
LM expð��zÞdz, (1)

where the matrix SðCÞpnmn is defined per unit area of the boundary of the medium, p;n;m; n; q; q1 ¼ �1, k0 ¼ 2p=l, is the wave
number, l is the wavelength of the incident radiation, u is the particle number density, the asterisk denotes complex
conjugation,

� ¼ ImðZÞ 1�
1

cosW

� �
þ ið1þ cosWÞ

ReðZÞ � 1

cosW
þ 1

� �
, (2)

Z is the complex effective refractive index of the medium, and W is the scattering angle (Fig. 1). Eq. (1) assumes the use of
the circular-polarization representation of the Stokes column vector.

The coefficients bðzÞðqnÞðq1nÞ
LM are determined from the following system of equations:

bðzÞðpnÞðmnÞ
LM ¼ expð���zÞBðzÞðpnÞðmnÞ

LM þ
2pu
k3

0

X
qq1 lm

iM�mwðpqÞðmq1Þ

l

Z
bðyÞðqnÞðq1nÞ

lm

� expð�trÞdL
MN0
ðoÞdl

mN0
ðoÞJm�Mðr sinW sinoÞ sinododr. (3)
Fig. 1. Geometry of scattering by a semi-infinite medium. The incident light propagates normally to the boundary of the medium (z ¼ 0). The directions of

incidence and scattering are indicated by the vectors k0 and ksc , respectively.
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Here, t ¼ 2 ImðZÞ;N0 ¼ m� p; y ¼ z� r coso; dL
MNðoÞ is the Wigner d function [12], and JmðxÞ is the Bessel function. The

angle o (Fig. 1) is measured from the direction given by �k0. Furthermore,

BðzÞðpnÞðmnÞ
LM ¼

X
lm

zðpnÞðmnÞ
lm iM�m

Z
dL

MN0
ðoÞdl

mN0
ðoÞ expð�t1rÞJm�Mðr sinW sinoÞ sinododr, (4)

where t1 ¼ 2 ImðZÞ � �� coso. The coefficients wðpnÞðmnÞ
l and zðpnÞðmnÞ

lm are determined by the amplitude scattering matrix of the
particles forming the medium. In particular, for spherical particles they are given by [7,8]

wðpnÞðmnÞ
L1

¼
X

Ll

ð2Lþ 1Þð2lþ 1Þ

4
haðpnÞ

L a�ðmnÞl iCL1M0

L�nlnCL1N0

L�plm,

zðpnÞðmnÞ
L1M1

¼
X
Llm

ð2Lþ 1Þð2lþ 1Þ

4
haðpnÞ

L a�ðmnÞl ið�1ÞlþmCL1M1

L�nl�mCL1N0

L�plmdl
mnðWÞ. (5)

Here, aðpnÞ
L ¼ aL þ pnbL, aL;bL are the standard Lorenz–Mie coefficients [2], the angular brackets denote averaging over

particle properties, M0 ¼ n� n, and the C’s are Clebsch–Gordan coefficients [12].
The integrals in Eqs. (3) and (4) are defined by (see Fig. 1)

Z
¼

Z p=2

0
sinodo

Z z= coso

0
drþ

Z p

p=2
sinodo

Z 1
0

dr. (6)

The equations given above describe coherent backscattering for a semi-infinite, homogeneous and isotropic medium
composed of arbitrary scatterers. The meaning of these equations is as follows. The coefficients of Eq. (4) characterize the
interference of double scattered waves. They determine the solution of the system of Eq. (3) which yields the coefficients
bðzÞðpnÞðmnÞ

LM as functions of z. If one keeps in Eq. (3) only the first term, the matrix of Eq. (1) will describe coherent
backscattering in the double-scattering approximation [8,9]. The dependence of characteristics of coherent backscattering
on the properties of the medium in the framework of this approximation is discussed in [8–10]. Unfortunately, the
numerical solution of the system of Eq. (3) for all scattering orders represents a very complicated problem. In this paper we
consider an approximate solution of this system.

Let us denote

gðpnÞðmnÞ
LM ¼ 2 Reð�Þ

Z 1
0

bðzÞðpnÞðmnÞ
LM expð��zÞdz. (7)

Then the matrix equation (1) becomes

SðCÞpnmn ¼
pu2

k4
0 Reð�Þ

X
qq1LM

ð�1ÞLz�ðq1mÞðqpÞ
LM gðzÞðqnÞðq1nÞ

LM . (8)

To derive an equation for the determination of the coefficients in Eq. (7), we multiply the coefficients of Eq. (3) by
2 Reð�Þ expð��zÞ and integrate over z. The integration of the first term on the right-hand side of Eq. (3) yields the following
result (see [8–10]):

FðpnÞðmnÞ
LM ¼ 2 Reð�Þ

Z 1
0

BðzÞðpnÞðmnÞ
LM expð�2 Reð�ÞzÞdz

¼
X
lm

zðpnÞðmnÞ
lm

Z p

0
dL

MN0
ðoÞdl

mN0
ðoÞIjm�Mjðc; f Þ sinodo. (9)

Here,

Imðc; f Þ ¼ i�m cmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ f 2

q
f þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ f 2

q� �m ,

c ¼ sinW sino,

f ¼ 2 ImðZÞ þ j cosojImðZÞ 1�
1

cosW

� �
þ i cosoð1þ cosWÞ

ReðZÞ � 1

cosW
þ 1

� �
. (10)

The integration of the second term on the right-hand side of Eq. (3) corresponding to the radiation coming to the point z

‘‘from above’’ (the first term in Eq. (6); see Fig. 1), is not very complicated and yields

2 Reð�ÞiM�m
Z 1

0
expð��zÞdz

Z z= coso

0
bðyÞðqnÞðq1nÞ

lm expð�trÞJm�MðcrÞdr ¼ gðqnÞðq1nÞ
lm Ijm�Mjðc; f Þ. (11)

The main complexity lies in integrating the term corresponding to the radiation coming ‘‘from below’’ (the second term
in Eq. (6)). We will calculate it approximately, assuming that

bðyÞðqnÞðq1nÞ
lm ¼ bðzÞðqnÞðq1nÞ

lm expð�strj cosojÞ. (12)
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In other words, we assume that the coefficient bðyÞðqnÞðq1nÞ
lm at a point y can be approximately represented as the value of this

coefficient at the point z multiplied by expð�strj cosojÞ, where s is a parameter whose value can be determined from a
certain condition. In the theory of radiation transport in a semi-infinite atmosphere, a representation similar to Eq. (12) is
applied in order to describe the radiation field at large optical depths [13]. An equation for the calculation of s and an
expression for s as a function of particle characteristics can be found in [13]. However, this equation is valid only for very
large optical depths and cannot be directly used to determine s in our case since the characteristics of radiation reflected by
the medium are controlled primarily by the upper layers of the medium. Therefore, to determine s we will invoke a
condition which will be considered latter (see Eq. (18) and the explanation below).

The integration of the last term, upon taking full account of Eq. (12), gives the following expression:

2 Reð�ÞiM�m
Z 1

0
expð��zÞdz

Z 1
0

bðyÞðqpÞðq1nÞ
lm expð�trÞJm�MðcrÞdr ¼ gðqnÞðq1nÞ

lm Ijm�Mjðc; gÞ, (13)

where

g ¼ 2 ImðZÞð1þ sj cosojÞ. (14)

Thus, the approach considered leads to the following system of linear algebraic equations for the coefficients of Eq. (7):

gðpnÞðmnÞ
LM ¼ FðpnÞðmnÞ

LM þ
2pu
k3

0

X
qqqlm

wðpqÞðmq1Þ

l gðqnÞðq1nÞ
lm GLMlm, (15)

where

GLMlm ¼

Z p=2

0
IjM2 jðc; f Þd

L
MN0
ðoÞdl

mN0
ðoÞ sinodoþ

Z p

p=2
IjM2jðc; gÞd

L
MN0
ðoÞdl

mN0
ðoÞ sinodo

¼
XLþl

L2¼jL�lj

CL2M2

LMl�mCL20
LN0 l�N0

ð�1Þm
Z p=2

0
ðIjM2jðc; f Þ þ ð�1ÞL2þM2 IjM2jðc; gÞÞd

L2

M20ðoÞ sinodo (16)

and M2 ¼ M �m.
The solution of the system of Eq. (15) can be obtained, for example, by the method of iterations. The substitution of this

solution into Eq. (8) gives the circular-polarization matrix SðCÞpnnm. However, in practice the linear-polarization basis is often
used. The linear-polarization reflection matrix for the interference component RðCÞ has the form (see, for example [9])

RðCÞ11 ¼ U
X
pn

SðCÞpnpn; RðCÞ21 ¼ �U
X
pn

SðCÞpn�pn; RðCÞ22 ¼ U
X
pn

SðCÞpn�p�n,

RðCÞ33 ¼ U
X
pn

SðCÞpn�p�nip�n; RðCÞ44 ¼ U
X
pn

SðCÞpnpnip�n; RðCÞ43 ¼ �iU
X
pn

SðCÞpnp�nip�n, (17)

where U ¼ �p=2k2
0 cosW. It is assumed that the incident flux per unit area perpendicular to the incident beam is

proportional to p, and the Stokes parameters are defined as in [2].
In the case of exact backscattering (W ¼ 180�), the matrix RðCÞ is related to the incoherent reflection matrix RðLÞ via

simple formulas [2]. In particular, these formulas yield

2RðLÞ11 ¼ RðCÞ11 þ RðCÞ22 � RðCÞ33 þ RðCÞ44 þ R1
11 þ R1

22 � R1
33 þ R1

44, (18)

where R1 is the single-scattering reflection matrix. We will use the latter formula to determine s in Eq. (12).
Specifically, having solved the radiative transfer equation for given parameters of the medium, we determine the element
RðLÞ11. (In the case of a plane-parallel layer, computer codes for the numerical solution of the radiative transfer equation are
available on-line [5].) Then, when solving the system (15) with different values of the parameter s, we select the value such
that the equality (18) is satisfied.

Thus, in the framework of the above approach the contribution of the double-scattering component is calculated
exactly, while the contribution of the higher orders of scattering is calculated approximately. Below we will evaluate the
accuracy of this approximation using exact numerical results computed for a medium composed of nonabsorbing Rayleigh
scatterers [2,6] as well as experimental data published in [14].
3. Analysis of accuracy

We compare first the results of calculations for a semi-infinite medium composed of nonabsorbing Rayleigh scatterers.
Figs. 2a and b show the dependence of the enhancement factor

z̃Iðq̃Þ ¼
RðLÞ11ð0Þ þ RðCÞ11 ðq̃Þ

RðLÞ11ð0Þ
(19)
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Fig. 2. Enhancement factor z̃Iðq̃Þ and degree of linear polarization Pðq̃Þ as functions of the parameter q̃ for a semi-infinite medium composed of

nonabsorbing Rayleigh particles with x̃ ¼ 0:01 and m̃ ¼ 1:5þ i0. The solid curves depict the exact results of [2], whereas the dots show the result of using

approximate formulas.
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and the degree of linear polarization

Pðq̃Þ ¼
RðCÞ21 ðq̃Þ

RðLÞ11ð0Þ þ RðCÞ11 ðq̃Þ
(20)

on the parameter q̃ ¼ k0lexta, where a is the phase angle (Fig. 1) and

lext ¼
1

2k0 ImðZÞ
. (21)

We use the following expression for the effective refractive index of the medium [15]:

Z ¼ 1þ i
u

2k0
Sð0Þ. (22)

The forward-scattering amplitude is

Sð0Þ ¼
2p
k2

0

X
l

ð2lþ 1Þðal þ blÞ (23)

and ReðSð0ÞÞ ¼ Cext, where Cext is the extinction cross-section per particle. The microphysical parameters of the particles are
as follows: x̃ ¼ 0:01 and m̃ ¼ 1:5þ i0, where x̃ is the size parameter and m̃ is the refractive index. In Fig. 2, the solid curves
depict the numerically exact results [2,6], while the dots show the result of using the approximate equations derived above
along with the value s ¼ �0:21 determined from equality (18). This particular value implies that ðRðCÞ11 þ RðCÞ22 � RðCÞ33þ

RðCÞ44 þ R1
11 þ R1

22 � R1
33 þ R1

44Þ=2 ¼ 1:149, whereas the solution of the radiative transfer equation yields RðLÞ11 ¼ 1:147.
It should be noted that a negative value of s results in an increase in the coefficients of Eq. (12) with increasing depth z.

This behavior can be explained by the increasing radiation density in a nonabsorbing (or slightly absorbing) medium with
increasing optical depth [16].

Fig. 2 demonstrates a high accuracy of the approximation as applied to the medium composed of nonabsorbing Rayleigh
scatterers. We will now analyze the adequacy of the approximation as applied to a medium composed of wavelength-sized
scatterers. In Fig. 3 the experimental data (dots) show the measured co- and cross-polarized components of light scattered
by monodisperse spherical polystyrene particles suspended in water [14], i.e., RVV ¼ ðR11 þ R22 þ 2R12Þ=2 and
RVH ¼ ðR11 � R22Þ=2, respectively. Here, R ¼ RðLÞ þ RðCÞ is the reflection matrix. The diameter of the particles is 460 nm,
the wavelength of the incident light is 515 nm, and the volume concentration of the particles is x ¼ uV0 ¼ 0:1, where V0 is
the volume of a particle. The solid curves depict the results of theoretical computations. The refractive index of the
polystyrene particles is taken to be m̃ ¼ 1:59þ i0, while the value of the parameter s determined from Eq. (18) is �0.0796.
This value corresponds to ðRðCÞ11 þ RðCÞ22 � RðCÞ33 þ RðCÞ44 þ R1

11 þ R1
22 � R1

33 þ R1
44Þ=2 ¼ 1:173, whereas the respective solution of the

radiative transfer equation gives RðLÞ11 ¼ 1:176. The calculated co- and cross-polarized components are normalized to the
experimental data at a ¼ 0:6�. The effective refractive index of the medium is calculated using Eq. (23).

As seen from Fig. 3, the approximation provides a good accuracy also for the case of a medium composed of wavelength-
sized particles. The relative accuracy of the calculations is better than 10%, which should be acceptable in many
applications.
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Fig. 3. Comparison of experimental (dots; [14]) and theoretical (solid curves) results for a semi-infinite medium composed of monodisperse spherical

polystyrene particles suspended in water.
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4. Conclusion

The exact numerical solution of the equation for the coherent part of the scattered radiation constitutes an extremely
complicated problem. Therefore the effect of coherent backscattering enhancement as a function of particle microphysical
parameters has not been studied in requisite detail. We have proposed a simple approximate method for the calculation of
characteristics of coherent backscattering for a semi-infinite medium composed of arbitrary particles. The method is based
on the transformation of an exact system of integral equations into a system of linear algebraic equations which can be
solved readily. Comparisons of approximate theoretical results with benchmark numerical data computed for a medium
composed of nonabsorbing Rayleigh scatterers as well as with experimental data obtained for a medium composed of
wavelength-sized particles have shown that our approximation can be expected to give a good accuracy. Unfortunately, we
have no reliable experimental or theoretical results which would allow us to test the proposed technique for larger
particles and other values of the parameters characterizing the scattering medium. Note, however, that the comparison of
the experimental and theoretical results was made without invoking any free model parameters: only the actual,
independently measured physical parameters (particle size, refractive index, and concentration as well as the wavelength
of light) were used in the calculation.

The approximation can be easily extended to the case of oblique illumination by using the results of [8]. For media
consisting of nonspherical particles, a similar approach for the calculation of the coefficients zðpnÞðmnÞ

lm in Eq. (5) can be used
(see in [8, Eq. (52)]).

It should finally be noted that such a simple theoretical technique can be developed only for a semi-infinite medium. In
the case of a medium of finite optical depth the analytical integration in Eqs. (9), (11) and (13) results in very complex
formulae and does not yield a system of algebraic equations similar to that in Eq. (15).
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