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We use numerically exact computer simulations of multiple scattering in physically realistic models of
sparse discrete random media to quantify the errors of the scalar approximation (SA) in computations of
coherent backscattering (CB) assuming that the incident light is unpolarized. We show that while the SA errors
in the diffuse backscattered intensity are often small, those in the CB enhancement factor can reach 25% and
often exceed 20%. We attribute this to the fact that the computation of the enhancement factor involves all
diagonal elements of the diffuse backscattering Stokes matrix rather than only its (1, 1) element. Therefore, the
coherent enhancement of backscattered intensity appears to be the result of a complex interplay of various
polarization effects involved in the process of multiple scattering. Thus our numerical data make a strong case
against the use of the SA in theoretical computations of CB in the case of unpolarized incident light.
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I. INTRODUCTION

Although the (single) scattering of an electromagnetic
wave by a particle is expressly described by the vector mac-
roscopic Maxwell equations [1-4], the scalar approximation
(SA) is widely used in theoretical treatments of multiple
scattering by particulate media [5-24]. Usually this is done
when the incident light is unpolarized and only the intensity
of the scattered light is being analyzed. It is then expected
that the effects of polarization are minimal and can largely be
ignored. The case for using the SA appears to be especially
compelling when the scattered light is also unpolarized. This
can happen, for example, when the directions of incidence
and scattering are normal to the boundary of a plane-parallel
particulate medium.

The errors of the SA in radiative transfer computations of
diffuse multiple scattering by sparse discrete random media
have been studied comprehensively in [25-28]. However, a
thorough numerical analysis of the scalar treatment of the
effect of coherent backscattering (CB) [19,23] has never
been published and is, therefore, the main objective of this
paper.

The rigorous vector theory of multiple scattering in dis-
crete random media is extremely complicated [20,27,29-33]
and is not yet suitable for massive computations of the full
angular profile of CB for a representative variety of physi-
cally realistic models. Therefore, we will restrict this paper
to an analysis of SA errors in the amplitude of the CB inten-
sity peak. In this case, one can exploit the result of [34,35]
according to which all parameters of CB at the exact back-
scattering direction are rigorously expressed in terms of the
solution of the vector radiative transfer equation (VRTE)
provided that the scattering medium is composed of widely
separated, randomly positioned particles [27,36]. The VRTE
can be efficiently solved on computers with any desired de-
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gree of accuracy [27,37], thereby providing numerically ex-
act values of the amplitude of the CB intensity peak
[27,38-41].

II. BASIC FORMULAS

Let the discrete scattering medium be a homogeneous
semi-infinite slab composed of sparsely and randomly dis-
tributed particles. The slab is illuminated by a quasimono-
chromatic parallel beam of light of infinite lateral extent in-
cident in the direction of the unit vector ny={6,=7/2, ¢,
=0}, where 6, is the corresponding zenith angle measured
from the positive direction of the z axis and ¢ is the corre-
sponding azimuth angle measured from the positive direction
of the x axis in the clockwise sense when looking in the
positive direction of the z axis (Fig. 1). The Stokes column
vector has four Stokes parameters as its components: I
=[1 Q U V]", where T stands for “transposed.” Let R;, be the
4 X 4 Stokes reflection matrix for exactly the backscattering
direction f,={6=m— 6, ¢y=}. This matrix yields the spe-

FIG. 1. Right-handed laboratory coordinate system with origin
at the upper boundary of a semi-infinite particulate slab. The direc-
tion of light propagation is specified by a unit vector i={6, ¢}. The
slab is illuminated by a quasimonochromatic parallel beam of light
incident from above in the direction of the unit vector fy.
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cific Stokes column vector of the backscattered light as fol-
lows:

~ 1
I, = — Ry Iy, (1)
a

where wo=—cos 6, and I, is the Stokes column vector of the
incident beam. In what follows we will assume that the in-
cident light is unpolarized and that Iy=[7 0 0 0]. Under the
simplifying assumption of a macroscopically isotropic and
mirror-symmetric particulate medium, the backscattering
matrix R, has the following block-diagonal structure [27]:

Ry Rz O 0
| Roiz Ry O 0
1 0 0 Ry R
0 0

(2)
—Ryzq Ryu

In accordance with the microphysical theory of coherent
backscattering by sparse discrete random media [27], the
backscattering Stokes matrix Ry, can be decomposed as fol-
lows:

R, =R} +RY +R{, (3)

where R,l3 is the contribution of the first-order scattering, th\,/[
is the diffuse component consisting of all the ladder terms of
scattering orders =2, and RE is the cumulative contribution
of all the cyclical terms. The matrices R} and R} can be
found by solving the VRTE [27] using the numerically exact
technique outlined in [39,42]. Then the matrix RE can be
determined from the following exact relation derived in [35]:

C M

Rbll RblZ 0 0
M C

Rb12 Rb22 0 0

R = , 4
lo o &G, R @
0 0 -RY Riy
where
1
R§11=E(Rg411+RbM22_R%3+R1§14), (5)
1
Rip = E(Rtl\)/h + Ry, + Ry — Ry, (6)
1
c
Ry33= 5(— Ryl + Ry + Riss + Rbyy). (7)
1
R1§44 = E(RII;/IH - Ragz + th\éa + Rll;/zlm)- (8)

In the case of unpolarized incident light, the specific in-
tensity reflected by the slab in the exact backscattering direc-
tion is given by
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sz HoRp11 = Mo(Rll)n +RM1 +R§11)

1
= Mo Rllm+RM1+5(RM1+R%2_RI%3+RMM) .9

We can also write for the intensity of the surrounding diffuse
background

7giff: M()(Rllan +th\,411)~ (10)

Equations (9) and (10) can be used to define the enhance-
ment factor as the ratio of the total specific intensity reflected
in the exact backscattering direction to that of the diffuse
background,

1
1 M, LM M M M
Ryj+ Ry + Z(Rbll + Ry — Ryz3 + Ry

b
== 1 M
iff Ryy1 + Ry

EaY

M M M M
Ryi1 + Ry — Rozz + Rpuy

=1+
2(Ré”+R§I”)

(11)

Importantly, the above formula for the enhancement factor
corresponding to the case of unpolarized incident light in-
volves all four diagonal elements of the diffuse multiple-
scattering matrix R%’[ rather than only the (1, 1) element. This
makes Eq. (11) qualitatively different from the definition of
the enhancement factor in the scalar approximation,

RL+RY+R  RL+2RM RM

==l oM = ploM St v (12)
Ry, +Ry Ry + Ry Ry +Ry

where R}, R, and RS =R}" are the single-scattering, diffuse

multiple-scattering, and cyclical components of the scalar re-

flection coefficient. R} and R} can be found by solving the

scalar radiative transfer equation.

In the case of grazing incidence and/or a small single-
scattering albedo @, the main contribution to the backscat-
tered diffuse radiation comes from the singly scattered light.
This means that in the limit uy— 0 and/or with @ —0, R?A
decreases and ultimately vanishes in comparison with R,
which then implies that

lim {;=1lim {;=1. (13)
Ho—0 0—0
Analogously,
lim {=lim ¢=1. (14)
#o—0 0—0

III. NUMERICAL RESULTS

The results of our extensive numerical computations are
summarized in Figs. 2-5. The particles forming the semi-
infinite scattering medium are assumed to be polydisperse
spheres with a complex relative refractive index m=myg
+imy, where i=v-1. The dispersion of particle sizes is de-
scribed by the simple gamma distribution
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FIG. 2. (Color onlin

n(r) = const X p1-30)b exp(— Lb) b e (0,0.5). (15)
a

The effective radius and effective variance of the size distri-
bution are defined by

Feff = %J: drn(ryrar*=a (16)

and

1 o0
U= ——
et <G>r§fff0

respectively, where

drn(r)(r = reg)*mr = b, (17)

e) Enhancement factor {;.

(G)= f‘” drn(r)mr? (18)
0

is the average area of the geometrical projection per particle
[3]. The results are shown for w, € [0,1]; mg=1.2, 1.4, 1.6,
1.8, and 2; m;=0, 0.002, 0.01, and 0.3; v5=0.2 and x4
€ [0,30], where x.=27r /N is the dimensionless effective
size parameter and \ is the wavelength of light in the non-
absorbing medium surrounding the particles. The particle re-
fractive index and effective size parameter ranges covered
are quite broad and make our result representative of many
situations encountered in practice.

Figures 2 and 4 show, respectively, the “vector”” enhance-

ment factor {; and the “vector” diffuse specific intensity Tgiff.
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FIG. 3. (Color online) Percent error &;.

Figure 3 shows the percent error of the scalar approximation
in the enhancement factor defined as

5§=%x 100 % (19)

while Fig. 5 shows the corresponding percent error in the
diffuse specific intensity,

_ IRé11+R¥1—Ré—R§“I

&=
1 M
Ryi1 + Ry

X 100 % . (20)

IV. DISCUSSION AND CONCLUSIONS

The main traits of the enhancement factor /; (Fig. 2) and
the diffuse backscattered intensity 7;‘3“ (Fig. 4) for polydis-

perse spherical particles have been analyzed in [27,38,39]
and will not be discussed here. We only mention that the
results shown in Fig. 2 satisfy the limits of Eq. (13) (note
that the limit @— 0 can be physically realized only for ab-
sorbing Rayleigh scatterers with x.;— 0).

The results depicted in Fig. 5 confirm the main conclu-
sions of [25-28] and show that in the case of a moderately
absorbing discrete random medium, the errors of the scalar
approximation in the diffuse specific intensity are maximal
for Rayleigh or quasi-Rayleigh particles and rapidly decrease
with increasing x.g. Our computations (not shown here) also
indicate that the sign of the difference R} ,+RM,—Ri—RM is
always positive whenever & is greater than 1%, which means
that the scalar approximation tends to underestimate the
backscattered diffuse specific intensity. Figure 5 implies that
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FIG. 4. (Color online) Diffuse backscattered intensity Tgiff.

in most cases &; does not exceed a few percent, which makes
the scalar approximation quite applicable given the typical
accuracy of laboratory and remote-sensing photometers.

In contrast, the errors of the scalar approximation in the
CB enhancement factor can be quite significant (cf. [43]) and
often exceed 20% (Fig. 3). The errors are especially large for
nonabsorbing particles (the left-hand column of Fig. 3) and
can reach 25%. Increasing absorption suppresses multiple
scattering, thereby making both ¢; and ¢ closer to unity and
resulting in smaller &;. The same, obviously, happens in the
limit uy—0. Large nonabsorbing spherical particles with
mr=1.8 and 2 develop a strong backscattering peak in the
single-scattering phase function (see, e.g., Fig. 9.22 in [3]).

As a consequence, [ strongly increases, whereas {;, ¢, and
Oy decrease. The case of mg=1.6 in Fig. 3 appears to be

especially interesting in that the SA errors for m;=0 and
0.002 become size-parameter-independent for x> 10. Also
our computations show that in most cases the ratio ({;
—{)/{; is negative, with the exception of particles with my
=1.2 and 1.4, m;=0.3, and x.<3, for which it becomes
slightly positive. This means that the scalar approximation
tends to overestimate the enhancement factor.

The SA errors in the CB enhancement factor for the
case of unpolarized light are so large that one should exercise
extreme caution when using this approximation. We would
even submit that this approximation should not be used
at all. This conclusion should have significant practical rami-
fications, especially in passive planetary and terrestrial
remote sensing since the natural sunlight is essentially unpo-
larized.
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FIG. 5. (Color online) Percent error &;.

It is not immediately obvious to us why the SA errors in
the CB enhancement factor are so large whereas those in the
backscattered diffuse intensity are often much smaller.
Again, Eq. (11) shows that the rigorous computation of {;
involves all the diagonal elements of the matrix Raﬂ, thereby
making the CB enhancement factor the result of a complex
interplay of various polarization effects involved in the pro-
cess of multiple scattering. One instructive manifestation of
this complexity is the somewhat counterintuitive fact that {;
reaches maximal values for moderately absorbing (my
=0.01) rather than for nonabsorbing (m;=0) particles (Fig.
2).

Our final comment concerns potential packing density ef-
fects. The above numerical results have been obtained under
the assumption that the discrete random medium is sparse

and is composed of widely separated particles [27,34],
whereas many real media (such as particulate surfaces and
liquid particle suspensions) may consist of rather densely
packed scatterers. However, comparisons of low-density the-
oretical results and actual laboratory data [34] as well as
recent exact numerical computations of multiple scattering
by densely packed random particle groups [44] suggest that
the main conclusions of this paper should remain valid even
when the particle packing density deviates from zero signifi-
cantly.
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