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Abstract:  We use the numerically exact superposition T-matrix method to 
perform extensive computations of electromagnetic scattering by a 3D 
volume filled with randomly distributed wavelength-sized particles.  These 
computations are used to simulate and analyze the effect of randomness of 
particle positions as well as the onset and evolution of various multiple-
scattering effects with increasing number of particles in a statistically 
homogeneous volume of discrete random medium.  Our exact results 
illustrate and substantiate the methodology underlying the microphysical 
theories of radiative transfer and coherent backscattering.  Furthermore, we 
show that even in densely packed media, the light multiply scattered along 
strings of widely separated particles still provides a significant contribution 
to the total scattered signal and thereby makes quite pronounced the 
classical radiative transfer and coherent backscattering effects.   
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1. Introduction  

Multiple scattering of electromagnetic waves by macroscopic media composed of randomly 
positioned particles is a subject of great importance to many science and engineering 
disciplines.  Until quite recently, the only practical means of multiple-scattering computations 
for turbid and other particulate media have been various approximate approaches such as the 
effective field approximation, the quasi-crystalline approximation, the diffusion 
approximation, the radiative transfer theory (RTT), the phenomenological and microphysical 
theories of coherent backscattering (CB), and the phenomenological theory of strong 
localization [1–11].  However, the ever increasing power of scientific workstations and the 
availability of efficient numerical techniques have recently led to the emergence of an 
accurate quantitative approach to this complex problem based on direct computer solutions of 
the Maxwell equations [12–15].  For practical reasons, this approach cannot be used yet to 
simulate electromagnetic scattering by random media consisting of extremely large numbers 
of particles such as clouds, colloids, and powder surfaces.  However, it does provide the 
potential to model rather complex particulate systems and determine all quantitative scattering 
characteristics some of which may not be straightforward to measure accurately.  Therefore, 
this approach can be used to evaluate the predictions and conditions of applicability of an 
approximate theory.  

The objective of this paper is to use numerically exact solutions of the Maxwell equations 
in order to simulate the effect of randomness of particle positions and the onset and evolution 
of multiple-scattering effects with increasing number of particles randomly distributed 
throughout a finite scattering volume. This allows us to model and analyze the specific 
scattering regimes that are encountered in such disciplines as dynamic light scattering, RTT, 
and the theory of CB.   

All numerical results described in this paper have been obtained with the highly efficient 
superposition T-matrix method (STMM) [16, 17].  The corresponding computer codes are 
publicly available on the World Wide Web [18] and yield all scattering and absorption 
characteristics of a multi-sphere group in fixed and random orientations.  The codes have been 
tested thoroughly and give very accurate results within the domain of numerical convergence.  
Although STMM has been used extensively in computations for particle aggregates such as 
fractal clusters composed of touching soot or mineral monomers [19], the approach adopted 
for this paper is to model specifically light scattering by a statistically homogeneous volume 
of particulate medium.  Keeping the size of the volume fixed and gradually increasing the 
number of randomly distributed particles allows us to perform a systematic analysis of 
emerging and intensifying multiple-scattering effects and thereby illustrate and substantiate 
the specific assumptions used in the microphysical derivation of the radiative transfer 
equation (RTE) and in the microphysical theory of CB [11].     

In order to avoid redundancy and save space, we take advantage of the on-line availability 
of [17] and use exactly the same terminology and notation. 

2. Static and dynamic light scattering 

As shown in Fig. 1, we assume that a number of identical spherical particles are distributed 
randomly throughout a spherical volume V with a radius R much greater than the particle 
radius r.  We have fixed the size parameter of the particles at k1r = 4, where k1 is the wave 
number in the surrounding medium; whereas, the size parameter of the spherical volume has 
been fixed at k1R = 40.  The number of particles in the spherical volume N is varied between 1 
and 240, thereby yielding particle volume concentrations ranging from 0.1% to 24%.  Note 
that the size of the scattering volume and the maximal number of particles do not represent 
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inherent limitations of STMM but rather are constrained by the efficiency and memory size of 
the computer used. 

Solving the macroscopic Maxwell equations yields the electromagnetic field scattered by a 
stationary object [11, 17].  This is sufficient if one considers the scattering of monochromatic 
light (e.g., laser light) by a fixed object that does not move with respect to the source of light 
and the detector during the measurement.  However, to simulate measurements of light 
scattering by a rapidly changing object, one needs to solve the Maxwell equations repeatedly 
for a representative set of distinct object configurations.  This applies equally to a cloud or 
suspension of independently moving particles [11, 20] and to a bound multi-particle group 
(e.g., particulate surface) that moves as a whole with respect to the source of light and/or the 
detector [21].  

After the set of solutions of the Maxwell equations has been obtained, one has a choice of 
analyzing the statistical information content of differences in the individual solutions or 
applying an averaging procedure and thereby isolating the static component of the scattering 
pattern. These two approaches are traditionally referred to as dynamic and static light 
scattering [11, 20]. 
 To model numerically dynamic light scattering by a statistically homogeneous volume of 
random particulate medium, one needs a procedure that assigns coordinates to particles 
forming a specific realization of the random N-particle group filling the volume.  In our 
computations, we have used interchangeably two independent approaches.  The first one 
employs a random-number generator to assign sequentially 3D coordinates to each of the N 
particles in a trial-and-error fashion ensuring that the particles do not overlap.  We refer to this 
procedure as Random Coordinate Generator 1 (RCG-1).  The second one, hereinafter referred 
to as RCG-2, is a modification of the procedure described in [22] wherein the fractal 
dimension of the N-particle group is set at 3 and each newly added particle is not required to 
be in direct contact with at least one already existing particle. For example, the specific N = 1 
and 5 configurations in Fig. 1 were generated with RCG-1, whereas the N = 40 and 240 
configurations were generated with RCG-2.  

To simulate static light scattering, one needs an efficient way of averaging the computed 
scattering signal over very many different configurations of the N-particle group.  One can, of 
course, use RCG-1 or RCG-2 repeatedly to create a large number of different N-particle 
configurations and then average the corresponding T-matrix results numerically.  The 
approach adopted for this study has been to create only one random N-particle configuration 
and then to average over all possible orientations of this configuration with respect to the 
laboratory coordinate system.  This procedure yields in effect an infinite continuous set of 
random realizations of the N-particle group and takes full advantage of the highly efficient 
semi-analytical orientation averaging procedure afforded by STMM [16, 17].  

Although natural and man-made particles exhibit a virtually endless variety of refractive 
indices, we have made this research project practicable by selecting only two values. The first 
one, m = 1.32, is typical of both water and water ice at visible wavelengths, while the second 
one, m = 1.5, is representative of many minerals, glasses, and synthetic materials. 

3. Fixed configurations of randomly positioned particles:  speckle 

We assume that the large spherical volume V is illuminated by a plane electromagnetic wave 
or a parallel quasi-monochromatic beam of light propagating in the direction incn̂  (Fig. 2).  

N = 1 N = 5 N = 240

kR = 40
.

N = 40

V

 
Fig. 1.  Spherical scattering volume V filled with N randomly positioned particles. 
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The angular distribution and polarization state of the scattered light in the far-field zone of the 
entire scattering volume is fully described by the Stokes phase matrix Z.  The latter specifies 
the transformation of the Stokes parameters of the incident light into those of the light 
scattered in the observation direction scan̂  [17]: 
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The Stokes parameters of the incident and scattered light are defined with respect to the 
corresponding meridional planes. We always assume that the incidence direction coincides 
with the positive direction of the z-axis of the laboratory reference frame and that the 
meridional plane of the incidence direction coincides with the xz half-plane with .0≥x   
 Let us first assume that the incident light is circularly polarized in the counter-clockwise 
sense when viewed in the direction of propagation, which implies that incinc IV =  and 

.0incinc == UQ   Panels (a)–(e) of Fig. 3 show the far-field angular distributions of the total 
intensity, ,scaI  scattered in the backward hemisphere by the large spherical volume filled with 
N = 1, 5, 20, 40, and 80 particles having the same refractive index m = 1.32.  The individual 
particle positions are chosen randomly using RCG-1, but otherwise they are fixed.  The 
scattering pattern for N = 1 is rather smooth and perfectly azimuthally symmetric, as it should 
be for a single wavelength-sized spherical particle. However, the other panels demonstrate 
typical speckle patterns of increasing complexity.  

The interference origin of the speckle is illustrated in Fig. 4(a). It is known that a 
convenient exact means of describing electromagnetic scattering by an arbitrary multi-particle 
group is afforded by the so-called Foldy–Lax equations (FLEs) which allow the 
decomposition of the total scattered field into individual-particle contributions (see Section 
4.1 of [11]).  Furthermore, FLEs can be cast into an order-of-scattering form which allows the 
interpretation of the total scattered field as consisting of partial fields resulting from the 
incident wave being scattered along all possible particle sequences.  Two such sequences are 
shown in Fig. 4(a).  At an observation point located in the far-field zone of the entire 
scattering volume, the corresponding field contributions become outgoing spherical wavelets 
and interfere, the result of the interference being dependent on the phase difference between 
the wavelets.  If the interference is constructive (destructive) then it serves to increase 
(decrease) the total intensity scattered in the direction .ˆ scan   The total intensity is the sum of 
the interference results evaluated for all possible pairs of scattering sequences.  The typical 
angular width of each interference maximum or minimum is proportional to ,1 1 〉〈dk  where 

〉〈d  is the average distance between the particles; whereas, the number of these maxima and 

y

x

z

θ

inc
n̂

sca
n̂

ϕ

sca

sca

V

 
Fig. 2.  Electromagnetic scattering by a volume V of 
disretete random medium.  In this case the scattering 
volume is filled with 20 randomly positioned particles. 
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minima grows swiftly with increasing N.  These two factors explain the spotty appearance and 
the rapidly increasing complexity of the scattering patterns in panels 3(b)–3(e).        

Of course, the speckle pattern depends not only on the number of particles N but also on 
the specific way they are arranged with respect to the laboratory coordinate system.  This is 
illustrated by panels 3(e) and 3(f)  computed for two different, random 80-particle 
configurations shown in Fig. 5.  The equally strong dependence of the speckle pattern on the 
particle refractive index is demonstrated by panels 3(e) and 3(g) computed for the same 80-
particle configuration shown in Fig. 5(a) but for different refractive indices (1.32 and 1.5).     

 = 0o

120o

300o60o

240o

180

=

o

160oθ 120o 140o

ϕ

sca

sca

(a) (b) (c)

(e)(d)

(g) (h) (i)

(f)

 

Fig. 3.  Angular distribution of scattered intensity in the far-field zone of the spherical volume 
V filled with N particles.  (a) N = 1 and m = 1.32.  (b) N = 5 and m = 1.32.  (c) N = 20 and m = 
1.32.   (d) N = 40 and m = 1.32.  (e) N = 80 and m = 1.32.  (f )  N = 80 and m = 1.32.  (g) N = 
80 and m = 1.5.  (h) N = 80 and m = 1.32, random orientation.  (i) N = 80 and m = 1.5, random 
orientation.  The gray scale was individually adjusted in order to maximally reveal the details 
of each scattering pattern.  Panel (a) also shows the angular coordinates used for all panels. 
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Fig. 4.  Interference origin of (a) speckle and (b) coherent backscattering. 
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The interference explanation of the speckle given above is valid for any fixed particle 
configuration, either sparsely or densely packed.  Furthermore, FLEs are quite general and can 
be applied to any partitioning of a scattering object into components, which makes the 
interference explanation of the speckle valid for single-body scatterers as well as for multi-
particle configurations.  The universal nature of the speckle and its strong dependence on the 
refractive index and morphology of the scattering object explain the widespread use of 
speckle measurements for particle characterization (e.g., [23] and references therein).  
Statistical analyses of the speckle produced by dilute and optically thick particle suspensions 
form the basis of the disciplines called photon correlation spectroscopy and diffusing wave 
spectroscopy and are used to determine various particle characteristics such as velocity, size, 
and dispersity [6, 20].      

4. Static scattering 

Panels (e) and (f)  of Fig. 3 illustrate the range of variability of the speckle pattern that can be 
expected upon even minute changes in a random multi-particle configuration.  Obviously, 
neither the speckle pattern nor its variability are reproduced by the classical theories of 
radiative transfer and CB, which indicates that neither RTT nor the theory of CB describe the 
instantaneous state of electromagnetic radiation in a discrete random medium.  Instead, both 
theories fall in the realm of static scattering and describe the result of averaging the relevant 
optical observables over a significant period of time or, equivalently, over a significant range 
of random particle positions [11].   

To illustrate this fundamental point, panels (h) and (i) of Fig. 3 show the result of 
averaging the speckle pattern over the uniform orientation distribution of the 80-particle 
configuration depicted in Fig. 5(a) for m = 1.32 and m = 1.5, respectively.  As one would 
expect on the basis of RTT considerations, both intensity distributions are perfectly 
azimuthally symmetric and rather smooth.  The only notable feature common to both panels is 
the intensity peak centered at exactly the backscattering direction.  We demonstrate below that 
this feature is caused by the CB effect.       

5. Multiple scattering by a volume of discrete random medium 

One does not need to assume that multiple interparticle scattering is an actual physical 
phenomenon taking place when an electromagnetic wave is scattered by a multi-particle 
group.  Indeed, it follows from the Maxwell equations that at each moment the incident plane 
wave perceives the entire N-particle group as a single, albeit morphologically complex 
scatterer.  However, as we already demonstrated in Section 3, the concept of multiple 
scattering is a useful interpretation of the order-of-scattering representation of FLEs amenable 
to straightforward and easy visualization [11, 24].  This is especially true of the situations that 
allow the introduction of the concept of “independent scattering.”  The latter implies that all 
particles are widely separated and move randomly during the time of the measurement (see 
page 201 of [11]) and is a cornerstone of RTT and the theory of CB.   

In this section, we employ the concept of multiple scattering to interpret various effects of 
increasing the number of particles filling the scattering volume on the static scattering patterns 
obtained by averaging over all orientations of a random N-particle configuration with respect 
to the laboratory reference frame.  We assume for the sake of simplicity that 0sca =ϕ  and 

(a) (b)

 
Fig. 5.  Two random realizations of the 80-particle group 
created with (a) RCG-1 and (b) RCG-2. 
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characterize the scattering direction by the scattering angle .scaθΘ =   Then the scattering 
process can be described in terms of the so-called normalized Stokes scattering matrix [9, 11, 
17] given by 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

− )()(00
)()(00

00)()(
00)()(

42

23

21

11

ΘΘ
ΘΘ

ΘΘ
ΘΘ

ab
ba

ab
ba

.          (2) 

The specific block-diagonal structure of this matrix is confirmed by the T-matrix results and is 
largely caused by averaging over the uniform orientation distribution of a multi-particle group 
coupled with sufficient randomness of particle positions throughout the scattering volume 
afforded by both RCG-1 and RCG-2. All scattering matrix elements denoted in Eq. (2) by a 
zero have been found to be at least an order of magnitude smaller than the smallest non-zero 
element (in the absolute-value sense).  The (1,1) element, called the phase function, satisfies 
the following standard normalization condition: 

 .1)(sin d
2

1
1

  

0  

=∫ ΘΘΘ
π

a            (3) 

The results of our extensive T-matrix computations are summarized in Figs. 6 and 7.  The 
computer time required to compute all scattering characteristics of an N-particle group in 
random orientation ranged from ~12 min for N = 2 to ~210 h for N = 240 on a Power Mac G5 
workstation with 1GB of RAM and 2.50 GHz CPU speed.   

The phase function describes the angular distribution of the scattered intensity provided 
that the incident light is unpolarized.  The upper left-hand panels of Figs. 6 and 7 vividly 
demonstrate several fundamental consequences of increasing the number of particles in the 
scattering volume. First, the constructive interference of light singly scattered by the 
component particles in the exact forward direction causes a strong forward-scattering 
enhancement [17].  This feature is further detailed in Fig. 8(a) and is explained in Fig. 9.  
Indeed, the exact forward-scattering direction is unique in that the phase of the wavelets 
singly forward-scattered by all the particles in the volume is exactly the same irrespective of 
the specific particle positions (Fig. 9(a)).  In the absence of multiple scattering, the 
constructive interference of these wavelets would lead to an increase of the forward-scattering 
phase function )0(1 °a  by a factor of N.  This increase does occur for N = 2 and 5, but then 
slows down, and by the time N reaches the value 160 the )0(1 °a  value saturates.  This 
behavior can be interpreted in terms of a multiple-scattering effect whereby particle 3 (see the 
right-hand particle sequence in Fig. 9(b)) “shades” particle 2 by attenuating the incident field 
exciting particle 2.  This multiple-scattering effect leads to the exponential extinction law in 
the framework of RTT [11].  When essentially the entire cross section of the scattering 
volume is filled with particles, )0(1 °a  can be expected to nearly reach the value computed in 
the framework of the geometrical optics approximation for the entire scattering volume, 

,8002)()0( 2
1

GO
1 ==° Rka  and this indeed happens for 160≥N  for both m = 1.32 and m = 

1.5, Fig. 8(a).  Furthermore, the position of the first phase-function minimum also becomes N- 
and m-independent and very close to the diffraction prediction ≈5.5°.  The extinction 
efficiency factor for the entire volume also saturates at a value that is within 10% of the 
geometrical-optics limit of 2.  

The second consequence of increasing N is that the phase functions at scattering angles 
°≤≤° 17030 Θ  become progressively smooth and featureless.  This trait again can be 

interpreted in RTT terms as a typical result of increasing the amount of multiple scattering 
whereby light undergoing many scattering events forgets the initial incidence direction incn̂  
and is more likely to contribute equally to all exit directions scan̂  [11]. 

Third, the phase functions at scattering angles °>170Θ  begin to develop a backscattering 
enhancement which becomes quite pronounced for N  ≥ 160 (see Figs. 8(c) and 8(e)).  This 
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feature has a refractive-index-independent angular width indicative of an interference origin 
[2, 4] and, as we will further substantiate, is a typical manifestation of CB.  The standard 
explanation of the CB effect is illustrated by Fig. 4(b) and is as follows.  The conjugate 
wavelets scattered along the same string of n particles but in opposite directions interfere, the 
interference being constructive or destructive depending on the phase difference 

 ).ˆˆ()( scainc
11 nnrr +−= ⋅nkΔ           (4) 

If the observation direction scan̂  is far from the exact backscattering direction given by incn̂−  
then the average effect of interference of the conjugate wavelets scattered along various 
strings of particles is zero, owing to the randomness of the particle positions.  However, at 
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Fig. 6.  Elements of the normalized Stokes scattering matrix computed for the volume V of discrete 
random medium filled with N = 1, …, 240 particles having the same refractive index m = 1.32.   
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exactly the backscattering direction, ,ˆˆ incsca nn −=  the phase difference between the conjugate 
paths involving any string of particles is identically equal to zero, and the interference is 
always constructive and causes an intensity peak.  
 The ratio 12 aa  is identically equal to unity for scattering by a single sphere.  Therefore, 
the rapidly growing deviation of this ratio from 100% for 5≥N  can again be interpreted in 
RTT terms as a direct consequence of the strengthened depolarizing effect of multiple 
scattering (see Figs. 6 and 7). Similarly, )()( 43 ΘΘ aa ≡  and 1)180()180( 13 −=°° aa  for single 
scattering by a  spherically symmetric particle, but multiple scattering in particle groups with 

5≥N  causes an increasingly significant violation of these equalities.   
The degree of linear polarization of the scattered light for unpolarized incident light is 

given by the ratio .11 ab−   The corresponding panels in Figs. 6 and 7 show that the most 
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Fig. 7.  Elements of the normalized Stokes scattering matrix computed for the volume V of discrete 
random medium filled with N = 1, …, 160 particles having the same refractive index m = 1.5.   
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obvious effect of increasing N is to smooth out the oscillations in the polarization curve for 
the single wavelength-sized sphere and, on average, to make polarization more neutral.  The 
standard RTT explanation of this trait is that the main contribution to the second Stokes 
parameter, ,scaQ  comes from the first few orders of scattering; whereas, light scattered many 
times becomes largely unpolarized [9, 11].      
 If the incident light is polarized linearly in the scattering plane then incinc IQ =  and 

.0incinc == VU  The corresponding angular distributions of the co-polarized, 
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Fig. 8.  Elements of the normalized Stokes scattering matrix computed for the volume V of 
discrete random medium filled with a varying number of particles.  (a) m = 1.32 (solid curves) 
and 1.5 (dotted curve).  (b) – (d) m = 1.32.  (e) and (f ) m = 1.5.      
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  )],()(2)([)( 2112
1scasca

2
1 ΘΘΘ abaQI ++∝+          (5) 

and cross-polarized, 

    )],()([)( 212
1scasca

2
1 ΘΘ aaQI −∝−          (6) 

scattered intensities are shown in Figs. 10 and 11.  These figures also depict the same-helicity, 

    )],()([)( 412
1scasca

2
1 ΘΘ aaVI +∝+          (7)  

and opposite-helicity,  

    )],()([)( 412
1scasca

2
1 ΘΘ aaVI −∝−          (8)  

scattered intensities for the case of incident light polarized circularly in the counterclockwise 
direction when looking in the direction of propagation 0( incinc == UQ  and ).incinc IV =   All 
of these quantities for both refractive indices exhibit CB in the form of backscattering peaks 
growing in amplitude with N.   

By far the most unequivocal demonstration of the onset of CB is provided by the 
2)( 21 aa −  and 2)( 41 aa +  curves in Figs. 10 and 11.  Indeed, the corresponding single-

particle curves show no backscattering enhancement at all, so the backscattering peaks that 
develop with increasing N (and thus with increasing amount of multiple scattering) can be 
attributed unequivocally to CB.      

The amplitudes of all the backscattering intensity peaks in Figs. 8–10 (defined as the value 
at the exact backscattering direction divided by the nearby background value) never exceed 2 
but can approach 2 very closely.  The angular widths of these peaks are approximately the 
same, which also testifies to their common CB origin.  All the peaks are rounded and have a 
zero derivative at ,180°=Θ  as it should be for a finite scatterer [25].  Indeed, the triangular 
peak shape typical of semi-infinite nonabsorbing media [2, 4] is caused by extremely long 
scattering paths that provide interference contributions of infinitesimal angular width.  In our 
case, the interference contribution from any string of particles cannot be narrower than that 
from the strings with the first and the last particle separated by 2R (cf. Eq. (4)), and this 
contribution already has a rounded profile at .180°=Θ   

Figures 10 and 11 also depict the angular profiles of the so-called linear, ,Lμ  and circular, 
,Cμ  polarization ratios defined as the ratio of the cross-polarized to co-polarized scattered 

intensities and the ratio of the same-helicity to the opposite-helicity scattered intensities: 
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These quantities are used widely in radar and lidar remote sensing [11, 26–28] because they 
vanish at the exact backscattering direction if multiple scattering is insignificant and the 
scattering particles are spherically symmetric.  Our results demonstrate convincingly that 
multiple scattering causes an increasingly significant deviation of )180(L °μ  and )180(C °μ  
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Fig. 9.  Forward-scattering interference. 
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from zero, while CB causes pronounced backscattering peaks in the Lμ  and Cμ  angular 
profiles.  The circular polarization ratio is systematically greater than the linear polarization 
ratio, which is consistent with the results of CB computations for plane-parallel layers 
consisting of spherical particles [11]. 
 A legitimate question is whether our results based on averaging over orientations of only 
one random N-particle configuration are statistically representative of all possible realizations 
of the N-particle group.  In fact, this may not be the case for small values of N, as illustrated 
by Fig. 6.  Somewhat unexpectedly, the red curves corresponding to N = 2 deviate from the 
black single-particle curves more than the green curves corresponding to N = 5.  The 
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Fig. 10.  Polarization characteristics of backscattered light computed for the volume V of discrete 
random medium filled with N = 1, …, 240 particles having the same refractive index m = 1.32.   
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explanation of this seemingly strange result is that the particles forming the specific N = 5 
configuration are widely separated; whereas, the particles forming the N = 2 configuration are 
closely spaced and, thus, interact more efficiently.  However, such artifacts become less 
probable with increasing N so that different random realizations of a many-particle group can 
be expected to yield virtually the same results.  This is illustrated in Fig. 8(b) computed for N 
= 160 and m = 1.32.        

One manifestation of CB that is not seen in our T-matrix results is the polarization 
opposition effect (POE) [29].  This effect is observed for media composed of subwavelength-
sized particles and illuminated by unpolarized light; it has the same origin as the so-called 
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Fig. 11.  Polarization characteristics of backscattered light computed for the volume V of discrete 
random medium filled with N = 1, …, 160 particles having the same refractive index m = 1.5.   
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azimuthal asymmetry of the backscattering intensity peak in the case of linearly polarized 
incident light [30].  However, POE causes a much more subtle polarization feature than the 
backscattering enhancement of intensity [11, 31] and can be masked by the strong negative 
polarization branch at backscattering angles exhibited by the single-particle curves in Figs. 
8(d) and 8(f ).  Furthermore, it is still unclear whether POE can be produced by wavelength-
sized spherical particles like the ones used in our computations [32].  This uncertainty 
obviously calls for an extension of this study wherein particle size parameters other than 4 are 
considered.   

It is well known that nonspherical particles with large aspect ratios can preserve Rayleigh-
like polarization to significantly larger size parameters than volume-equivalent spherical 
particles [33, 34].  This factor may play a significant role in forming the POE observed for a 
number of solar system objects [35, 36] and makes desirable an extension of this study to 
multiple scattering by nonspherical particles (cf. [37, 38]). 

6. Discussion 

The numerically exact T-matrix computations analyzed in this paper provide a vivid 
demonstration of the onset and evolution of various multiple-scattering effects with increasing 
number of particles in a statistically homogeneous scattering volume.  These results illustrate 
and substantiate the methodology underlying the microphysical theories of radiative transfer 
and CB [11] and  should have significant implications for particle characterization and remote 
sensing research [6–11, 20, 37–42].  

It is important to recognize, however, that the very concept of wave phase applies only to 
transverse waves such as plane and spherical waves and that the concepts of reciprocity and 
ladder and cyclical diagrams invoked to explain CB and derive RTE are implicitly based on 
the assumption that each particle in a particle string (Fig. 4) is located in the far-field zones of 
the previous and the following particle [11].  In other words, one must assume that a wave 
scattered by a particle develops into a transverse spherical wave by the time it reaches another 
particle.  This assumption is unlikely to be problematic in the case of electromagnetic 
scattering by sparse discrete random media such as clouds and dilute particle suspensions.  
However, the stringent criteria of far-field scattering [11] can often be violated in the case of 
densely packed particles, thereby making more difficult and less definitive the accurate 
quantitative interpretation of laboratory and remote-sensing measurements of electromagnetic 
scattering by dense particle suspensions and particulate surfaces.  

It is encouraging in this regard that all manifestations of multiple scattering and CB 
analyzed in the preceding section are consistent, both qualitatively and semi-quantitatively, 
with those predicted by the asymptotic low-density microphysical theories of radiative 
transfer and CB [3, 11, 31].  This result indicates that even in densely packed particulate 
media, the wavelets multiply scattered along strings of widely separated particles still provide 
a significant contribution to the total scattered signal and make quite pronounced the classical 
multiple-scattering and CB effects.  There is no doubt, however, that definitive quantitative 
analyses of scattering measurements for densely packed particulate media need to be based on 
direct solutions of the Maxwell equations.  In particular, this study may indicate that the T-
matrix approach could eventually be used to model the onset of strong localization of 
electromagnetic waves which appears to be a rather elusive phenomenon [43–47].  As we 
have already indicated, the obvious advantage of an approach based on direct and numerically 
exact solutions of the Maxwell equations is that it can potentially be used to determine all 
quantitative scattering characteristics of a complex particulate system, including ones that 
may not be easy to observe. 
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