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Abstract

We consider the problem of backscattering of light by a layer of discrete random medium illuminated by an
obliquely incident plane electromagnetic wave. The multiply scattered re5ected radiation is assumed to consist
of incoherent and coherent parts, the coherent part being caused by the interference of
multiply scattered waves. Formulas describing the characteristics of the re5ected radiation are derived
assuming that the scattering particles are spherical. The formula for the incoherent contribution reproduces
the standard vector radiative transfer equation. The interference contribution is expressed in terms of a
system of Fredholm integral equations with kernels containing Bessel functions. The special case of the
backscattering direction is considered in detail. It is shown that the angular width of the backscattering in-
terference peak depends on the polar angle of the incident wave and on the azimuth angle of the re5ection
direction.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The phenomenon of electromagnetic scattering is widely used in remote sensing and laboratory
characterization of various objects [1–3]. Calculations of various characteristics of radiation scattered
by di?erent discrete random media is important for atmospheric optics, astrophysics, biophysics, and
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many other areas of science and engineering. More often than not, multiple-scattering e?ects on the
characteristics of the measured detector response must be taken into account. Multiple scattering of
light by closely packed medium is a complicated problem due to potentially signiFcant near-Feld
e?ects. Indeed, the scattered electromagnetic wave in the close vicinity of the scatterer is strongly
inhomogeneous, which means that in the spherical coordinate system associated with the particle, the
radial components of the electric and magnetic Feld vectors can be comparable to, if not exceeding
the respective tangential components [4,5]. The analysis of scattering of such an inhomogeneous
wave by an adjacent particle requires more sophisticated techniques than those used to address the
problem of scattering of a plane electromagnetic wave.
The problem becomes simpler for sparse media in which waves propagating from one scatter

to another are spherical, thereby making applicable the so-called vector radiative transfer equation
[1,2,6]. However, this equation does not describe explicitly interference e?ects such as the e?ect of
coherent backscattering enhancement, which manifests itself as a sharp peak of intensity centered at
exactly the backscattering direction [7]. This e?ect is also known as weak photon localization or the
coherent opposition a?ect. In the case of unpolarized incident light, it can be accompanied by the
so-called opposition polarization e?ect in the form of a region of negative linear polarization within
a narrow range of backscattering angles [8]. Both e?ects are the result of constructive interference
of multiply scattered waves propagating inside the medium along certain direct and reverse
trajectories [7].
The coherent backscattering e?ect was Frst predicted theoretically in studies of backscattering of

electromagnetic waves by turbulent plasmas [9]. Then it has been analyzed in numerous experi-
mental and theoretical studies (see, e.g., [7,10,11] and references therein). A strong dependence of
the angular width of the interference peak on the particle number density has been demonstrated
both experimentally and theoretically [12–14]. However, only recently rigorous formulas describ-
ing the opposition e?ects have been derived in the particular case of normal incidence of light on
a plane-parallel layer of discrete random medium. SpeciFcally, a complete analytical solution for
a semi-inFnite medium Flled with nonabsorbing, randomly positioned Rayleigh scatterers has been
obtained in [15–17]. The rigorous approach was later extended to plane-parallel layers composed
of randomly positioned and randomly oriented particles with arbitrary sizes, shapes, and refractive
indices [18]. Numerical results for semi-inFnite scattering media obtained in the double-scattering
approximation showed a considerable dependence of the characteristics of the opposition e?ects on
the particle microphysical properties [11,19,20].
In this paper, we generalize the method developed in [18] in order to derive equations describ-

ing the re5ection of light by a layer of discrete random medium in the general case of oblique
illumination. As in [7], the radiation re5ected by the medium is decomposed into incoherent and
coherent contributions. We show that the equation describing the incoherent contribution exactly re-
produces the vector radiative transfer equation. The equation for the coherent contribution describes
the interference of multiply scattered waves and has a more complex form than the radiative transfer
equation. A qualitative analysis of this equation shows that the interference e?ects are apparent in a
narrow region of scattering angles in the vicinity of the exact backscattering direction. The ampli-
tude and width of the backscattering interference peak depend on the polar angle of the incidence
direction. SpeciFcally, the amplitude decreases and the width increases with increasing polar angle.
Furthermore, there is signiFcant dependence on the azimuth angle of the re5ection direction resulting
in an asymmetry of the opposition peak.
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2. Basic equations

In this section, we introduce the necessary deFnitions and notation. Consider a discrete random
medium in the form of a homogeneous and isotropic layer consisting of randomly positioned spherical
particles and denote by Z0 its geometrical thickness. The scattering geometry is speciFed using
the coordinate system shown in Fig. 1. An incident plane wave propagates along the zin-axis of a
coordinate system k̂0. Throughout the paper, bold letters with carets n̂i denote right-handed coordinate
systems (xi; yi; zi) with the zi-axis along the vectors ni, whereas symbols −n̂i denote coordinate
systems with axis (xi;−yi;−zi). Coordinates of scatterers are determined in the laboratory coordinate
system n̂0 whose x0y0 plane coincides with the upper boundary of the medium. The scattered wave
propagates along the zsc-axis of the coordinate system k̂sc. The rotation from n̂0 to k̂0 is determined
by the Euler angles ’0; #0; 	0. The Euler angles ’; #; 	 specify the rotation from n̂0 to k̂sc. Finally,
the rotation from k̂0 to k̂sc is speciFed by the Euler angles ’sc; #sc; 	sc (Fig. 1).
It is convenient to describe wave scattering by using the circular-polarization basis (the so-called

CP-representation), in which the incident wave can be written as [21]

E0 = en(k̂0) exp(ik0r); (1)

where n = ±1, k0 is the wave vector (k0 = 2�=�; � is the wavelength), and en(k̂0) is a covariant
spherical basis vector [22] in the coordinate system k̂0. When n=1, the direction of rotation of the
electric vector of wave (1) corresponds to the clockwise direction when looking in the direction of
the vector k0.

Fig. 1. Scattering geometry.
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The linearity of the Maxwell equations allows one to deFne the amplitude scattering matrix of
the entire layer Tpn as(

E1

E−1

)
=
exp(ik0r)
−ik0r

(
T11 T1−1

T−11 T−1−1

)(
E01

E0−1

)
; (2)

where r is the distance from the origin of the coordinate system n̂0 to the observation point, and
then express it in the form

Tpn =
∑
j

t( j)pn : (3)

Here t( j)pn is the 2 × 2 amplitude scattering matrix of the jth scatter. The 4 × 4 scattering matrix
Spn��, which transforms the Stokes parameters of the incident radiation into those of the scattered
radiation, is deFned by the following expression:

Spn�� =

〈∑
j

t( j)pn t
∗( j)
��

〉
+

〈∑
j;� �=j

t( j)pn t
∗(�)
��

〉
; (4)

where the angular brackets denote ensemble averaging, the indices take on the values n; p; �; �=±1,
and the asterisk denotes complex conjugation. The Frst term on the right-hand side of this equation
describes the incoherent part of the scattered radiation and the fraction of the coherent part caused
by the interference of waves propagating along looped trajectories [18]. The second term describes
the remainder of the coherent part.
We use the standard theory of light scattering by a system of spherical particles [1] to derive the

requisite equations. In this case, the Feld scattered by the jth particle can be expressed in the form
[1,4,18]

E( j) =
exp(ik0rj)
−ik0rj

∑
LMp

2L+ 1
2

A( jpn)
LM D∗L

Mp(n̂0; k̂sc)ep(k̂sc): (5)

Here rj is the distance from particle j to the observation point, ksc is the wave vector in the scattering
direction (ksc = 2�=�), ep(k̂sc) is a covariant spherical basis vector in the coordinate system k̂sc, and
the DL

Mp(n̂0; k̂sc) = DL
Mp(’; #; 	) = exp(−iM’)dL

Mp(#) exp(−ip	) are Wigner D functions [22]. It is
assumed here that the scattering directions are identical for all particles of the medium.
In contrast to the traditional representation of the scattered Feld using the helicity unit vector basis

[22] deFned with respect to the scattering plane, we express Feld (5) using the spherical unit vector
basis deFned with respect to the coordinate system k̂sc. This approach is more convenient when one
has to take into account the transformation of the electric Feld vector components upon rotations of
a reference frame.
The coeKcients A( jpn)

LM are determined by the system of equations [1,4,18]

A( jpn)
LM = a( jpn)

L exp(ik0Rj)DL
Mn(n̂0; k̂0) +

∑
q

a( jpn)
L

∑
s �=j

∑
lm

A(sqn)lm H (q)
LMlm(n̂0; r̂sj); (6)
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where a( jpn)
L = a( j)L + pnb( j)L , a

( j)
L and b( j)L are the Lorenz–Mie coeKcients [1–3], q =±1, Rj is the

radius-vector of particle j (Fig. 1), the H (q)
LMlm(n̂0; r̂sj; ) are coeKcients of the addition theorem for

the vector Helmholtz harmonics [23,24], and r̂sj is the coordinate system with the zsj axis along the
vector rsj. When the distances between particles are suKciently large, the wave propagating from
one particle to another is spherical, and these coeKcients can be written in the form [18]

H (q)
LMlm(n̂0; r̂sj) =

2l+ 1
2

exp(ik0rjs)
−ik0rjs DL

Mq(n̂0; r̂sj)D
∗l
mq(n̂0; r̂sj): (7)

Eqs. (5)–(7) are applicable when the number of particles Ñ is Fnite. The calculation of the matrix
Spn�� in the limit Ñ → ∞ is greatly simpliFed when the discrete random medium is characterized
by a complex e?ective refractive index '=Re(')+ i Im('). Following [1,3,21], the latter is given by
'=1+i2�(〈t( j)pn ()sc=0)〉*pn=k30 , where ( is the particle number density and the angular brackets denote
averaging over particle microphysical characteristics. This expression for ' can be obtained directly
from system (6) upon taking the limit Ñ → ∞ or by using the general approach outlined in [6].
The e?ective extinction coeKcient of the medium is given by 2 Im(')k0 = (〈C( j)

ext 〉, where C( j)
ext is the

extinction cross section of particle j [1–3]. A related quantity widely used in the multiple-scattering
theory if the so-called photon transport mean free path ltr [14]. This quantity takes into account the
potential asymmetry of the single-scattering phase function and allows one to reconcile the results of
theoretical calculations of the interference e?ects performed for Rayleigh scatterers with experimental
data obtained for wavelength-sized particles [17]. In this paper the value of ' is assumed to be known.
Then the exponential factor in Eq. (7) depends on k0', and the exponents in Eqs. (5) and (6) must
be replaced according to

k0rj ⇒ k0r − KRj;

k0Rj ⇒ K0Rj; (8)

where

K = ksc + k0n0
'− 1
cos#

;

K0 = k0 + k0n0
'− 1
cos#0

(9)

and |n0|= 1.
In this paper, we use the description of radiation adopted in the radiative transfer theory. SpeciF-

cally, the characteristics of the incident wave are deFned with respect to the meridional plane through
the vectors k0 and n0, whereas the characteristics of the scattered wave are deFned with respect to
the meridional plane through the vectors ksc and n0.
To determine the matrix t( j)pn , let us introduce the basis vectors e⊥ and e‖ with respect to the

plane through the vectors n0 and k0 and analogous vectors with respect to the plane through the
vectors n0 and ksc. The vectors e⊥ are perpendicular to their respective reference planes, whereas
the vectors e‖ are parallel to them. Transforming these vectors into spherical basis vectors yields the
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contravariant spherical basis vectors [22] en(k̂0) end ep(k̂sc), which are rotated with respect to the
vectors en(k̂0) and ep(k̂sc) through angles −	0 and −	, respectively. We, therefore, obtain from Eqs.
(2) and (5)

t( j)pn = exp(−iKRj + in	0 − ip	)
∑
LM

2L+ 1
2

A( jpn)
LM D∗L

Mp(n̂0; k̂sc): (10)

The solution of the system of equations (6) can be obtained by iteration. This representation of the
solution corresponds to the expansion of the coeKcients A( jpn)

LM in a multiple-scattering series. The
Frst two terms of this series are

A( jpn)
LM = a( jpn)

L DL
Mn(n̂0; k̂0) exp(iK0Rj)

+
∑
q

a( jpq)
L

∑
lms �=j

a(sqn)l H (q)
LMlm(n̂0; r̂sj) exp(iK0Rs)Dl

mn(n̂0; k̂0) + · · · ; (11)

where the Frst term corresponds to the single scattering by particle j, the second one corresponds
to the second-order scattering Frst by particle s and then by particle j, and so on.
Matrix (10) has a very important property. SpeciFcally, let us substitute the second term on the

right-hand side of Eq. (11) into Eq. (10) and denote the result by t( j)pn (k̂0; k̂sc;−K; k). The latter can
be transformed by using the well-known properties of the Wigner D function (see Appendix A) as
follows:

t( j)pn (k̂0; k̂sc;−K;K0) = exp(−iKRj + in	0 − ip	)
∑

LMqlm

(2L+ 1)
2

a( jpq)
L a(�qn)l

×D∗L
Mp(n̂0; k̂sc) exp(iK0R�)H

(q)
LMlm(n̂0; r̂�j)D

l
mn(n̂0; k̂0)

= exp [iK0R� − in(�− 	0) + ip(�− 	)]
∑

LMqlm

(2l+ 1)
2

a(�qn)l a( jpq)
L

×D∗l
mn(n̂0;−k̂0) exp(−iKRj)H

(q)
lmLM (n̂0; r̂j�)D

L
Mp(n̂0;−k̂sc)

= t(�)np (−k̂sc;−k̂0;K0;−K): (12)

It is now seen that the amplitude scattering matrix corresponding to the wave incident along the
vector k0 and scattered Frst by particle � and then by particle j in the direction ksc is equal to
the transpose of the matrix corresponding to the wave incident in the direction −ksc and scattered
Frst by particle j and then by particle � in the direction −k0. Analogous equalities can be derived
for any order of scattering. They represent one of the various forms of the fundamental reciprocity
principle [21,25].

3. Incoherent scattering

It is well known [7] that the incoherent part of the re5ected radiation corresponds to the sum of the
ladder diagrams in the diagrammatic representation of the Bethe–Salpeter equation. The summation
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of these diagrams in the case of a sparse medium leads to the vector radiative transfer equation
[6,7]. To derive this equation we calculate the products

t( j)pn t
∗( j)
�� =exp[iRj(K∗ − K)] exp[− i	0(�− n) + i	(� − p)]

×
∑
LMlm

(2L+ 1)(2l+ 1)
4

A( jpn)
LM A∗( j��)

lm D∗L
Mp(n̂0; k̂sc)D

l
m�(n̂0; k̂sc) (13)

and retain only the combinations A( jpn)
LM A∗( j��)

lm corresponding to incoherent scattering. To do that, we
write series (11) for the incident wave with polarization n and the scattered wave with polarization
p. We then write the same series for the incident wave with polarization � and the scattered wave
with polarization �. Calculating the complex conjugate of the second series, we multiply both series
term by term for every order of scattering. Since the particles are randomly positioned, a major
contribution to these products give the scattering paths for which both waves are Frst scattered by
a certain scatterer, propagate along the same trajectory, and then are scattered by particle j. This
scenario corresponds to incoherent scattering. The sum of these products is equivalent to the solution
of the following system of equations:

A( jpn)
LM A∗( j��)

L1M1
= a( jpn)

L a∗( j��)L1 DL
Mn(n̂0; k̂0)D

∗L1
M1�(n̂0; k̂0) exp[iRj(K0 − K∗

0)]

+
∑
qq1

a( jpq)
L a∗( j�q1)L1

∑
s �=j

∑
lml1m1

A(sqn)lm A∗(sq1�)
l1m1 H (q)

LMlm(n̂0; r̂sj)H
∗(q1)
L1M1l1m1(n̂0; r̂sj): (14)

We then perform ensemble averaging as described in [18]. Let us denote

,( j)(pn)(��)
L1 =

∑
Ll

(2L+ 1)(2l+ 1)
4

a( jpn)
L a∗( j��)l CL1M0

L−nl�C
L1N0
L−pl�;

,(pn)(��)
L = 〈,( j)(pn)(��)

L 〉; (15)

where the Cs are Clebsch–Gordan coeKcients [22], M0 = � − n, N0 = � − p, and the angular
brackets denote averaging over the particle microphysical characteristics. The coeKcients ,(j)(pn)(��)

L
are coeKcients of the expansion of the scattering matrix components for isolated particle j in the
Wigner D functions:

t̂( j)pn t̂
( j)
�� =

∑
L

,(j)(pn)(��)
L dL

M0N0(#): (16)

Here t̂( j)qq1 is the amplitude scattering matrix of particle j. Expanding the products of the Wigner D
functions in Eqs. (13) and (14) in Clebsch–Gordan series [22] (see Appendix A) and averaging
over the ensemble leads to the following equations for the incoherent part of the re5ected radiation:

S(nc)pn�� =
(
k0

∑
LM

DL
MN0(’− ’0; #; 0)

∫ k0Z0

0
.(z)(pn)(��)
LM exp

( /z
cos#

)
dz; (17)
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where the matrix S(nc)pn�� is deFned per unit area of the upper boundary of the medium. The coeKcients
.(z)(pn)(��)
LM are determined from the system of equations

.(z)(pn)(��)
LM = ,(pn)(��)

L dL
MM0

(#0) exp
(
− /z
cos#0

)

+
2�(
k30

∑
qq1

,(pq)(�q1)
L

∫ ∑
l

.(y)(qn)(q1�)lM exp(−/0)dL
MN (!)d

l
MN (!) sin! d! d0; (18)

where 0; ! are the polar coordinates of the integration point with respect to the point z, the angle
! (06!6 �) is measured from the direction −n0 (see Fig. 1), /x=2 Im(')x, M0=�−n, N0=�−p,
N = q1− q, and y= z− 0 cos!. The upper integration limit over 0 is equal to z=cos! for !¡�=2
and to (z − Z0k0)=cos! for !¿�=2.
Eqs. (17) and (18) are equivalent to the vector radiative transfer equation in the CP-representation.

In the case of scalar waves, an analogous equation has been obtained in [26].
Introducing the notation

/0 = 2k0Z0 Im(');

40 =
�(

k30 Im(')
;

X (pn)(��)
M (#; #0) =

∞∑
L=|M |

,(pn)(��)
L dL

M�−p(#)d
L
M�−n(#0); (19)

we can rewrite Eqs. (17) and (18) in the following form:

S(nc)pn�� =
k2040
2�

∑
M

exp[− iM (’− ’0)]
∫ /0

0
Y (/)(pn)(��)
M (#) exp

( /
cos#

)
d/; (20)

where

Y (/)(pn)(��)
M (#) =X (pn)(��)

M (#; #0) exp
(
− /
cos#0

)
+ 40

∑
qq1

∫
X (pq)(�q1)

M (#;!)

×Y (/−x)(qn)(q1�)
M (!) exp

(
− x
cos!

)
tan! d! dx: (21)

Here the upper integration limit over x is / for !¡�=2 and /− /0 for !¿�=2.
Eq. (21) has a simpler form than Eq. (18), but depends on #. It should be noted that the equations

derived can also be applied to light transmitted by the medium provided that the exponent z in
Eq. (17) is replaced by z−k0Z0 and / in Eq. (20) is replaced by /−/0. These equations can be easily
generalized to the case of randomly oriented nonspherical particles and vertically inhomogeneous
media. The coeKcients ,(pn)(��)

L determine the dependence of the matrix S(nc)pn�� on particle properties.
If we replace these coeKcients by the corresponding coeKcients for randomly oriented nonspherical
particles, Eqs. (18) and (20) remain valid. In the case of vertically inhomogeneous media the
parameters ( and Im(') (and possibly the coeKcients ,(pn)(��)

L ) depend on z and should appear under
the integration sign.
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Since Im(') ∼ (, matrix (20) depends on the product Z0( rather than on ( and Z0 separately.
In other words, matrix (20) remains the same for both geometrically thin and geometrically thick
layers provided that the products Z0( and the particle properties remain the same.

4. Coherent backscattering

The coherent part of the radiation re5ected by the medium is caused by the constructive interfer-
ence of multiply scattered waves propagating along direct and reverse paths and corresponds to the
sum of the cyclical diagrams in the diagrammatic representation of the Bethe–Salpeter equation [7].
To derive an equation describing the coherent part, we write series (11) for the incident wave

with initial polarization n that is scattered Frst by particle �, propagates along a certain trajectory,
is scattered by particle j, and has Fnal polarization p. This series is then substituted in Eq. (10).
Next we rewrite the series for the incident wave with initial polarization � that is scattered Frst
by particle j, propagates along the same trajectory but in the reverse direction, is then scattered by
particle �, and has Fnal polarization �. Applying the reciprocity principle (12) to the second series,
we multiply both series term by term for every order of scattering and sum up these products over
all �. Note that the value of � can be equal to j starting from the third order of scattering, which
corresponds to the propagation of waves along looped trajectories. The series of such products thus
obtained can be interpreted as an iterative solution of a system of equations. In other words, the
reciprocity principle (12) allows one to transform the cyclical diagrams into ladder diagrams and,
using the approach outlined in the previous section, to derive an equation describing the coherent
part of the re5ected light. The result is as follows:

∑
�

t( j)pn t
∗(�)
�� + t(0j)pn t∗(0j)�� =exp[i	(�− p)− i	0(� − n)] exp[− iRj(K + K∗

0)]

×
∑
LMlm

(2L+ 1)(2l+ 1)
4

A( jpn)
LM A∗( j��)

lm D∗L
Mp(n̂0; k̂sc)D

l
m�(n̂0;−k̂0) (22)

and the coeKcients A( jpn)
LM A∗( j��)

L1M1
are determined from the system of equations

A( jpn)
LM A∗( j��)

L1M1
= a( jpn)

L a∗( j��)L1 DL
Mn(n̂0; k̂0)D

∗L1
M1�(n̂0;−k̂sc) exp[iRj(K0 + K∗)]

+
∑
qq1

a( jpq)
L a∗( j�q1)L1

∑
s �=j

∑
lml1m1

A(sqn)lm A∗(sq1�)
l1m1 H (q)

LMlm(n̂0; r̂sj)H
∗(q1)
L1M1l1m1(n̂0; r̂sj): (23)

The matrix t(0j)pn t∗(0j)�� describes the single scattering by particle j assuming that the latter is imbedded
in the e?ective medium [cf. the Frst term on the right-hand side of Eq. (23)].
Eqs. (22) and (23) can be also derived using a simpler approach. SpeciFcally, Eq. (12) for

an arbitrary Fxed couple of particles j and � can be rewritten in the form valid for any order
of scattering between the particles. Then summing up over all possible � and over all orders of
scattering and taking into account that � can become equal to j starting from the third order of
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scattering, we obtain∑
�

t(�)�� (k̂0; k̂sc;−K;K0) + t(0j)�� = t( j)�� (−k̂sc;−k̂0;K0;−K): (24)

Using this equality, we obtain from Eqs. (10) and (6)∑
�

t(�)�� + t(0j)�� = exp[iK0Rj + i�(�− 	)− i�(�− 	0)]
∑
LM

2L+ 1
2

Â( j��)LM D∗L
M�(n̂0;−k̂0); (25)

where the coeKcients Â( j��)LM are determined from the system of equations

Â( j��)LM = a( j��)L exp(−iKRj)DL
M�(n̂0;−k̂sc) +

∑
q

a( j�q)L

∑
s �=j

∑
lm

Â(sq�)lm H (q)
LMlm(n̂0; r̂sj): (26)

Further straightforward manipulations lead to Eqs. (22) and (23).
Substituting Eq. (23) into Eq. (22), decomposing the Wigner function products into the

Clebsch–Gordan series [22] (see Appendix A), and denoting

7( j)(pn)(��)
LM = exp(i�	+ in	0)

∑
M1

8( j)(pn)(��)
LM1

D∗L
MM1

(n̂0; k̂0);

8( j)(pn)(��)
L1M1

=
∑
Ll

(2L+ 1)(2l+ 1)
4

a( jpn)
L a∗( j��)l (−1)l+mCL1M1

L−nl−mC
L1�−p
L−pl�D

l
m�(k̂0; k̂sc); (27)

where m=−M1 − n, yield∑
�

t( j)pn t
∗(�)
�� =exp(−iRjK1)

∑
LMqq1

(−1)L7∗( j)(q1�)(qp)LM

∑
slm

W (s)(qn)(q1�)
lm

×exp[irjs(k0 + ksc)− 2 Im(')k0rjs]
(k0rjs)2

D∗L
MN (n̂0; r̂sj)D

l
mN (n̂0; r̂sj): (28)

Here N = q1 − q, K1 = k0n0[(' − 1)=cos#+ ('∗ − 1)=cos#0], and the coeKcients W (j)(pn)(��)
LM follow

from the system of equations

W (j)(pn)(��)
LM =exp(iRjK∗

1)7
( j)(pn)(��)
LM +

∑
qq1

,( j)(pq)(�q1)
L

∑
slm

W (s)(qn)(q1�)
lm

×exp[irjs(k0 + ksc)− 2 Im(')k0rjs]
(k0rjs)2

D∗L
MN (n̂0; r̂sj)D

l
mN (n̂0; r̂sj): (29)

Taking into account that

1
2�

∫ 2�

0
exp[iM’+ ir(k0 + ksc)] d’

=i−M exp
(
iM’1 − 2ik0r cos #sc2 cos#1 cos!

)
JM

(
2k0r cos

#sc
2
sin #1 sin!

)
; (30)
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where JM (x) is the Bessel function, #1 and ’1 are the spherical coordinates of the vector k1=k0+ksc
in the coordinate system n̂0, and the angle ! is the same as in Eq. (18), and averaging over the
ensemble gives

S(co)pn�� =
2�(2

k40

∑
qq1LM

(−1)L exp(iM’1)7
∗(q1�)(qp)
LM

∫ k0Z0

0
;(z)(qn)(q1�)LM exp(−'1z) dz: (31)

Here the matrix S(co)pn�� is deFned per unit surface area of the upper boundary of the medium,

'1 = i
(
'− 1
cos#

+
'∗ − 1
cos#0

+ 2 cos
#sc
2
cos#1

)
;

7(pn)(��)
LM = 〈7( j)(pn)(��)

LM 〉; (32)

and the coeKcients ;(z)(pn)(��)
LM are determined from the system

;(z)(pn)(��)
LM =exp(−'∗1z)B

(z)(pn)(��)
LM

+
2�(
k30

∑
qq1lm

,(pq)(�q1)
l iM−m

∫
;(y)(qn)(q1�)lm exp(−/0)

×dL
MN0(!)d

l
mN0(!)Jm−M

(
20 sin #1 cos

#sc
2
sin!

)
d0 sin! d!: (33)

The integral in Eq. (33) has the same meaning as that in Eq. (18), /0 = 2 Im(')0, N0 = � − p,
y = z − 0 cos!, and the coeKcients B(z)(pn)(��)

LM are given by

B(z)(pn)(��)
LM =

∑
lm

exp(−im’1)7
(pn)(��)
lm iM−m

∫
exp(−/̃0)

×Jm−M

(
20 sin #1 cos

#sc
2
sin!

)
dL
MN0(!)d

l
mN0(!) d0 sin! d!; (34)

where

/̃0 = 0[2 Im(')− '∗1 cos!]: (35)

The meaning of the coeKcients 8(pn)(��)
LM is as follows. Let the Frst wave propagate along the vector

k0 and be scattered by a particle in the direction r. The second wave propagates along the vector
−ksc and is scattered by the same particle in the same direction r. The corresponding amplitude
matrices are

t̂( j)pn = exp(−in 1 − ip	1)
∑
L

2L+ 1
2

a( jpn)
L D∗L

np(k̂0; r̂);

t̂( j)�� = exp(−i� 2 − i�	2)
∑
L

2L+ 1
2

a( j��)L D∗L
�� (−k̂sc; r̂); (36)
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where  1 and  2 are the azimuth angles of the vector r in the coordinate systems k̂0 and −k̂sc,
respectively. Expanding the products t̂( j)pn t̂

∗( j)
�� in functions DL

MN (k̂0; r̂) gives

t̂( j)pn t̂
∗( j)
�� =exp(i� 2 + i�	2 − in 1 − ip	1)

∑
L1lm

(2L1 + 1)(2l+ 1)
4

a( jpn)
L1 a∗( j��)l

×D∗L1
np (k̂0; r̂)D

∗l
m�(k̂0;−k̂sc)Dl

m�(k̂0; r̂)

=− exp(i� 2 + i�	2 − in 1 − ip	1)
∑
LM

8( j)(pn)(��)
LM DL

M�−p(k̂0; r̂): (37)

Decomposing Eq. (37) in functions DL
MN (n̂0; r̂) yields the coeKcients 7( j)(pn)(��)

LN . It should be noted
that the coeKcients 7(pn)(��)

LM do not depend on 	0 and 	. They can be rewritten in the form

7(pn)(��)
LM = (−1)M−n exp(in	0 + i�	)

∑
L1M1lm

(2L1 + 1)(2l+ 1)
4

〈a( jpn)
L1 a( j��)l 〉

×(−1)lCLM
L1−M1l−mC

L�−p
L1−pl�D

L1
M1n(n̂0; k̂0)D

l
m�(n̂0; k̂sc)

= (−1)M−n
∑

L1M1lm

(2L1 + 1)(2l+ 1)
4

〈a( jpn)
L1 a( j��)l 〉

×(−1)lCLM
L1−M1l−mC

L�−p
L1−pl�D

L1
M1n(’0; #0; 0)D

l
m�(’; #; 0); (38)

where M1 + m=−M .
The generalization of the equations for the coherent part to the case of randomly oriented non-

spherical particles and/or inhomogeneous media is similar to that for the incoherent part. Eq. (21)
is a Fredholm integral equation of the second kind, and Eq. (33) is a system of Fredholm integral
equations of the second kind. The kernels of these equations are oscillating functions, in contrast to
those in Eq. (21). Moreover, the coeKcients B(z)(pn)(��)

LM are also oscillating functions. The numerical
solution of the system of such equations is a very complex problem. Therefore, in this paper we
will consider only simpliFed particular cases of this system.

5. Results and discussion

5.1. The case of the exact backscattering direction

In the case (ksc =−k0)

#+ #0 = �; #sc = �; ’= ’0 + � (39)

and the coeKcients 7(pn)(��)
LM become (see Eqs. (27) and (38))

7(pn)(��)
LM =−,(pn)(��)

L D∗L
M�−n(’0; #0; 0): (40)
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Taking into account the symmetry property

,∗(pn)(��)
L = ,(��)(pn)

L ; (41)

we derive from Eqs. (17) and (18) and Eqs. (31) and (33)

S(nc)pn�� = S(co)pn�� + S1pn��; (42)

where the matrix S1pn�� corresponds to single scattering.
Eq. (42) allows one to calculate the amplitude of the interference peak using the vector radiative

transfer equation only. This equation exactly reproduces Eq. (19) in [27]. It should be noted that
in the case of the exact backscattering direction, Eq. (13) is equivalent to Eq. (22), and the system
of equations (14) is equivalent to the system of equations (23). In other words, for any system of
particles the relation between the incoherent part of the re5ected light and the coherent one can be
written as

t( j)pn t
∗( j)
�� =

∑
�

t( j)pn t
∗(�)
�� + t(0j)pn t∗(0j)�� : (43)

5.2. The case of normal incidence

In this case (k0 = n0)

#0 = 0; #1 =
#
2
; #sc = #; ’1 = ’ (44)

and the coeKcients 7(pn)(��)
LM are given by (see Eq. (38))

7(pn)(��)
LM = exp[in(’− ’0) + iM’]8̃(pn)(��)

LM ;

8̃(pn)(��)
L1M1

=
∑
Llm

(2L+ 1)(2l+ 1)
4

〈a( jpn)
L a∗( j��)l 〉(−1)l+mCL1M1

L−nl−mC
L1�−p
L−pl� d

l
m�(#); (45)

where m=−M1 − n. Eqs. (31)–(34) then yield

S(co)pn�� =
2�(2

k40
exp[i(n− �)(’− ’0)]

∑
qq1LM

(−1)L8̃∗(q1�)(qp)LM

×
∫ k0Z0

0
;(z)(qn)(q1�)LM exp(−'̃1z) dz; (46)

where

'̃1 = Im(')
(
1− 1

cos#

)
+ i(1 + cos#)

(
Re(')− 1
cos#

+ 1
)

(47)
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and the coeKcients ;(z)(pn)(��)
LM follow from the system of equations

;(z)(pn)(��)
LM =exp(−'̃1∗z)B̃

(z)(pn)(��)
LM +

2�(
k30

∑
qq1lm

iM−m,(pq)(�q1)
l

∫
;(y)(qn)(q1�)lm

×dL
MN0(!)d

l
mN0(!) exp(−/0)Jm−M (0 sin # sin!) d0 sin! d!: (48)

Here /0=2 Im(')0, N0=�−p, and y=z−0 cos!. The second-order-scattering coeKcients B̃(z)(pn)(��)
LM

are

B̃(z)(pn)(��)
LM =

∑
lm

8̃(pn)(��)
lm iM−m

∫
dL
MN0(!)d

l
mN0(!)exp(−/̃10)Jm−M (0 sin # sin!) d0 sin! d!;

(49)

where /̃1 = 2 Im(')− '̃1∗ cos!.
The Stokes parameters of the incident radiation are deFned with respect to the plane through

the vectors k0 and n0, whereas the Stokes parameters of the re5ected radiation are deFned with
respect to the plane through the vectors n0 and ksc. Therefore, matrix (46) is proportional to exp[i(n−
�)(’−’0)]. When the Stokes parameters are deFned with respect to the scattering plane (the plane
through the vectors k0 and ksc), this proportionality factor reduces to 1. Eq. (42) is also equitable
in the case of ksc =−k0.
Eqs. (46)–(49) are identical to those of [18] except for a small di?erence in notation (cf. [20]).

It should be noted that the contribution of the looped trajectories having the form of polylines were
considered in [18] to be part of the incoherent radiation. But a more careful consideration shows
that this contribution to the re5ected radiation is coherent. Therefore, Eqs. (41) and (42) of [18]
should be ignored.
A general theoretical analysis of the dependence of matrices (31) and (46) on the parameter #

is very complicated. We examine this dependence in the special case of a semi-inFnite medium
in the second-order scattering approximation. Consider Frst the case of normal incidence. Let the
Stokes parameters of the incident and re5ected light be speciFed with respect to the scattering plane
(i.e., the one through the vectors k0 and ksc). The substitution of the Frst term on the right-hand side
of Eq. (48) into Eq. (46) followed by integration gives [11,19,20]

S(co)pn�� =− �(2 cos#
k40 Im(')(1− cos#)

∑
qq1LMlm

(−1)L8̃∗(q1�)(qp)LM 8̃(qn)(q1�)lm

×i−|m−M |
∫ �

0
dL
MN (!)d

l
mN (!)I|m−M | sin! d!; (50)

where N = q1 − q,

Im =
cm√

c2 + f2(f +
√

c2 + f2)m
;

c = sin # sin!;

f = 2 Im(') + |cos!| Im(')
(
1− 1

cos#

)
+ i cos!(1 + cos#)

(
Re(')− 1
cos#

+ 1
)

: (51)
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If the size of the scatterers is not much greater than the wavelength and the angle # is close to
the exact backscattering direction then the coeKcients 8̃(pn)(��)

LM take the form

8̃(pn)(��)
LM � −,(pn)(��)

L *M;�−n (52)

and matrix (50) depends on # via the coeKcients Im only. In the limit c → 1, all the coeKcients
Im → 1, whereas in the limit c → 0 only the coeKcient I0 di?ers signiFcantly from 0. For sparse
media, 2 Im(')�1 and Re(') − 1 → 0. Under these conditions, the coeKcient I0 is dominant at
angles # � � and can be approximated by the following asymptotic formula:

I0 �




1
2 Im(')(1 + |cos!|) for f 
 c;

1
sin # sin!

for f � c:

(53)

As follows from Eq. (53), the coeKcient I0 as a function of the angle # has a narrow peak with a
maximum at # = � and a rapid fall with decreasing #. The amplitude and the width of this peak
are determined by the value of 2 Im(') [11,19]. The coeKcient I0 causes an interference peak in the
intensity of the re5ected light, whereas the coeKcients Im (m �= 0) cause a nonzero linear polarization
[28]. Note that the condition of Eq. (52) leads to a simpliFcation of Eq. (50). For example, the
re5ection matrix elements R(co)11 and R(co)21 , which describe the coherent intensity and degree of linear
polarization of the re5ected radiation, respectively, in the linear polarization basis can be written in
the form [28]

R(co)11 =
�(2

k6 Im(')(1− cos#)
∫ �

0
I0Q11(!) sin! d!;

R(co)21 =
�(2

k6 Im(')(1− cos#)
∫ �

0
I2Q21(!) sin! d!; (54)

where

Q11(!) = g11(!)g11(�− !) + g21(!)g21(�− !);

Q21(!) =−g11(!)g21(�− !)− g21(!)g22(�− !): (55)

Here gij are the elements of the scattering matrix for an isolated particle in the linear polarization
basis averaged over the microphysical properties of the particle. Eqs. (54) and (55) allow one to
predict the sign of linear polarization of the coherently scattered radiation. If the element g21 is
positive at all scattering angles then the element R(co)21 is negative; if the element g21 is negative then
the element R(co)21 is positive [28].
We also note another feature of the scattering pattern which follows from Eqs. (51) and (53). In

the limit # → �, the coeKcient I0 becomes I0 � 1=4 Im(') when ! = 0 or � and does not depend
on #. If != �=2 then this coeKcient becomes I0 � 1=2 Im(') and decreases with decreasing #. This
implies that for Fxed Im(') the angular region a?ected by the interference is broader for strongly
forwardscattering and backscattering particles than for nearly isotropically scattering particles. In fact,



176 V.P. Tishkovets, M.I. Mishchenko / Journal of Quantitative Spectroscopy & Radiative Transfer 86 (2004) 161–180

the directions ! ≈ 0 and ! ≈ � give a major contribution to integral (50) for the former particles,
whereas the range of ! ≈ �=2 dominates this integral for the latter particles. This conclusion
follows from Eqs. (54) and (55) as well. Calculations presented in [11,19,20] allow one to reach
more detailed conclusions about the dependence of the interference e?ects on the properties of the
scattering medium. They agree well with the results of the semi-qualitative analysis discussed above.

5.3. Second-order-scattering approximation for oblique illumination of a semi-in;nite layer

The previous qualitative analysis can be easily extended to the case of slant illumination. Let us
begin by substituting the Frst term on the right-hand side of Eq. (33) into Eq. (31) and integrating
over z. A derivation analogous to that used to obtain Eq. (50) yields

S(co)pn�� =− �(2 cos# cos#0
k40 Im(')(cos#0 − cos#)

∑
qq1LMlm

(−1)L exp[i(M − m)’1]

×7∗(q1�)(qp)LM 7(qn)(q1�)lm i−|m−M |
∫ �

0
dL
MN (!)d

l
mN (!)Ĩ |m−M | sin! d!; (56)

where N = q1 − q. The coeKcients Ĩ |m−M | have the form of Eq. (51) if c and f are replaced by c̃
and f̃, respectively, where

c̃ = 2 sin #1 sin! cos
#sc
2

;

f̃=2 Im(') + | cos!| Im(')
(

1
cos#0

− 1
cos#

)

+ i cos!
(
Re(')− 1
cos#

+
Re(')− 1
cos#0

+ 2 cos
#sc
2
cos#1

)
: (57)

If the scatterers are not much larger than the wavelength and #sc � � then the coeKcients 7(pn)(��)
LM

can be approximated by Eq. (40). As in the case of normal incidence, the interference peak is
determined by the coeKcient Ĩ 0. However, the properties of this coeKcient depend on the azimuth
angle of the scattering direction and on the polar angle of the incidence direction. Let us consider
this dependence in two scattering angle ranges denoted in Fig. 2 as (a) and (b) assuming that the
z axes of all coordinate systems and the x0-axis lie in the same plane.
Range (a): In this case ’0 =’1 = 0, ’= �, #sc = 2�− #− #0, and #1 = #sc=2 so that the analog

of Eq. (53) has the form

Ĩ 0 �




1
2 Im(') + Im(')| cos!|(1=cos#0 − 1=cos#) for f̃ 
 c̃;

1
sinC sin!

for f̃ � c̃;
(58)

where C = # + #0 − � (see Fig. 2). It follows from Eq. (58) that the amplitude and the width of
the interference peak decrease with increasing angle #0. Note that the incoherent contribution to the
re5ected radiation also decreases with increasing #0 so that relation (42) remains valid [29].
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Fig. 2. Angular ranges (a) and (b) (see text).

(a)(b)

(a)(b)

Fig. 3. Dependence of U on the scattering angle for #0 = 30◦ and #0 = 60◦. The solid curves correspond to Im(') = 0:01
and the dashed curves correspond to Im(') = 0:02.

Range (b): In this case ’0 = 0, ’ = ’1 = �, #sc = # + #0, and #1 = #sc=2. As in case (a), the
coeKcient I0 is determined by Eq. (58) with C= �− #− #0. However, the angle # is smaller than
in range (a). Therefore, the interference peak in range (a) is broader than in range (b).
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In the particular case of scalar waves, M = m = N = 0 in Eq. (56). Furthermore, if scattering is
isotropic, then L= l= 0, and the integral in Eq. (56) becomes simple:

U =
∫ �

0
Ĩ 0 sin! d!: (59)

The scattering-angle dependence of this integral is illustrated in Fig. 3 for '= 1 + i Im(').
Finally we note that a forthcoming publication will report on numerical results obtained on the

basis of the theoretical formalism outlined in this paper.
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Appendix A.

Wigner D functions [22] DL
Mm(n̂0; n̂1) =DL

Mm(.; ;; 	) are determined as the matrix elements of the
rotation operator in the JM -representation, where the Euler angles .; ;; 	 specify the rotation from
the coordinate system n̂0 to the coordinate system n̂1. In this paper, the following properties of the
Wigner D functions and the Clebsch–Gordan coeKcients [22] are used:
the unitary condition∑

m1

DL
Mm1(n̂1; n̂2)D

∗L
mm1(n̂1; n̂2) = *Mm;

the group property (the addition theorem)

DL
Mm(n̂1; n̂2) =

∑
m1

D∗L
m1M (n̂0; n̂1)D

L
m1m(n̂0; n̂2)

and the symmetry properties

DL
Mm(n̂1; n̂2) = (−1)M−mD∗L

−M−m(n̂1; n̂2);

DL
Mm(n̂1; n̂2) = D∗L

mM (n̂2; n̂1);

DL
Mm(n̂1; n̂2) = (−1)M−mD∗L

Mm(−n̂1;−n̂2);

DL
Mm(n̂1; n̂2) = (−1)LDL

M−m(n̂1;−n̂2):
In the last two equations it is assumed that the coordinate system n̂i has the axis (xi; yi; zi) and the
coordinate system −n̂i has the axis (xi;−yi;−zi).
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The product of two Wigner D functions can be expanded in the Clebsch–Gordan series

DL
Mm(n̂1; n̂2)D

L1
M1m1(n̂1; n̂2) =

∑
L2M2N2

CL2M2
LML1M1

CL2N2
LmL1m1D

L2
M2N2(n̂1; n̂2);

where CL1M1
LMlm are Clebsch–Gordan coeKcients. The unitary relation for these coeKcients reads∑

Mm

CL1M1
LMlmC

L2M2
LMlm = *L1L2*M1M2 :

The Clebsch–Gordan coeKcients have many symmetry properties [22] including the following:

CL1M1
LMlm= (−1)L1+L+lCL1−M1

L−Ml−m = (−1)L1+L+lCL1M1
lmLM

= (−1)l+m

√
2L1 + 1
2L+ 1

CL−M
L1−M1lm = (−1)L−M

√
2L1 + 1
2l+ 1

Cl−m
LML1−M1

:

The coeKcients CL1M1
LMlm di?er from 0 if |L− l|6L16L+ l and M1 =M + m.
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