Light scattering by size—shape distributions of
randomly oriented axially symmetric particles of a
size comparable to a wavelength

Michael I. Mishchenko

1. Introduction

The S-matrix method, as extended recently to randomly oriented scatterers [J. Opt. Soc. Am. A 8, 871
(1991)], is used to calculate rigorously light scattering by size—shape distributions of randomly oriented
axially symmetric particles. The computational scheme is described in detail along with a newly
developed convergence procedure that enables one to substantially reduce computer time and storage
requirements. It is demonstrated that the elements of the Stokes scattering matrix for a power law size
distribution of randomly oriented moderately aspherical spheroids are much smoother than and differ
substantially from those of equivalent monodisperse spheroids, and thus averaging over orientations does
not eliminate the necessity of averaging over particle sizes. Numerical calculations are reported for
volume-equivalent polydispersions of spheres and size-shape distributions of moderately aspherical
spheroids with the index of refraction 1.5 + 0.02 i, which is typical of some maritime aerosols. The
angular-scattering behavior of the ensembles of nonspherical particles is found to be greatly different
from that of the equivalent polydisperse spheres. The size—shape distributions of spheroids exhibit
stronger side scattering near 120° and weaker backscattering, the ratio Fa, /F11 of the elements of the
scattering matrix substantially deviates from unity, and the element Fs3 is greatly different from
Fu. For size distributions of oblate and prolate spheroids of the same aspect ratio, the ratios Fao/F1,
F33/F11, and Fy,/Fy; can differ substantially and, thus, are indicators of particle shape, whereas the
angular patterns of the intensity (F1; ) and linear polarization (—F12/F11) are similar. For the size—shape
distributions of moderately aspherical spheroids, the optical cross sections, the single-scattering albedo,
and the asymmetry parameter of the phase function do not differ substantially from those of equivalent
spheres. In general, the elements of the scattering matrix and optical cross sections are more shape
dependent for larger particles.
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At present, the J-matrix approach’ (or the ex-
tended boundary condition method?®) is, apparently,

Calculations of scattering of light by small particles
are important in many diverse fields of science and
engineering. In most cases of practical interest,
scattering particles are nonspherical and are distrib-
uted over sizes, shapes, and orientations. However,
accurate light-scattering computations for ensembles
of nonspherical particles are difficult and time consum-
ing, and the literature in which such calculations are
reported is rather scarce (see, e.g., Refs. 1-5 and a
review paper by Bohren and SinghamS$).

The author is with NASA, Goddard Institute for Space Studies,
Hughes STX Corporation, 2880 Broadway, New York, New York
10025.

Received 22 September 1992.

0003-6935 /93 /244652-15$06.00 /0.

© 1993 Optical Society of America.

4652  APPLIED OPTICS / Vol. 32, No. 24 / 20 August 1993

the most powerful tool for solving nonspherical scat-
tering problems.>10 It is the aim of the present
paper to apply the J-matrix approach, as developed in
Ref. 11, to calculate light scattering by size-shape
distributions of randomly oriented rotationally sym-
metric particles and to study how light scattering
depends on particle shape. Basic concepts of the
computational scheme are outlined in Section 2.
Because convergence problems are important in the
J-matrix computations, in Section 3 we describe a
new convergence procedure that seems to be espe-
cially suited to the case of randomly oriented particles
and may be considered a substantial supplement to
the method developed in Ref. 11. In Section 4,
numerical calculations for polydispersions of spheres
and size-shape distributions of spheroids are pre-



sented and compared. The main results of the paper
are discussed and summarized in Section 5.

It should be noted here that comparison of the
light-scattering properties of particles of different
shape is only meaningful if the particles are equiva-
lent in a certain sense. Although different defini-
tions of particle equivalence may be found in the
literature, in this paper we use the definition accord-
ing to which particles of different shape are consid-
ered equivalent if they have the same volume.
Therefore the main size characteristic of any
nonspherical particle is the radius of the equal-
volume sphere.

2. Basic Concepts

The single scattering of light by a small-volume
element consisting of randomly oriented axially sym-
metric particles is completely specified by the cross
sections for scattering, C,,, and extinction, C., and
the elements of the normalized scattering matrix

F.1213 This matrix relates the Stokes vectors of the
incident light, I, and the scattered light, L:

I = Coc F(9)L 1

s = 4 R2 ( ) i ( )

where R is the distance between the volume element
and the observation point and ¥ is the scattering
angle,
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and the Stokes parameters I, @, U, and V are defined
with respect to the scattering plane, i.e., the plane
through the incident and scattered beams.

In computations of both single and multiple light
scattering, an efficient approach is to expand the
elements of the scattering matrix as follows!4-17;
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where P$ (cos ¥) are generalized spherical func-
tions!® and the upper summation limit, s, depends
on the desired accuracy of the computations. There
are several reasons in favor of this approach.

1. If the expansion coefficients a° to by5 are
known, then the elements of the scattering matrix
can easily be calculated for practically any number of
scattering angles with a minimum expense of com-
puter time. Thus instead of specifying the elements
of the scattering matrix for a large number of scatter-
ing angles, one may use a limited (and usually small)
number of numerically significant expansion coeffi-
cients. This also makes the expansion coefficients
especially convenient in size—shape averaging.

2. The expansion coefficients, if known, enable
one to easily calculate Fourier components of the
phase matrix appearing in the equation of transfer of
polarized light in plane-parallel, macroscopically iso-
tropic media.19-22

3. The expansion coefficients are ideally suited for
checking convergence of light-scattering computa-
tions. As was mentioned above, there are a limited
number of significant coefficients, which completely
specify the scattering matrix for all the scattering
angles 9 € [0, w] and can easily be used in the
convergence criterion. Second, the generalized
spherical functions are normalized such that | P,,,*(cos
9)| < 1for any ¥ € [0, w| and any integers s, m, and n.
Therefore the absolute accuracy of computing the
expansion coefficients will also specify the absolute
accuracy of computing the elements of the scattering
matrix via Egs. (4)—(9) and the Fourier components of
the phase matrix.

4. An efficient analytical method of computing the
expansion coeflicients for randomly oriented, monodis-
perse, axially symmetric particles has been developed
recently.l! Specifically we have shown that instead
of computing numerically the orientationally aver-
aged elements of the scattering matrix of monodis-
perse, randomly oriented particles by averaging re-
sults for scattering by a single particle with varying
orientation, the expansion coefficients can be analyti-
cally expressed in some basic quantities that depend
only on the size, shape, and refractive index of the
scattering particle and do not depend on any angular
variable. These basic quantities are the elements of
the natural . matrix of the axially symmetric scat-
terer. It was found that this analytical method is
much faster than the common method of numerical
integration over particle orientations.

To calculate the ensemble-averaged quantities Cy,
C.x, and a;® to by*, we must average the optical cross
sections and expansion coefficients over all particle
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shapes and sizes. For simplicity, we will assume
that the particle ensemble consists of J particle
shapes with p,(1 < j < J)being the probability of the
Jth shape, and particles of each shape are distributed
over sizes according to the same size distribution n(r)
such that n(r) dr is the fraction of the particles with
equal-volume-sphere radii between r and r + dr with
I € [Fminy Tmax)- The ensemble-averaged quantities
are now obtained from (cf. Ref. 5)

J Tmax
Csca = Epj f drn(r)cscaj(r)s (10)
J=1 ’min
J rmax .
Cext = Elpj f drn(r)cexf](r)a (11)
J= Tmin
1 J T'max
ais = C 2 pj f drn(r)cscaj(r)[ais(r)]js
sca j=1

min

i=1,...4, (12)

pj frmax drn(r)cscaj(r)[bis(r)]j;

T'min

o
Il

Q
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sca j=1
i=12 (13)

The absorption cross section C,,, single-scattering
albedo w, and asymmetry parameter of the phase
function g are defined as

Cabs = Cext - Cscaa (14)
W = Csca/Cexta (15)

1 +1
=35 f d(cos B)Fy(d)cos ¥ = a,'/3. (16)

-1

To calculate the integrals appearing in Egs. (10)—
(13), we use a Gaussian quadrature formula. Thus
the computation of the ensemble-averaged quantities
includes the following steps. First the optical cross
sections and the expansion coefficients are calculated,
as described in Ref. 11, for each couple (j, n), where
the index j numbers particle shapes and the index n
numbers Gaussian quadrature division points on the
interval [Fuyin, 'max)- Second the size—shape-averaged
cross sections, expansion coefficients, single-scatter-
ing albedo, and asymmetry parameter of the phase
function are calculated via Egs. (10)—(16). The num-
ber of Gaussian points, N, is increased until the
expansion coefficients converge within the desired
absolute accuracy of the computations, A. An a
priort estimate of N can be obtained by checking
convergence of analogous computations for equal-
volume spheres, because orientational averaging in
itself is a smoothing process, and, therefore, the
scattering behavior of monodisperse randomly ori-
ented nonspherical particles is smoother than that of
monodisperse spheres.! Indeed, our test calcula-
tions have shown that we do not need to consider
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more spheroidal than spherical sizes in size averaging.
Finally the expansions (4)—(9) are used to calculate
the elements of the ensemble-averaged scattering
matrix for practically any number of scattering angles.
Alternatively, the single-scattering albedo and the
expansion coefficients may serve as input parameters
for multiple-scattering calculations.!9-22

Of course, it is possible to consider a continuous
rather than a discrete distribution of particle shapes
in Egs. (10)—(13). In that case, the summations over
the index j are replaced by integrations over parame-
ters that specify particle shapes (e.g., the ratio of the
semiaxes of a spheroid), a Gaussian quadrature for-
mula may be used to evaluate all the integrals
numerically, and a procedure like that described in
the preceding paragraph should be used to check
convergence of the computations over the number of
Gaussian division points.

The computational scheme outlined implies that
the optical cross sections and expansion coefficients
are calculated for each ensemble member correspond-
ing to a couple (j, n) by using the method developed by
Ref. 11. The procedure described there is well suited
for calculations on a case-by-case basis and for check-
ing the convergence of the 7-matrix computations by
hand. Because studying particle ensembles requires
multiple repeated calculations, thus precluding the
possibility of examining each ensemble member indi-
vidually, developing an efficient automatic conver-
gence procedure becomes an important task. In
Section 3 we describe such an automatic convergence
procedure, which may be considered a supplement to
the method developed in Ref. 11.

3. Convergence Procedure

A. Convergence Over Nmay

In 9~matrix computations of light scattering by non-
spherical particles, both the incident and scattered
electric fields are expanded in vector spherical waves,
and transformation of the expansion coefficients of
the incident field into those of the scattered field is
given by the so-called 7 matrix.”-1® Theoretically
these expansions are of infinite length and, thus, the
7 matrix is of infinite size. In practice, however,
one has to truncate the .7 matrix after a finite
number of leading, numerically significant elements.
Therefore a special procedure should ge used to check
convergence of the resulting solution over a computa-
tional parameter n,,, which specifies the size of the
J matrix.

Light-scattering computations based on the 7
matrix approach involve calculation of the .7 matrix
as the first step and the use of this .7 matrix to
calculate some scattering characteristics as the occ-
ond step. In both steps, the same parameter n,,,, is
usually used.23-25 In other words, it is assumed that
if one has to use a (large) parameter n,, to calculate
accurately the 7 matrix, then the same parameter
Nmax should be used in the second step, i.e., all the
calculated elements of the 9 matrix should be used in
further light-scattering computations. We have



found, however, that at least for randomly oriented
particles, two n,, parameters should be used instead.
The first of them, n,.,!, is used to calculate the 9
matrix, as described, e.g., in Refs. 23-25, and the
second one, N2 < Nmat, is used in calculating the
optical cross sections and expansion coefficients; the
parameter n,,>2 is often much smaller than 7y,
In other words, the parameter r,,? determines the
minimum upper part of the calculated 7 matrix that
may be used in further computations without loss of
accuracy. Thus it appears that a rather large param-
eter n,.° may be required to calculate accurately
even the leading elements of the 9 matrix, although
only a few leading .7-matrix elements may be enough
to calculate accurately the optical cross sections and
expansion coefficients. Apparently this fact may be
explained by the ill-conditioning of the matrix inver-
sion that is involved in the computation of the
matrix,26 i.e., the dimension of the matrix to be
inverted (matrix [A] in Eq. (3.7) of Barber and Hill?%)
must be sufficiently large to compute accurately only
a few leading elements of the inverse matrix.

As an example, in Table 1 the values of the
parameters N, and ny,? are listed that provide the
absolute accuracy A = 10-3 of computing the expan-
sion coefficients a,2 to b,5>. The data are given for
Chebyshev particles, for which the notation T,(e) is
used,24 and for spheroids, for which the notation S(d)
is used, where ¢ is the deformation parameter and d is
the ratio of the horizontal to rotational axes of the
spheroid (note that d > 1 for oblate spheroids and
d < 1 for prolate spheroids). For all the particles,
the equal-volume-sphere size parameter is x =
2mr/\ = 10, where \ is the wavelength of light, and
the index of refraction is m, = 1.5 + 0.02:. Indeed,
one sees from Table 1 that, depending on particle

shape, the parameter ny,,? can be much smaller than

1
N max-

To make use of this fact in practice, a good a prior:
estimate of the parameters n,.,! and ny,,? is needed.
For axially symmetric scatterers, the J-matrix T
calculated in the body frame is decomposed into
separate, independently calculated submatrices corre-
sponding to different azimuthal modes m (see e.g.,
Chap. 5.4 of Ref. 10):

Tmnmn'lj = 8mm'T'mnmn’lJ’ lm' < n, n’ < nmax’
Jj=12, (17)
Tables 1. Parameters n,,,' and n,,,? for Chebyshev Particles and

Spheroids Withm, = 1.5 + 0.02/,x = 10,and A = 10-3

1 2

Particle Rmax Nmax
Ty(—0.2) 24 16
Ts(0. 15) 29 16

T4(0 1) 26 15
S(1/2) 26 19

S(1/3) 34 24

S(2) 22 17

S(3) 26 19

where 3 is the Kronecker delta. Therefore in real
calculations it would be highly desirable to have a
reliable estimate of np.! and ng.? after computing
only a single submatrix, preferably the zeroth one
(because Ty, 12 = 0 and TOnOn = 0, computation of
the zeroth submatrix requires much less time than
computation of the first submatrix). After a lot of
test calculations, we have found that the following
simple convergence criterion can be used to deter-
mine 7,

ax |Cl(nmax1) - Cl(r"max1 - 1)!
| Cl(nmaxl) l
|C2(nmax1) - C’Z(nmax1 - 1)
| o) < 0.14, (18)
where
2w &
Cl(nmax) = - —];2_ RGE 2n + 1)(T0n0n + TOnOn )’
(19)
C nmax = k_Tr 2 2"’ + 1 |TOn0nn|2 + iTOnOnZZI ];

(20)

k = 2mw/\ is the wavenumber and A is the desired
absolute accuracy of computing the expansion coeffi-
cients a;* to by. After determining the parameter
Nmax', the same zeroth 7 submatrix of the size n,,,,! is
used to determine the parameter n .2 as the smallest
positive integer satisfying the inequality

Cl(nmaxz) - Cl(nma.xl)l ,
Cl(nmax1 ) ‘

C mta.x2 -C ma\x1
I o C22n f;n ){ < 0.1A. (21)

There is a natural motivation for using the quanti-
ties C; and C, in the convergence criterion. For
randomly oriented axially symmetric particles, the
orientationally averaged extinction and scattering
cross sections are given by simple formulas?:

-

2 Nmax n
Cou= =73 Re 2 X [Touma + o], (22)
n=1 m=-n

Nmax max  max(n,n’)
Cu=F2 2 3 3 (Tumdl® (29

n') 6 j=1,2

Equations (19) and (20) are obtained from Egs. (22)
and (23) by replacing the initial 9 matrix by a
diagonalized matrix with elements 8,,08,.-8;Ton0n"
For spherical particles, C; = Cq and C; = Cy, [see
Eqs. (4.38)—(4.40) of Ref. 11}, and the factor 0.1 in the
right-hand side of Eq. (18) simply reflects the fact
that for the same ng,! and n,.,? , the relative
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Fig.1. Elements of the scattering matrix for a moderately wide power law size distribution of randomly oriented oblate spheroids withd =
1.5 and effective equal-volume-sphere radius reg = 0.9102 pm (solid curves) and randomly oriented monodisperse oblate spheroids with d =

1.5 and equal-volume-sphere radius r = 0.9102 pm (dashed curves).

accuracy of computing the optical cross sections is
usually better than the absolute accuracy of comput-
ing the expansion coefficients by a factor of approxi-
mately 10. Although for nonspherical particles C; =
C. and Cy # Cg,, the accuracy of computing these
quantities provides a good estimate of the accuracy of
computing the cross sections and expansion coeffi-
cients.

It was demonstrated in Ref. 11 that the analytical
calculation of the orientationally averaged expansion
coefficients a;* to b, * for a nonspherical particle
required practically the same computer time as the
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calculation of the particle . matrix. The use of the
fact that n,,,,2 is smaller than n.!, and the fact that
the two computer times are roughly proportional to
the fourth power of n,,2 and n,,! , respectively, lead
to a new conclusion: the calculation of the expan-
sion coefficients is (much) less time consuming than
the calculation of the 9 matrix. For example, for a
Chebyshev particle T5(0.15) with x = 10, m, = 1.5 +
0.02 i, and A = 1073, on an Amdahl 5870 computer
the .7 matrix was computed in 29.4 s, whereas the
expansion coefficients and the elements of the scatter-
ing matrix for 361 scattering angles were computed in
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Fig. 2. Elements of the scattering matrix for the power law size distribution of prolate spheroids with ry;, = 0.5 pm, rpa = 1.5 um, and
d = 0.6 (thin solid curves), 0.7 (dashed curves), and 0.83 (dotted-dashed curves), and for the same size distribution of spherical particles

(thick solid curves).

4.8 s. Also, the J-matrix elements are stored only
for |m|, n, n' < ng,? which substantially reduces
computer storage requirements.

B. Convergence Over myay

Unlike Wiscombe and Mugnai?* and Barber and
Hill,?> we do not check convergence of the F~matrix
computations over the parameter m,,, (the largest
azimuthal mode), but rather simply set m .y = Npay?.
It is interesting to note that for Chebyshev particles,

the values of the parameter n,,>2? determined from
Eq. (21) practically coincide with the values of 7y,
given in Table 1 of Wiscombe and Mugnai.?4

C. Convergence Over Ng

Besides np,,, the accuracy of the -matrix computa-
tions depends also on the choice of the number of
Gaussian quadrature points Nz used in computing
surface integrals (see, e.g., Sec. 5 of Wiscombe and
Mugnai?* and Sec. 3.2 of Barber and Hill?®). To
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check convergence over N, we use a procedure that is
analogous to that of Barber and Hill.2> Specifically,
when determining the parameter n,,,!, we set Ng
equal to twice n,,! After n,,' has been deter-
mined, Ng; is increased in steps of 4 until the quanti-
ties Cy(npa! ) and Cy(np.,!) converge within the rela-
tive accuracy 0.1 A.

4. Calculations

In this section, we report and compare results of
computer calculations for volume-equivalent spheroi-
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dal and spherical particles with the index of refraction
m,= 1.5+ 0.027. This refractive index was adopted
by Wiscombe and Mugnai?* as typical of some mari-
time aerosols in the visible region. In all of the cases
considered, the wavelength is A = 0.6283 wm, and the
absolute accuracy of computing the expansion coeffi-
cients a;*to b,*is A = 1073

First in Fig. 1 the elements of the scattering matrix
are plotted versus the angle of scattering for ran-
domly oriented monodisperse oblate spheroids with
d = 1.5 and equal-volume-sphere radius r = 0.9102
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Fig. 4. Elements of the scattering matrix as in Fig. 2 but for shape averages over the prolate (dashed curves) and oblate (dotted-dashed
curves) shapes, as well as the total averages over the six spheroidal shapes (thin solid curves).

pm and polydisperse spheroids with the same axes
ratio and equal-volume-sphere radii governed by the
power law distribution?8

2 2
_ 2rminrmax _3
n(r)—' 2_r_2r s
min

re [rmim rmax]y (24)

with 7y, = 0.5 pm and rp,, = 1.5 pm. For this size
distribution, the effective equal-volume-sphere ra-
dius r.g, as defined by Hansen and Travis,?8 is equal to
the equal-volume-sphere radius of the monodisperse

spheroids,
Pmax — Tmin
Feg = M /r) = 0.9102 pm, (25)
and the effective variance is
Pmax + P'min
Vet = T —r) In(rpae/Tmin) — 1 = 0.0986. (26)

Note that this value of the effective variance corre-
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Fig. 5. Elements of the scattering matrix as in Fig. 2 but for smaller particles with i, = 0.2 pm and rpa = 0.6 pm.

sponds to a moderately wide size distribution. It is
seen from Fig. 1 that the elements of the scattering
matrix for the polydispersion of moderately aspheri-
cal spheroids are much smoother than and differ
substantially from those for the monodisperse parti-
cles. Thus, contrary to the expectation of Asano and
Sato,2? averaging the elements of the scattering ma-
trix over orientations does not eliminate the necessity
of averaging over particle sizes (see, also Chap. 2.5 of
de Haan? and Chap. 2.4 of Stammes3?).

In Fig. 2, numerical results are shown for polydis-
perse spherical particles and volume-equivalent pro-

4660 APPLIED OPTICS / Vol. 32, No. 24 / 20 August 1993

late spheroids with d = 0.6, 0.7, and 0.83. The
particle size distribution is given by Eq. (24), with
Pmin = 0.5 pm and r = 1.5 um. Figure 3 is the
same as Fig. 2 but for oblate spheroids, withd = 1.7,
14, and 1.2. In Figure 4, we show the shape-
averaged results separately for the prolate and oblate
spheroids, as well as the total averages over the six
spheroidal shapes. For simplicity, in averaging over
particle shapes we assumed that all the nonspherical
shapes were equally probable [ie., p; =1/J with
J = 6inEqgs. (10)—(13)]. Figures 5-7 are the same as
Figs. 24 but for the power law distribution with
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Fig. 6. Elements of the scattering matrix as in Fig. 3 but for the smaller particles.

Fmin = 0.2 pm and ry,, = 0.6 pm. Correspondingly
the effective radius is now r.¢ = 0.3641 pm, whereas
the effective variance is the same: v.g 0.0986.
In Tables 2 and 3, the corresponding values of the
optical cross sections Cg,, Cet and Cy,, single-
scattering albedo w, and asymmetry parameter of the
phase function g are given. Note that in calculating
the integrals in Egs. (10)—~(13) numerically, we used
70 Gaussian division points for the bigger particles,
with 7, = 0.5 pm and rp,, = 1.5 um and 20 points
for the smaller particles, with r ;, = 0.2 pm and
rmex = 0.6 um. The following conclusions can be
drawn from the numerical data shown.

=

A. Intensity (Fy4)

The angular patterns of intensity are similar for
volume-equivalent prolate and oblate spheroids of the
same aspect ratio (the ratio of the largest to the
smallest particle dimension). As compared with the
equivalent spherical polydispersion, the size and size—
shape distributions of the larger spheroids (Figs. 2—4)
exhibit roughly the same forward scattering at scatter-
ing angles 0° to 30°, weaker side scattering at & €
[30°, 100°], stronger side scattering at & € [100°,
150°], and weaker backscattering at ¥ € [150°, 180°],
which is in good agreement with the calculations of
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Fig. 7. Elements of the scattering matrix as in Fig. 4 but for the smaller particles.

Hill et al.! and the conclusions of Wiscombe and
Mugnai.> The smaller spheroids (Figs. 5-7) do not
differ from volume-equivalent spheres in the range
[0°, 90°] and exhibit stronger side scattering at & €
[90°, 135°] and weaker backscattering at ¥ € [135°,
180°].

B. F22/F11

Although for spheres Fy/F,; = 1, for spheroidal
particles this ratio strongly depends on particle asphe-
ricity and can substantially deviate from unity. The
deviation is smaller for oblate spheroids than for
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prolate spheroids with the same aspect ratio, the
oblate—prolate difference being larger for the larger
particles. For all the nonspherical particles, the
ratio has a minimum near 135-150° and a maximum
near 160-165° (cf. Stammes3?).

C. Fs3/Fiyand Fu/Fiy

Unlike spherical particles, for all the spheroidal shapes
F33/F, = Fy/Fq,, the ratio Fy,/F, being larger than
F33/Fy (cf. Ref. 30). For oblate spheroids, Fi3/F}, is
closer to Fy/Fy; than for prolate spheroids of the
same aspect ratio, which is in agreement with the



Table 2. Optical Cross Sections for Scattering C,.,, Extinction C,,, and Absorption C,,,,, Albedo for Single Scattering w, and Asymmetry Parameter of
the Phase Function g for Polydisperse Spheres and Size and Size—Shape Distributions of Volume Equivalent Spheroids
With r,, = 0.5 pmand r,, = 1.5 pm

Particles Coca® Coxt® Caps® w g

S(0.6) 3.950 5.211 1.261 0.758 0.761
S(0.7) 3.781 5.035 1.254 0.751 0.752
5(0.83) 3.661 4.905 1.244 0.746 0.748
S(1.7) 4.012 5.277 1.265 0.760 0.754
S(1.4) 3.776 5.030 1.254 0.751 0.748
S(1.2) 3.661 4,905 1.244 0.746 0.747
(Prolate)® 3.797 5.050 1.253 0.752 0.754
(Oblate)* 3.816 5.071 1.254 0.753 0.750
(Total)? 3.807 5.060 1.254 0.752 0.752
Spheres 3.615 4,853 1.238 0.745 0.747

2In square micrometers.

bAverage over all prolate spheroids.
¢Average over all oblate spheroids.
dAverage all over all spheroids.

general inequality3!
|F33— Fag| < F1y — Fy (27)

(cf. Refs. 29, 30, and 32).

D. Linear Polarization (—F15/F11)

As in the case of intensity, angular patterns of linear
polarization are similar for volume-equivalent prolate
and oblate spheroids of the same aspect ratio. As is
seen from Figs. 8 and 9, as aspect ratio increases
linear polarization tends to be positive at a wider
range of scattering angles (cf. Refs. 29 and 30), and
prolate—oblate differences become more pronounced.

E. F34/F11

For the smaller particles, this ratio is practically
independent of particle shape. However, this is not
observed for the bigger particles, for which Fs,/F; is
different for the oblate and prolate spheroids and
spheres at scattering angles greater than 60°.

F. Optical Cross Sections, Single-Scattering Albedo, and
Asymmetry Parameter

As is seen from Table 2, for the size—shape distribu-
tions of the larger spheroids the optical cross sections
for scattering C,,, extinction C.;, and absorption
C.bs, single-scattering albedo, w, and asymmetry pa-
rameter of the phase function g are systematically
greater than those of the volume-equivalent spherical
polydispersion. However, as follows from Tables 2
and 3, for the moderately aspherical particles spheri-
cal-nonspherical differences are not large.

5. Concluding Remarks

In this paper, we have described a computational
scheme for rigorously calculating the light scattering
by size-shape distributions of randomly oriented
axially symmetric particles of a size comparable to a
wavelength. This scheme is based on the J-matrix
method, as extended to randomly oriented scatterers
in our recent paper,!! and a newly developed conver-

Table 3. Optical Cross Sections for Scattering, C,.,, Extinction, C,,, and Absorption, C,,,, Albedo for Single Scattering w, and Asymmetry Parameter
of the Phase Function g for ry,, = 0.2 um and rp,, = 0.6 pm

Particles Ceea® Cext® Cans® w g

5(0.6) 0.915 1.014 0.099 0.902 0.750
5(0.7) 0.911 1.011 0.099 0.902 0.744
S(0.83) 0.909 1.008 0.099 0.901 0.740
S(1.7) 0.908 1.007 0.099 0.902 0.749
S(1.4) 0.909 1.008 0.099 0.902 0.743
S(1.2) 0.909 1.008 0.099 0.901 0.740
(Prolate)® 0.912 1.011 0.099 0.902 0.745
(Oblate)* 0.909 1.008 0.099 0.902 0.744
(Total) 0.910 1.009 0.099 0.902 0.744
Spheres 0.908 1.008 0.100 0.901 0.739

%In square micrometers.

bAverage over all prolate spheroids.
cAverage over all oblate spheroids.
dAverage all over all spheroids.
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gence procedure that takes into account particular
features of the F-matrix approach, is especially suit-
able to the case of randomly oriented particles, and
enables one to reduce substantially computer time
and storage requirements. The computational
scheme described is efficient and allows the use of
moderate computers. For example, the calculation
of the curves displayed in Fig. 3 required only 40 CPU
minutes on an Amdahl 5870 computer, which is rated
at a speed of approximately 24 million instructions
per second, although this calculation included compu-
tations for 210 different nonspherical particles with
equal-volume-sphere size parameters up to 15.

In a sense, our computational scheme resembles
the statistical approach outlined by Bohren and Sing-
ham.6 Indeed, we do not calculate separately the
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Fig. 9. Linear polarization as in Fig. 8 but for oblate spheroids
with d = 3 (dashed curve) and 2 (dotted—dashed curve).
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elements of the scattering matrix for all possible
particle sizes, shapes, and orientations. Instead, the
ensemble-averaged expansion coefficients a,* to b°
are calculated and are then used in calculations of
either single or multiple light scattering. Moreover,
the orientational averaging step is completely avoided
by using the analytical method developed in Ref. 11.
The only difference is that our approach is based on
the J-matrix method instead of the coupled-dipole
method,3334 as proposed by Bohren and Singham.®

To model the scatter of particle sizes in real ensem-
bles, we used a moderately wide power law distribu-
tion of equal-volume-sphere radii and demonstrated
the necessity of macro-size averaging to make non-
spherical scattering curves sufficiently smooth and
representative. We have presented and discussed
results of computer calculations for volume-equiva-
lent polydispersions of spheres and size—shape distri-
butions of moderately aspherical prolate and oblate
spheroids with the index of refraction 1.5 + 0.02 i.
Like many other investigators that used theoretical
or experimental techniques to study various aspects
of nonspherical scattering (see, e.g., Refs. 1-6, 29, 30,
32, and 35-37), we have found that the angular
behavior of the elements of the scattering matrix for
nonspherical particles differs significantly from that
of the scattering matrix for equivalent spherical
particles. In particular, the size and size-shape
distributions of spheroids exhibit stronger side scat-
tering near 120° and weaker backscattering, the ratio
Fy/F;; of the elements of the scattering matrix
substantially deviates from unity, and the element
Fs; is greatly different from Fy,. For size distribu-
tions of volume-equivalent oblate and prolate sphe-
roids of the same aspect ratio, the ratios Fyy/F;,
Fy3/Fy;, and F3y/F);, can differ substantially and,
thus, are indicators of particle shape, whereas the
angular patterns of the intensity (Fy;) and linear
polarization (—Fy/F,;) are similar. With increasing
asphericity of oblate and prolate spheroids, linear
polarization tends to be positive at a wider range of
scattering angles. For all the nonspherical cases
considered, the ratio F,,/Fi; is larger than Fg;3/Fy;.
For oblate spheroids, the ratio Fy,/F;; is closer to
unity and Fs3/F is closer to Fy,/F,, than for volume-
equivalent prolate spheroids of the same aspect ratio.
For the size~shape distributions of moderately aspher-
ical spheroids, the optical cross sections, single-
scattering albedo, and asymmetry parameter of the
phase function do not differ substantially from those
of the volume-equivalent spheres. In general, as is
seen from Figs. 2-7 and Tables 2 and 3, all the
light-scattering characteristics are more shape-depen-
dent for larger particles.

Finally we note that although in this paper we
compared light-scattering properties of volume-
equivalent particles, some authors prefer to define
particle equivalence in terms of equal surface area or
equal averaged projected area (for randomly oriented
convex particles these two definitions are identical3®).



Equal-volume spheres are usually regarded as the
best replacement for nonspherical particles smaller
than the wavelength, because in this case scattering
depends primarily on particle volume, not particle
surface area. On the other hand, equal-projected-
area spheres are generally accepted as a proper
substitute for nonspherical particles much bigger
than the wavelength, because the diffraction inten-
sity peak depends primarily on the averaged projected
area. To make our study more complete, we re-
peated all our calculations assuming that r in Eqgs.
(10)—(13) and (24) was the radius of the equal-
projected-area sphere. However, because the parti-
cles considered were only moderately nonspherical
and had sizes of the order of the wavelength, the
results of these calculations were close to those
shown in Figs. 2-7 and Tables 2 and 3. Therefore
we were unable to conclude what definition of particle
equivalence should be preferred.

The author is indebted to J. Hansen, L. Travis, B.
Carlson, M. Sato, and E. Yanovitskij for valuable
discussions and to F. Kuik and an anonymous re-
viewer for useful comments on a preliminary version
of this paper. Ialso gratefully acknowledge program-
ming support from A. Wolf and A. Walker.
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