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The transfer of polarized radiation in a medium consisting of fully
oriented strongly elongated particles (infinite cylinders) is studied.
It is assumed that external linearly polarized radiation is incident
perpendicular to the particle axes. Sobolev's method is used to find
the radiation field in a semiinfinite homogeneous medium. Results of
numerical calculations are given for very slender cylinders ("Ray-
leigh" scattering) and compared with corresponding data for an all-
gas planetary atmosphere.

It was shown in [4] that the vector equation of radiation transfer in a
medium consisting of fully oriented strongly elongated particles (infinite
cylinders) can be split into two independent two-dimensional scalar transfer
equations when external linear.y polarized radiation 1s incident perpendicular

to the direction of particle orientation. For a plane-parallel medium these
equations have the form

cas® -"IL‘%T—]"-@- = — 1, (5,8,0) + B, (1, 0,8,), [="Lr, (1)

where the subscripts 7 and r correspond to the components polarized parallel
and perpendicular to the particle axes. The boundaries of the medium are as-
sumed to be parallel to the particle orientation direction. The angle 6&[—n, a]
characterizes the propagatlion direction of the scattered radiation. The ex-
ternal radiation is incident at an angle Goe=[—n/2, n/2]l. The angles 6 and 90 are

measured from the inner normal to the boundary of the medium; clockwise read-
ings correspond to positive values of the angle (Fig. 1, whose plane is per-
pendicular to the particle orientation direction).

The present paper is a continuation of [4]. It considers application of
V. V. Sobolev's method [6, Chap. V] to solution of Egs. (1) in the case of a
semiinfinite homogeneous atmosphere. The case of "Rayleigh" scattering, which
corresponds to the condition d « A (d is the particle diameter and A is the
wavelength of the light) 1s studied in detail and results of certain numerical
calculations are reported.

References to the formulas in [4] are given in the form (4.n), where n is
the formula number. Notation introduced there is generally not explained here.
© 1988 by Allerton Press, Inc.
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Fig. 1. Coordinates in plane perpendicular to direction of particle
orientation.

Fig. 2. Relative intensity (right-hand ordinate axis) and degree of
polarization of radiation exiting at phase angle o = 0 (u = uo).

Basic relationships of the general theory for a semiinfinite atmosphere.
In our problem, the source function Bj depends on two angle variables: 6e[—n, n)

and 6fes[—n/2, 7/2]. We shall assume for simplicity that 0e=([0, n/2], since 1t is
ocbvious from symmetry considerations that Ij(t, 8, —0)=I;(r;, —6, 8s). Using Sobolev's
method [6, Chap. V], we can express Bj(t, 6, o) in terms of a superposition of
functions each of which depends only on one angle variable.

Omitting the subscript j for brevity and denoting pe==cos o, pee=[0, 1], we write

an initial relation for the source function:

B0, o) = e | 1(5, 0, ) (0—0") 0" - - S%(0—0,) exp (— /) (2)

-
Presenting formula (4.16) in the form
x[cos(@—0y)] =1 +2 2 xy, [cos £8 cos £6, - sin £ sin £6,], (3)
A=

we obtain instead of (2)

B(5, 8, o) = By (v, o) + 2 ¥ % [Ba (% o) cos &0 +- B (v, o) sin 49], (4)
) =)
where
A t ’ ’ ’ A
By (7, po) = s S I (%, 0, py) cos k8°d0 +78exp(—r/p,,)coske,,, (5)
-
o) x ,‘ ’ : ’ 4 l .
By (%, ) = 5 S I(3,8", po) $in £0°d0” + 5 S exp (— /) sin 40 (6)

-i

Denoting u = cos 6,

, p>0, (7

b ’
’ =y dx’
e = [ B exp (—E5 ) T
; |
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0 , —'\ dt’
awmma=-ﬂawnmNW(~iIij7§.p<o (8)
T

(the ik are represented similarly), we obtain from (L)
Lt 0, o) = Iy (v. o) + 2 3 s U (0 1,y o) COS 4O+ T, (, p, 1) s £6). (9)
!

Rearranging in much the same way as in [6, Chap. V], we have
1

dp
By (%) o) = Ryo (10) D (7, o) -+ H (1) { Q4 (20 1) D (7, ) it 10)
n (Ty o) = Ryo (140) D (v, o uoofh(uu (ru)m—:—p, (

where D(0,p)=ASH (n)/2,

Qu (o 1) = ) 195 (o) + G5 (1] &y (1), (11)
=1

and the function D(t, u) is determined by the integral equation

D(t,p) = SK(lt—-—vl)D(t,p)dt -+ AS exp (— 1/p)/2, (12)
0
whose kernel
1 d}l )
K(x) = 6Y‘F0(P)EXP(—T/P);VT—3—F- (13)

The polynomials Rkj(u) that we have introduced here are analogs of the corre-
sponding Sobolev polynomials; they are determined from the recurrent relation

Rt (1) + Riwry (1) = (2= &) 1 (1 —Axy) Ry () (1)
and the initial conditions Ru(p)=1, Ry(p)=0 fork<j ((=012.). Here 61{']. is the
Kronecker delta. The expression for gkj(“) has the form
Zu (1) = Wao (1) Rus (1) — ¥, (1) Ryo (1), (15)
where
¥ = %[00+ 2 3 5y (0T, (] (16)

L]

and the T;(p)==cos [jarccos p] are Chebyshev polynomials of the first kind. The char-
acteristic function Wo(u) that appears in (13) is a polynomial of even degree

in y. As for the qj(uo), they are polynomials of degree n in Ho and can be
determined from the system of linear algebraic equations

n 1
%W=MW+ZM%H%ﬂW§&%%%£. (17)

fun}
Here H(u) 1s assumed to be known.

The formulas used to find the Eh(t.p.o) (#=1,2,3,..) are similar to those given
above:



By (5. 1) = [Rua (180) D (x 10) +

i ¢ (18)
+ H (i) g Qu (1o ) D (x, 1) VT =P |V T— 3,
0

where D(0,pn)=ASH (1)/2,

Qu (o) = ¥ (7 (o) + 7o (o)) s (1), (19)
j=2

g (1) = T2 () Ry () — ¥ (1) Ruw (), (20)
Z XUt () Ry (1), (21)

and the UF400-$nUammmpVV1——p“are Chebyshev polynomials of the second kind.
The function D(t, m) is determined by Egq. (12), in which

K(@)=K ()= g%(u)(l—u)exm—r/m qu_.ps (22)

where ¥,()(1—u?) is also an even polynomial in p and of the same degree as To(u).
As a result, the theory of finding the @k(r, uo) is formally no different from
the theory derived for the Bk(r, uo). Finally, the aj(uo) are polynomials of

degree n - 1 in Mg and can be found from the system of linear algebraic equa-
tions

91 (o) = Ry (o) + Z (74 (Ho) + 9,3 (0)] S g () H () Y T—pdp. (23)

(=2

Having determined the functions

W) = B O ) B () = 5 Ba (0.0, (24)

it is easy to obtain the following expression for the reflectance of a semi-
infinite atmosphere:

P (8,8) = 5 {20 (1) o (o) +

2p + Ho
n Ko i (25)
+2 Y (= 1o [on (1) 0 () F 9 () @ ()1} -
ol

The minus sign 1s taken in (25) for 0€[0,n2], and the plus sign for 0€[—n/2,0]. The
functions ¢k(u) and ¢k(u) can be found from the formulas

W= @WHM, @) =aM@H @Y T—g, (26)
In turn, the corresponding analogs of the Ambartsumyan-Chandrasekhar equa-

tions [6, Chap. V, § 3] can be derived for H(u) and H(u). That is to say, H(u)
satisfles the integral equatilon
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1
Wo (b)) M (p)dp’
H(p) =1+ piH o -
(w) B (u)oj(}L V= (27)

Since this implies

1

1§
gﬁ&ﬁ&&&&=1_{p_2§1ﬁggﬂﬂm (28)
) Vi—p Vi—p |’ :
we can write Eq. (27) in the alternative form
1 ) d 1R H W)Y, ()
iy =12 B )", (00w . .
H() [ ) VI W+ e VI—ne 0
There 1s also a linear singular equation with a Cauchy kernel:
1
Wy (u') H (p') dp’
H(u)T(u>=1+u§ oB) Hphdne o
PR — WY T—p? -
where
T W, (1) dp’
T@=14p| —2oblE 3
J W=y iT—p? (31)

We note that in the case at hand, in contrast to the three-dimensional medium,
the function T(p) for p€[0,1) is a polynomial in u of the same degree as the poly-

+1 1/2
nomial ¥ (u) since for p€l0,1) S (e — ) (1 —p'2)] " dp’ =0.
=1

The equatilons for the function H(u) differ in no respect from those given
above. In those equations, as we noted, it 1s sufficient to replace the poly-

nomial ¥ (u) with the polynomial ¥, (u)(1—p%, in which the function ¥,(un) is de-
termined by expression (21).

Thus, determination of the source functions Bu (tu»0,1) generally reduces
to solution of only four integral equations of the type (12) separately for
the functions Dy, (v..w) and Dy, (t.r B)-

Furthermore, as in the three-dimensional scalar case [10], the functions
Ly(topo ) and I (v, po i) can be expresged in terms of the corresponding reduced
radiation intensities J(v,m, i) and J(v, B, ). These functions can be expressed
directly in terms of D(t, u) and D(t, u) which are specified only at depth Tt
and on the upper boundary of the medium, i.e., no integration over a space
coordinate 1s necessary.

Thus, the only formal difference between the theory considered here and
the scalar three-dimensional theory of light scattering in planetary atmospheres
[6] 1s that the basic integral equation (12) has a kernel of the form (13) in
1
the former case and one of theform.K{ﬂ:agﬂﬂpympp—ﬂp)mdp in the latter, i.e.,
0

it does not have Y1—p* under the integral sign in the denominator.
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"Rayleigh" scattering. Let us apply the formulas derived above in the
simplest case of "Rayleigh" scattering, in which it is assumed that the diameter
of the cylindrical particles 1is much smaller than the wavelength of the light.
As we noted above, the present three-dimensional vector problem of radiation
transfer breaks up into two independent two-dimensional scalar problems, and
the corresponding scattering phase functions in our case will be [1, Chap. 8;

2, Chap. 15] %(0)==1, %(8) =1+4cos20. Let us consider these problems separately.

1. Scattering phase function %(@)=1. Omitting the subscript I for sim-
plicity, we have Wo(u)=A/zn, B(t, 0, mo) =B (1, po) =D (7, po) ,

Be ) %g Ko (18 —%1)D (¢, o) df + AS exp (—e/ito)/2, (32)
0
where

1 o
K _ (exp (—/p) dp= exp (— tx)dx
O(T) P:VI—[J-Z : sz——l (33)

is a Macdonald function.

It 1s interesting to note that Eq. (32) with kernel (33) is the electro-
magnetic-wave shore-refraction equation discussed in detail in [3,7]. Unfortu-
nately, 1t is not yet clear why the two physically different problems reduce

to a single equation.
We obtain for the reflectance

P (8,89) = A () H (Ro)/[2 (1t + o)l (34)

and the corresponding analog of the Ambartsumyan equation for the H function
has the form

1
%(u)=H(u)=l+;};-uH(u)Lp_*_i,(;‘}}?f____w. (35)

Equation (29) with the characteristic function We(n)=AMx was used to find numeri-
cal values of H(u). The equation was solved by an iterative procedure. The
technique proposed in [11] was used to accelerate convergence for conservative

or nearly conservative scattering. Calculated results for certain >‘Z appear
in Table 1.

In our case the function T(u) = 1 forpue[0,1). Therefore the method described

in [5, p. 150; 9] can be used to obtain the following explicit expression for
ST

1 —ku)(1 12
H = (Tt Ty == o) (36)

where & =]—A2

_In(in—p|)dn
s j(l B V=

In the conservative case (X = 1), formula (36) can be reduced to the form
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Table 1

Values of the Functilon Hz(u)

M
"
1000 | o095 | oors | oss0 | o0 | om0 | o070 | os00

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.1 11912 1.1791 1.1634 1.1512 1.1336 1.1082  1.0885 1.0570

0.2 1.3530 1.3259 1.2922 1.2671 1.2320 1.1835 1.1475 1.0926

0.3 1.5074 1.4627 1.4090 1.3700 1.3169 1.2461 1.1951 1.1202

0.4 1.6582 1.5934 1.5176 1.4640 1.3926 1.3001 1.2354 1.1428

0.5 1.8067 1.7195 1.6200 1.5511 1.4613 1.3478  1.2703 1.1619

0.6 1.9537 1.8418 1.7171 1.6324 1.5241 1.3904 1.3009 1.1783

0.7 2.0997 1.9609 1.8095 1.7088 1.5820 1.4288 1.3281 1.1925

0.8 2.2449 2.0770 1.8979 1.7807 1.6356 1.4636 1.3525 1.2051

0.9 2.3895 2.1905 1.9825 1.8487 1.6855 1.4954 1.3745 1.2162

1.0 2.5337 23016 2.0636 1.9132 1.7321 1.5246 1.3945 1.2262

H° (cos ) = (I + cos 8)"/* exp {[Cl, (/2 + 8) - Cl, (/2 — 0)]/n}, (37)
X
where Ch(ﬂ==—-gln[%kﬂymndy is the Clausen integral. In particular, for # = 0

0

we have H°(1) =7 2exp(2G/n) = 2.5337 ..., where G = Cl, (/2) =0.91597... is Catalan constant.

2. Scattering phase function %.(0)==1-4-cos26.

In this case x,
is omitted fo

= 1/2, and we have instead of (25) (the subscript r

P (8, 80) = A [y (1) By (1) + Pa (1) P (120) TF Py (12) Pg (o) VI2(1 + o),

where the characteristic functions
Wy () = 20 [1 — (2— M) 2 + 2 (1 — ) pé/m,
¥, () = 4hp/m.

For the ¢ functions we can derive the expressons

9o (1) = [1 + g (1) (0 — 22,)/2 + g1 (1) (0 — 29)] H (),

where q(w)=qo (1) + g, (1),

Py (1) = [2(1 —A) p2 — 1 4 otgq (0)/2 + @4, (0)] H (1),

2{1 =M [oy — &3 + (1 — oty + @) pf o

1) =g Fap F U =N — ) Qg —ay)

(1= M) (1 =y + &y — (1 — ) (225 — ay) ]

ﬁm:U—%+qHﬂ-M%“%W%"M’

e
&

0
s

and x, =
implicity):
(38)

(39)
(40)

(41)
(42)

(43)

&' %

and a,(#=0,1,2,...) denote the corresponding moments of the H functions:

an=

1
2 CH@ e
L S 7 T
0

(45)

The relation &—(2—A)a,+2(1—ANa,=1~—[(1—A) (2—A)2]"*, which proceeds from (28)

and (39), also holds.



Table 2

Values of the Function Hr(“) and Its Moments

Ar

1.000 0.995 0.975 | 0.950 ‘ 0.900 | 0.800 ! 0.700 0.500

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.2800 1.2761 1.2562 1.2396 1.2142 1.1755 1.1443 1.0934
1.5255 1.4935 1.4502 1.4158 1.3653 1.2920 1.2357 1.1484
1.7480 1.6940 1.6241 1.5705 1.4941 1.3875 1.3085 1.1903
1.9639 1.8845 1.7851 L7110 1.6082 1.4695 1.3696 1.2244
2.1760  2.0676 1.9362 1.8407 17113 1.5414 1.4222 1.2530
2.3856 22450  2.0792 1.9616 1.8054 1.6055 1.4683 1.2774
2.5933 24173 22152  2.0748 1.8921 1.6633 1.5092 1.2987
27998  2.5853 2.3449 2.1814 1.9722 1.7156 1.5459 1.3175
3.0052 27492  2.4691 2.2821 2.0467 1.7634 1.5789 1.3341
3.2099 29095  2.5881 23774 2.1163 1.8072 1.6089 1.3490

24492 22693  2.0396 1.8648 1.6174 2734 L0180  0.6335
1.7607 1.6148 1.4338 1.2996 1.1138  0.8627  0.6815  0.4163
1.4492 1.3231 1.1687 1.0554  0.9001 0.6928  0.5448 0.3306
1.2607 1.1480 1L.o112 09112  0.7752  0.5946  0.4665  0.2821

—O00000POOL
CwoNOnswo—O

L2288

In the conservative case (A = 1) we obtain instead of (41) and (42), re-
spectively.

Pd(w) = [1 + (2—a) p/af] HO(n); 93 (1) = (edn/af — 1) A (u), (L6)

where the superscript 0 is used to identify the values rthen A = 1. It can be
shown that el—a)=1, a)—al=12, (&})*—(a))'=1L

Finally,
s (1) = 2uH () YV T—pZ (47)

Values of the functilons Hr(U) and ﬁr(U) and the corresponding moments are

given in Tables 2 and 3. They were obtained by numerical solution of Eq. (29),
in which we substituted the characteristic function (39) and the polynomial

@100(1—1HL respectively, with @l(u) given by expression (40). Further, the

following values of the diffusion coefficient k , were calculated from Eq. (21 o2

r

A, 1,000 0.995 0.975 0.950 0.900 0.800 0.700 0.500

k. 0.0000  0.0998 0.2209 0.3086 0.4265 0.5781 0.6818  0.8250

They may be needed for use with the asymptotic formulas given in raj.

3. Milne problem for conservative scattering. Using formulas (4.35);
(34) and (35), it 1is easily found that u(arccos p)= [ (p)/)/2. Similarly, we find
u? (arccos p) = (9% (1) + % (WI/(2p) = H(w)/a®, from (L.35), (38) and (46).

Thus, we now have all of the formulas and tables necessary to find the
Stokes parameters IZ and Ir of radiation exiting a semiinfinite homogeneous

medium after "Rayleigh" scattering within the frame work of the present vector
transfer problem.

Comparison of characteristics of radiation exiting isotropic and aniso-
tropic Rayleigh atmospheres. As we know, many scattering media (and planetary
atmospheres in particular) contain considerable numbers of partially or fully
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Table 3

Values of the Function ﬁr(u)

Ar

1.000 ‘ 0.995 0.975 0.950 0.900 I 0.800 I 0.700 ‘ 0.500

1.0000 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0425 1.0422 1.0412 1.0399 1.0374 1.0325 1.0278 1.0191
1.0760 1.0755 1.0736 1.0712 1.0665 1.0576 1.0492 1.0335
1.1035 1.1028 1.1001 1.0967 1.0903 1.0779 1.0663 1.0450

1.1266 1.1257 1.1223 1.1182 11101 1.0948 1.0805 1.0544
1.1464 1.1453 1.1414 1.1365 1.1270 1.1091 1.0925 1.0622
1.1635 1.1624 1.1579 1.1523 1.1416 11214 1.1027 1.0689
1.1785 1.1773 1.1723 1.1662 1.1544 1.1321 L1116 1.0747
1.1918 1.1905 1.1850 1.1784 1.1656 11415 1.1194 1.0797
1.2037 1.2022 1.1964 1.1893 1.1756 1.1499 1.1263 1.0841

~O000000000
COBNONRAWN—DO

1.2143 1.2127 1.2066 1.1990 1.1845 1.16573 1.1324 1.0880

orilented nonspherical particles. Calculation of radiation fields is an ex-
tremely difficult problem in such media. Accordingly, there is definite in-
terest in comparison of the intensities and degrees of polarization on the
basis of exact calculations in two extreme particular cases: in an isotropic
medium with Rayleigh scattering and in an anisotropilc medium that consists of
fully oriented slender ("Rayleigh") cylinders. This comparison will permit
rigorous evaluation cf the degree to which the anisotropy of the medium influ-
ences the characteristics of the scattered radiation.

Because of the differences in the scattering geometries in isotropic and
anisotropic media, 1t is possible to compare only dimensionless characteristics
of the radiation - its relative intensity (brightness distribution) and degree
of polarization. In fact, light incident along the normal to the axis of an
infinite cylinder is scattered only in the plane perpendicular to the axis and
not in all directions, as in the case of a particle of finite size. Therefore

the very dimensions of the Stokes parameters change: J/(cm2-sec-rad) dn sthe
anisotropic case instead of J(cm2-sec-sr) in the isotropic case.

As we know [8, Chap. I], the intensity I and degree of polarization P of
radiation are found from the formulas

I=I +1Iy, P=(I,—I)I, (48)

where the subscripts L and | pertain to the radiations polarized perpendicular
and parallel, respectively, to the plane that contains the light-propagation
direction and the normal to the boundary of the medium (the meridilonal plane).
In our anisotropic medium, the meridional plane 1is perpendicular to the particle
axes. Therefore formulas (48) assume the form la==Iliatlrs, Pa= (lta—Ira){l.. Here and
below, the subscripts a and i will identify radiation characteristics in aniso-
tropi and isotropilc media, respectively.

Let us compare the characteristics of radiation exiting a semiinfinite
homogeneous conservatively scattering medium. The radiation incident on the
medium is assumed to be unpolarized. In the case of the anisotropic medium,
the radiation falls perpendlicular to the particle orientation direction. I4(0, 6, 8o)
and Paq(0, 6, 80) are calculated from the formulas and tables given above and (0, g, o,
¢) and Pi(0, p, po, ) from the formulas and tables of [8, Chap. X].

Curves 1 and 2 in Fig. 2 represent [i(p)=/1i(0, —p, p, 0)/[:(0, —1, 1, x) and P:(0, —p,
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Fig. 3. The same as Fig. 4. The same as
Blg. 5 2: for Mg = 0. Fig. 2 in Milne problem.

p, n), pe[0, 1], which describe the brightness distribution and degree of polari-
zation of the reflected radiation along the intensity equator of a planet with
an all-gas atmosphere at phase angle a = 0. Curves 3 and 4 represent the aniso-
tropic analogs of these quantities, [la(n)=/a(0, n—arccosp, —arccos p)/l4(0, =, 0) and

Pq(0, m—arccos p, —arccos ). We see that the differences between the brightness dis-
tribution curves are comparatively minor. A%t the same time, the polarization
curves differ strongly, and the difference becomes fundamental at p = 0 and

u =1, This 1s because only first-order scattering, which is unpolarized in
the isotropic case and has a 33.3(3)% degree of polarization in the anisotropic
case, contributes to the reflected radiation when w = 0. When u = 1, the iso-
troplic medium possesses axial symmetry, so that the emerging radiation is un-
polarized. The anisotropic medium does not possess such symmetry when u = 1.
Therefore the degree of polarization of the exiting radiation is nonzero.

For comparison, Fig. 2 includes a curve of P;=[ha——Lu—-Uﬂ——ﬁ2ﬂﬂa (curve 5),

where ﬁ? and ﬁ? describe the contribution of first-order scattering. The curve
of the analogous P'; coincides with curve 2 in this case. PYiis equal to the

degree of polarization of the reflected radiation if the singly scattered exit-
ing radiation is unpolarized. Qualitatively, curve 2 and 5 behave practically
identically. In particular, P'a is near zero at the point w = 1. This indicates

that photons that have been scattered two or more times have little "memory" of
the anlisotropy of the medium.

Figure 3 shows curves of the same quantities, but for the case in which the
light is incident along the normal to the boundary of the medium (uo 2400 i The

relative intensities Fj(u)==1;(0, —p, 1, 0)/1:(0, —1, 1, 0) and [a(n)=1Ia(0, m—arccos u, 0)//4(0, =, 0)
were equal at the accuracy with which the curves could be plotted (curve 1). The
degrees of polarization Pi(0, —pu, 1, 0) (curve 2) and Pa(0, x—arccosp, 0) (curve 3) differ
insignificantly, but the difference again becomes fundamental for p = 1. Curves
4 and 5 represent P/ (0, —u, 1, 0) and P."(0, n—arccosp, 0), and do not include the con-
tribution of first-order scattering to the polarization of the escaping radi-
ation. Qualitatively, these quantities behave practically identically (in par-
ticular, near u = 1), which again confirms out inference that the anisotropy of

the medium is a decisive factor in the polarization of only the singly scattered
light.
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Finally, let us consider the Milne problem, numerical results for which
appear in Fig. 4. In this case, all of the photons exlting the_medium have been
multiply scattered. We see that both the relative intensities wi(p) =ui(p)/u (1)
(curve 1) and da(pw)==uq(arccos p)/ua(0)(curve 3) and the degrees of polarization Pi(u)

(curve 2) and Pa(arccosp) (curve U4) practically coincided. Although Pa does not
vanish at p = 1 (axial symmetry is absent), it is still quite small.

Thus, we may draw the following conclusions as to the influence of anisotropy
on the characteristics of the escaping radiation in the case of conservative
Rayleigh scattering from the numerical results presented above: 1) anisotropy
of the medium has a strong influence on the degree of polarization of only the
singly scattered radiation, and the qualitative behavior of the degree of polari-
zation of light scattered two or more times in an anisotropilic medium is found to
be practically the same as in the isotropic case; 2) anisotropy of the medium

has practically no influence on the relative angular dependence of exiting-
radiation intensity.

Needless to say, these conclusions require further careful study in cases
in which the light 1s scattered on coarse absorbing and nonabsorbing particles.
It would be expected that the difference between the isotroplc and anisotropic
media would be much smaller in this case (see, for example, [1, Chap. 8]). In
any event, it should be noted that the estimates given above for the influence
of anisotropy on escaping-radiation characteristics in the Rayleigh case are

based on rigorous calculations and, to the best of our knowledge, have not been
made previously.
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