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In thils paper, we discuss the transfer of polarized radiation in a
homogeneous, plane-parallel medium consisting of completely oriented
highly elongated particles (infinite cylinders) when linearly polar-
ized radiation is incident perpendicular to the orientation of the
particles. It 1s shown that the scattering problem is geometrically
two-dimensional; the vector equation of transfer splits into two 1in-
dependent two-dimensional scalar equations of transfer. The main

equatlons and formulas are given for the case of a semi-infinite medi-
um.

INTRODUCTION

The study of the optical properties of anisotropic medla containing par-
tially or completely oriented aspherical particles is an important part of many
problems in astrophysics and atmospheric optics. Since it 1is very complicated
to calculate the characteristics of electrimagnetic radiation scattered by a-
spherical particles of arbitrary shape and orientation, there is some value in
approximating these particles by the simplest aspherical particle for which the
scattering problem has been rigorously solved - an infinite cylinder of circular
cross section [3,7]. Of course, this is a quite crude approximation; however,
highly elongated particles (for which this approximation yields good results)
do occur in nature. Examples include the ice needles in terrestrial ice clouds;
these needles range up to 3 mm in length, with a diameter of up to 150 um [3].
The infinite cylinder approximation is frequently used in studying the optical
properties of interstellar dust grains, which are generally aspherical and par-

tlally orilented, as indicated by the existence of interstellar light polariza-
tion [6,9].

It 1s well known [7] that when a plane electromagnetic wave 1s incident on
an infinite circular cylinder at an angle o to the axis of the cylinder, the
scattered radiation lies on the surface of a cone with vertex angle 2a. The
axis of this cone colncides with the axls of the cylinder. If a cylinder of the
same dlameter has a finite length L, the scattering results in a divergent spher-
ical wave; the amplitude functions for a finite cylinder with L > X and L >» d
(X 1s the wavelength of the light, and d is the diameter of the cylinder) only
differ from the analogous characteristics for light scattered by an infinite
cylinder by an additional factor of [3]
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due to diffraction at the ends of the cylinder. This factor has an asymptotic

Lo
R(L) —> 2n8(cosp — cosa) , where ¢ 1s the angle between the scattered light and the
cylinder axls, and &8(x) is the Dirac delta function.

Thus, the lntensity of the scattered radiation 1s highest for directions
lying on the surface of the infinite-cylinder scattering cone. This maximum
turns out to be sharper for longer cyllnders. Thls simple relatlonship in fact
allows us to estimate the accuracy of the results when a highly elongated finite
particle 1s replaced by an infinite cylinder.

The orientation of the aspherical particles has been measured in inter-
stellar dust clouds and the atmospheres of several planets. A model with in-
finite cylinders oriented in a certain plane [3,4,6,7] or perfectly oriented

along some preferred axis [4,5,7,16] 1s frequently used in studyilng the optical
propertlies of such media.

The problem of the transfer of polarized light 1n anisotropic media i1s so
complex that 1t 1s difficult to expect success from analytical solution methods
in the general case. Those rare cases when these methods allow the problem to
be completely solved are therefore of great value. On the one hand, the exact
solutlons to the factor equation of transfer can to some extent be used in prac-
tice, with some simplifying assumpticons; on the other hand, they are a limiting

case for more general, strictly posed problems, and are required for testing
both numerical and approximate methods.

One such limlting case - an isotropic medium consisting of spherical par-
ticles - 1s the approximation generally used in the interpretation of planetary
polarimetric observations. Approximating highly elongated perfectly oriented
particles by infinite cylinders allows us to discuss another special case which
admits of a simple, exact solutlion to the vector equation of transfer.

Infinite cylinders of arbitrary cross section have the remarkable property
that at large distances, the scattered wave for an electromagnetic wave 1s in-
cldent on the cylinder perpendicular to i1ts axis 1s cylindrical, the scattering
plane 1s perpendicular to the cylinder axis, and the scattering problem 1is geo-
metrically two-dimensional, where "two-dimensional" 1s understood to mean that
the characteristics of the scattered light depend on only two eoordinates spe-
cified in the plane perpendicular to the cylinder axis. If the scattering me-
dlum consists of perfectly oriented cylinders, and the light 1s incident per-
pendicular to thelr axes, this two-dimensilonality will be preserved in each
scattering event, thus making the entire scattering problem for the pllarized
radlation two-dimensional. Since the scattering plane in this case 1s always
in the same position - perpendicular to the axes of the particles, the phase
matrix is identical to the scattering matrix. If the cylinders have clrcular
(or chaotically oriented) cross sections perpendicular to the direction of ori-
entation, the phase matrix, which corresponds to the set of Stokes parameters
{IZ, I, U, V},will be of the form [1, Chap. 8; 2, Chap. 15]
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where 6 1s the scattering angle. The actual form of the functions in matrix
(2) is determined by the index of. refraction of the cylinders and the distribu-
tion of the cylinders over diameter.

Thus, 1f we approximate the particles in a medium consisting of highly
elongated particles by infinite cylinders, and examine the case when linearly
polarized light (U = V = 0) is incident perpendicular to the orientation of the
particles, the phase matrix will be of the form (32), the scattered radiation
will also be linearly polarized, light polarized parallel to the particle axes
will be scattered independently from the radiation polarized perpendicular to
the axes, and the vector equation of transfer for a plane layer in a three-di-
mensional medium splits into two independent two-dimensional scalar equations
for these components of the radiation; these equations have a rigorous analyti-
cal solution in the case of a semi-infinite homogeneous medium. In the general
case, when the 1ncident radiation is elliptically polarized, (2) implies that
the complete solution of the problem requires another system of two equations
of transfer independent of the preceding equations be included in the discussion.

Understandably, the finite length of the real particles means that radia-
tion will not be scattered only in the plane perpendicular to the direction of
orlentation of the particles. However, the intensity of the scattered radia-
tion will be highest in this plane, and (1) implies that the assumptions made
here will be more accurate for the longer, narrower particles.

And so, under the assumptions mentioned above, the transfer of polarized
light in a medlium consisting of highly elongated particles when linearly polar-
ized light 1s incident from the exterior in a plane perpendicular to the direc-
tion of orlentation of the particles is described by two independent two-dimen-
sional scalar equations of transfer:

dl ;
de=—alite j=bLr,
where aJ and ej are, respectively, the extinction and emission coefficients.

The subscripts 7 and r correspond to light polarized parallel and perpendicular
to the orientation of the particles, respectively. These equations take the
following form in the case of a plane-parallel medium:

cose—‘-i-l-‘!a(-::'ﬁ-E—fj(The)"i-&(ﬁe)- (3)

where TJ 1s optical depth and BJ(TJ’ @) 1s the source function. It 1s assumed

that the boundaries of the medium are parallel to the particle axes; the con-
vention for the angles i1s shown in Fig. 1, whose plane is perpendicular to the
orientation of the particles, and thus lies in the plane of scattering. We
write the following expression for the source function

By(e©) = L [ I;(,,0%,(0 — 0)d0’ + B} (x,, 0) (1)

i
Ul



5,

P LVl

T=b

o )
~

Fig. 1. Coordinates in the plane
perpendicular to the directlion of
orlentation of the particles.

where AJ = GJ/GJ 1s the single scattering albedo, the UJ are the scattering co-
efficients, and the xj(e) are the scattering indilcatrices, 1.e., the elements
of scattering matrix (2), which have the following normalization condition

Bl

1
FS 25(6)d0 = 1. (5)
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The functions BJ (TJ, 8) describe the internal radiation sources. Formulae for

calculating AJ, aj, and the functions xj(e) for infinite circulad eyllinders Wwith

arbitrary complex index of refraction are given in [2, Ch. 15; 1, Ch. 8]. A
program appropriate for computer calculation is presented in [1, App. B].

The methods developed for solving the usual three-dimensional equation of
transfer (see, for example, [12,18]) are entirely suitable for solving equations
(3) and (4). It is even simpler to obtain the solution to thils particular form
of the vector equation than it 1is for the usual scalar equation, since the scat-
tering problem 1s planar, and it 1s not necessary to separate out the azimuthal
dependence by expanding the scattering indicatrix Xj in series of Legendre poly-

nomials and using the superposition theorem for spherical functions.

We shall now present the baslic formulae for the case of a semi-Infinite
homogeneous medium. In doing so, we shall generally omit the derivations of
the formulae, since theyreduce to an almost complete repetition of the corre-

sponding computations for obtaining the analogous expressions for a three-di-
mensional medium in the scalar case.

COLLIMATED INCIDENT BEAM

Suppose that a collimated beam of linearly polarized light TrSJ (g =1, r)

is incldent on the boundary of a homogeneous, semi-infinite medium consisting
of completely oriented cylindrical particles with infinite length from the ex-
terior at an angle 6o=[—n/2, n/2]. The source function 1s then given by equation

(4), where Bj*(1j 6, Bo)==—2~’-ij,(e—eo) exp(—tjfcos B). After determining the matrix for
the reflection of light by the semi-infinite medium using the relations



T
"(e'e"’_[ 0 p,w.eo)]'

S.fpi (9, 90) COSBD b [}(O,TE-- 9,90), eE ["_ 3/2' ﬂ/2]_

(6)

we find that (where the subscript j has been omitted for simplicity)

n/2
Sp (8,8,) (cos 6 + cos8,) = B (0, n— 0, 8,) - °°;9 [ 00.0)80,0,0,)a0", (7)
—n/2
A cos®, ™ | ) )
B(O-B,Bo)=73[x(9—eo)+ 2% | (@010 +0 +u)de]- (8)
—/2

Substituting (8) into (7), we obtain the following two-dimensional analog of
the Ambartsumyan integral equation:

7\ /2
P (8, 8) (cos B +- cos B) = = [x (® +8 +n) + °°ff’° [ p(0".8) 1(6'—0) do’+

-—gtf2
088 " 0 6’ ., cosOcos, ™
< | P(8,0)(8"—B))db + =" [ p@,0)d0" x (9)
-n/2 —n/2
n/2 .
x| e 8@ +0 4 w0,

—n/2

+

The following symmetry relations are valid for the elements of the reflection
matrix: p(0,0) =p(0,0)=p(—0,—8,), 0,0,€ [— n/2, 1/2].

Equation (9) may be solved (for example) by iteration. Using equation (30)
for conservative or nearly conservative scattering enables the rate of conver-
gence of the iterative process to be increased (15).

TWO-DIMENSIONAL INFINITE MEDIUM

Suppose that we have an infinite two-dimensional medium with sources of
infinite power located at minus infinity. The equation of transfer in this
case (as before, we omit the subscript j) takes the following form:

dl (7,0 AT , i
cos 08B0 7 (z,0) +§;_gsru(r.e)x(e——e)da. (10)

the condition Im(r, 8) » 0 as T + = must be satisfied in nonconservative scat-
tering. The maln soluticn mode for equation (10) is gilven by the expression

I.,,(T, e) - i(e) exp('— kT)r (ll)
where the function 1(8) = i(-8)
0 (1— hoos8) = 1 [ 1(9)3(0—8)do, (12)

and the diffusion index k is the minimum root of characteristic equation (12)
on the interval (0,1]. Further, it is assumed that
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%5i(8)d9= 1. (13)

Equatlons (5) and (12) imply that k = 0 and 1(8) = 1 for conservative scattering
(A = 1) and an arbitrary scattering indicatrix.

For isotropic scattering, we find from equation (12) that
{(0) = (1 —kcos0)™". (14)
Substituting (14) into (13) yilelds
k=1 T=3% (15)

Thus, there 1s an expliclt expression for the diffusion exponent for iso-
troplic scattering in a two-dimensional medium, just as there is in the case of
a one-dimensional medium (where k = V1 = X).

Writing the scattering indicatrix in the form of a Fourier series expan-
sion, we have

X(cos8) = 1 + 2 3 x, cos n6, (16)

N=m]
where

ELg
X, = ?ll— _\ % (cos 8) cos n0d, (17)
0

and we always have [x | < 1. From (12) and (16) we find that

i(B)(l—kcosB)=[+2Ex,,c,,cosne, (it

na=|

where

f i (0) cos n8de. (19)
0

Using the addition formulae for the trigonometric formulae, we may easlily obtain
a recurrence relation for the b from (18):

al>

Cph =

Cni1 -+ Cny =2(l'_"a'xn)cnfkt (20)

with B 1 and c, = (1 - X)/k. Using (20), the characteristic equation for
determining k may be written in the form of the following continued fraction:

1—12 k’ k’ . (21)
o ey T

It may be shown that 1f the scattering matrix can be represented by only n terms
in the Fourler series expansion, the characteristic equation is then an n-th

degree polynomial in kz.

In nearly conservative scattering (1 - X << 1), (18), (20), and (21) imply
the asymptotic representations

¢
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k=V§T1_~“xT(T?£5{1+§( 41 I )(J—A)+ou1—x)=z}. (22)

lmxl_—iz(l«—-xz)

i(9)=1+]/11:x}; cosa+(1+ o 20 )(1mx)+0[(1—x)“”1. (23)

1—x,

INVARIANCE RELATIONS

On the basis of the generalized invariance principle [10,11], we may write
for all

/2

I(v+7,6,0,) = _11? | T(11,0,00) 1 (7,0, 0 d0" 4 I (1, 8, 85) X

—7t/2 - (2 4 )
X exp (—7,/cos 8y) + I (74, 8, 6,) exp (— t/cos 0) (—2- — 18] ) i

where 0(x) is the unit step function. Equation (24) immediately implies the
doubling formula [11]

n/2

I1(2%,0,8) = ~ ( I(z,0,0,)1(x,0,0%d0 +
0 T 0

i - (25)
+I(,8,96,) [exp (— t/cos 6y) 4 exp (— t/cos 0) 8(?— (9] )] :

which leads to a simple algorithm for numerical calculation of the internal
radiation field [8]. The following asymptotic expression for the radiation
intensity in the deep layers of the medium (t > 1) [12, Ch. II] must be kept
in mind:

I*(x, 8, 8,) = i (B) u(B,) cos 0, exp (— k), (26)

where the function u(eo) (the boundary value for the intensity in the Milne
problem) 1s normalized according to the condition

9 /2
— | u(8)1(8) cos a0 = 1. (27)
0

Treating the upper and lower half-spaces in the infinite medium separately,
we obtain the following two invarilance relations (8&[—=n,n]) [11] when (11) is
taken into account:

/2
i(e)exp(—-k':]=—:t— 3‘! I(t,ﬂ,B')i(B')dG’+i(6)exp(~v]cos&)9(—3—|ﬂ|), (28)
—/2

/2
[ — B exp (i) = MI (5,6) = | 1(,8,0)i(n—0)d0" +

—r/2

2
+i(n—e)exp(—-'rlcose)e(-g-—lﬂI), (29)

where I(t, 6) 1s the radiation intensity in the Milne problem and M 1s a nor-
malization factor. Setting tv = 0 in (28) and (29), and taking into account the
fact that by definitiocn, u(8)=1(0, n—0), 8=[—n/2, #/2] , we obtain two important
analogs of the Van de Hulst-Sobolev relations [18, Ch. 5; 12, Ch. II]:

n/2
i —0) = | p(8,07(8)cos0dd, (30)
—7/2

e
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0) = Mu(8) + "f 0 (0, 8") i (m — 6) cos 0'de, (31)

—-1/2

Taking (27) into account, we find from (30) and (31) that

S i2(0) cos 040, (32)
0

Mt
n

For nearly conservative scattering, this quantity is (as implied by (32) and
(33) given by the expression

M=2|/—:——i+0[(1-—x)“”1. (33)
— Xy

Using equations (28) and (29) and taking (22), (23), and (33) into account al-

lows us to obtaln the conservative limit of expression (29) [11]:
n/2

Io(t,0) = V(1 —x)t + % | 10(c,8,0 cos'dd’ —
~an (34)
_[1 — exp(— /cos8) © (; —-lB])]cose.

Both here and below, we shall denote values under conservative scattering by
the subscript "o."

An analog of Chandrasekhar's formula [13, §29.3] follows from (34) with
T = 0:

n/2
iy (8) = cosB + % S Po (0, 8') cos? 6°dp”. (35)

-—/2
Finally, using an analog of Chandrasekhar's invariance relation (13, §29.170;:

I(t,n—6,0,) =p(0,0,)exp (— t/cos B,) cos B, +

|- (36)
+o | 1(50,8)p(@,0)cos 0",

—1f2

which follows from (24) with t = 0, and expressions (30) and (31), we obtain the
following intensity-squared integrals of the equaticn of transfer in a two-dimen-
sional medium [14] (T, T, 2 0 and 8, 6:=[—n/2, n/2]):

1 ¢ r ’ 7 00
;_5“!(1,:: —0,8)7 (7,0, 8,) cos0'd0’ = I (v;, n — 0, 0,) exp (—1/ cos B) cos 0— (37)

—I'(t,n — 0;, 6) exp (— 7,/cos 0,) cos 6,

-In- f 1(x,0,8)i(n —6)cos0'dd’ = — i (it — B) exp (— 7/cos 8) cos 6, (38)

T

-;l‘- S I(7,0,0)i(8") cos8'dd’ = [Mu (8) exp (— k1) — i (8) exp (— </cos )] cos 6. (39}
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We shall alsc present two formulas for the case of nearly conservative

scattering (1 - A « 1). By analogy with the three-dimenslonal case, we have
[18, che IL]:

ST=0N

P80 = 2o 0,0) — ]/ 5 %(9) (09 + 0 (1—1), (40)
u(9)=un(6)(l—vn V 1=2)+ou—w, (41)
where
2 ::,_'2
To=— S u, (8) cos? 040. (42)

Thus, we have obtained all of the necessary relations which will allow us
to determine the radiation field in a medium consisting of completely oriented
highly elongated particles illuminated from the outside by linearly polarized
light perpendicular to the orientation of the particles. This problem may also
be solved by another, now classical, method due to Sobolev Ee s Ch,s Vs VI,

In conclusion, we should note that although the two-dimensional scalar
equation of transfer was obtained in discussing a particular physical problem,
its range of application may turn out to be even broader. First of all, the
two-dimensional approximation allows one to take the angular structure of the
radiation into account and is thus not subject to the main drawback of the one-
dimensional approximation to the equation of transfer, which 1is, because of its
simplicity, widely used in many branches of physics. Second, there are also
other problems in physics with two dimensional geometry that lead to similar
equations. In particular, as it turns out, the two-dimensional integral for
the source function in the case of isotroplc scattering is identical to the
edge-diffraction equation for electromagnetic waves and thus makes physical
sense in a certain way. This is why, in our view, the scalar two-dimensional
equation of transfer 1s worthy of study on its own merits.
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