Digital holographic imaging of rough surfaces

Peter A. Andersona, Matthew J. Berga, Gorden Videenb, and Nava Subedic

aKansas State University Department of Physics, Manhattan, KS 66506, USA
bU.S. Army Research Laboratory, Adelphi, MD 20782, USA
cMississippi State University Department of Physics, Mississippi State, MS 39759, USA

This presentation is focused on explaining a technique that will provide insight on the structure of rough surfaces. We have constructed what is essentially a Michelson interferometer; one arm illuminates the surface and collects the back-scattered light, and the other arm provides the reference beam. Both beams then interfere and create the hologram, which is recorded on a CCD. Some surfaces we have measured include a window with ragweed pollen, a cluster of fiberglass, and deposited salt crystals on a slide. Thus far, we have successfully generated two dimensional images of these surfaces with a resolution on the order of \(\sim 3-4\) micrometers. The goal is to extend this by generating a three dimensional model of the surface in question.

Preferred mode of presentation: Oral