A framework based on 2-D Taylor expansion for quantifying the impacts of sub-pixel reflectance variance and covariance on cloud optical thickness and effective radius retrievals based on the bi-spectral method

Z. Zhanga,b,*, F. Wernerb, H.-M. Choc, G. Windd,e, S. Platnickd, A. S. Ackermanf,
L. Di Girolamog, A. Marshakd, and K. Meyerd

aPhysics Department, UMBC, Baltimore, MD, USA
bJoint Center for Earth Systems Technology, UMBC, Baltimore, MD, USA
cElectronics and Telecommunications Research Institute, Korea
dNASA Goddard Space Flight Center, Greenbelt, MD, USA
eScience Systems and Applications, Inc., Maryland 20706, USA
fNASA Goddard Institute for Space Studies, New York City, NY, USA
gDepartment of Atmospheric Sciences, University of Illinois, Urbana-Champaign, IL, USA

*Presenting author (zhibo.zhang@umbc.edu)

The bi-spectral method retrieves cloud optical thickness τ and cloud droplet effective radius r_e simultaneously from a pair of cloud reflectance observations, one in a visible or near infrared (VIS/NIR) band and the other in a shortwave-infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring sub-pixel variations of cloud reflectances can lead to a significant bias in the retrieved τ and r_e. In the literature, the retrievals of τ and r_e are often assumed to be independent and considered separately when investigating the impact of sub-pixel cloud reflectance variations on the bi-spectral method. As a result, the impact on τ is contributed only by the sub-pixel variation of VIS/NIR band reflectance and the impact on r_e only by the sub-pixel variation of SWIR band reflectance.

In our new framework, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of sub-pixel variances of VIS/NIR and SWIR cloud reflectances and their covariance on the τ and r_e retrievals. This framework takes into account the fact that the retrievals are determined by both VIS/NIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how sub-pixel cloud reflectance variations impact the τ and r_e retrievals based on the bi-spectral method. In particular, our framework provides a mathematical explanation of how the sub-pixel variation in VIS/NIR band influences the r_e retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in r_e retrievals, leading to a potential contribution of positive bias to the r_e retrieval. We test our framework using synthetic cloud fields from a large-eddy simulation and real observations from MODIS. The predicted results based on our framework agree very well with the numerical simulations. Our framework can be used to estimate the retrieval uncertainty from sub-pixel reflectance variations in operational satellite cloud products and to help understand the differences in τ and r_e retrievals between two instruments.

Preferred mode of presentation: Oral (or Poster)