Extended surface/atmosphere characterization using GRASP: new possibilities of classification and global aerosol sources identification

Pavel Lytvynova,*, Oleg Dubovikb, Cheng Chena, David Fuertesa, Anton Lopatina, Tatyana Lapyonokb, Fabrice Ducosb, Benjamin Torresb, Yevgeny Derimianb, Moritz Wanzenboeckc, Michael Aspetsbergerc, Andreas Hanglerc, Stefan Ambergerc, Petrut Cobarzanc, Daniel Marthc and Christoph Holterc, and Verena Lanzingerc

aGRASP SAS, Remote Sensing Developments, Lille, France
bLaboratoire d'Optique Atmosphérique, CNRS/University of Lille, Lille, France
cCatalysts GmbH, High Performance Computing, Linz, Austria

*Presenting author (Pavel.Litvinov@grasp-sas.com)

Remote sensing is the main source of information about global state of atmosphere and surface. During the last decade a big progress has been achieved in aerosol, cloud and trace gasses characterization from space-borne remote sensing.

The recently developed Generalized Retrieval of Aerosol and Surface Properties (GRASP) approach has offered new possibilities for complete and accurate retrieval of aerosol and surface [1,2]. GRASP is based on statistically optimized inversion combined with the use of advanced forward models of aerosol and surface scattering [1,3,4].

In this presentation, using GRASP retrievals from multi-angle photopolarimetric PARASOL measurements, we discuss possibilities and challenges of aerosol/surface classification in multi-dimensional space of retrieved parameters. Using this classification we investigate correlation of aerosol types with surfaces properties both over land and ocean. It will be demonstrated how the new-found intrinsic relations between the surface and aerosol properties can be used for global aerosol sources identification and aerosol transport tracking.

References

Preferred mode of presentation: Oral