NASA News & Feature Releases

NASA, NOAA Data Show 2016 Warmest Year on Record Globally

Earth's 2016 surface temperatures were the warmest since modern recordkeeping began in 1880, according to independent analyses by NASA and the National Oceanic and Atmospheric Administration (NOAA).

Globally-averaged temperatures in 2016 were 1.78 degrees Fahrenheit (0.99 degrees Celsius) warmer than the mid-20th century mean. This makes 2016 the third year in a row to set a new record for global average surface temperatures.

Earth's average surface temperature has risen about 2.0 degrees Fahrenheit (1.1 degrees Celsius) since the late 19th century, a trend seen in this visualization of temperature change from 1880 to 2016, as analyzed by NASA's Goddard Institute for Space Studies. (Credit: NASA/GSFC/Scientific Visualization Studio)
+ Download video

The 2016 temperatures continue a long-term warming trend, according to analyses by scientists at NASA's Goddard Institute for Space Studies (GISS) in New York. NOAA scientists concur with the finding that 2016 was the warmest year on record based on separate, independent analyses of the data.

Because weather station locations and measurement practices change over time, there are uncertainties in the interpretation of specific year-to-year global mean temperature differences. However, even taking this into account, NASA estimates 2016 was the warmest year with greater than 95 percent certainty.

“2016 is remarkably the third record year in a row in this series,” said GISS Director Gavin Schmidt. “We don't expect record years every year, but the ongoing long-term warming trend is clear.”

The planet's average surface temperature has risen about 2.0 degrees Fahrenheit (1.1 degrees Celsius) since the late 19th century, a change driven largely by increased carbon dioxide and other human-made emissions into the atmosphere.

Most of the warming occurred in the past 35 years, with 16 of the 17 warmest years on record occurring since 2001. Not only was 2016 the warmest year on record, but eight of the 12 months that make up the year — from January through September, with the exception of June — were the warmest on record for those respective months. October, November, and December of 2016 were the second warmest of those months on record — in all three cases, behind records set in 2015.

Phenomena such as El Niño or La Niña, which warm or cool the upper tropical Pacific Ocean and cause corresponding variations in global wind and weather patterns, contribute to short-term variations in global average temperature. A warming El Niño event was in effect for most of 2015 and the first third of 2016. Researchers estimate the direct impact of the natural El Niño warming in the tropical Pacific increased the annual global temperature anomaly for 2016 by 0.2 degrees Fahrenheit (0.12 degrees Celsius).

Weather dynamics often affect regional temperatures, so not every region on Earth experienced record average temperatures last year. For example, both NASA and NOAA found the 2016 annual mean temperature for the contiguous 48 United States was the second warmest on record. In contrast, the Arctic experienced its warmest year ever, consistent with record low sea ice found in that region for most of the year.

Animation showing progression of record-year temperature anomalies from 1881 to 2016

The planet's long-term warming trend is seen in this chart of every year's annual temperature cycle from 1880 to the present, compared to the average temperature from 1880 to 2015. Record warm years are listed in the column on the right. (Credit: NASA/Earth Observatory/Joshua Stevens)
+ View large image

NASA's analyses incorporate surface temperature measurements from 6,300 weather stations, ship- and buoy-based observations of sea surface temperatures, and temperature measurements from Antarctic research stations. These raw measurements are analyzed using an algorithm that considers the varied spacing of temperature stations around the globe and urban heating effects that could skew the conclusions. The result of these calculations is an estimate of the global average temperature difference from a baseline period of 1951 to 1980.

NOAA scientists used much of the same raw temperature data, but with a different baseline period, and different methods to analyze Earth's polar regions and global temperatures.

GISS is a laboratory within the Earth Sciences Division of NASA's Goddard Space Flight Center in Greenbelt, Maryland. The laboratory is affiliated with Columbia University's Earth Institute and School of Engineering and Applied Science in New York.

NASA monitors Earth's vital signs from land, air and space with a fleet of satellites, as well as airborne and ground-based observation campaigns. The agency develops new ways to observe and study Earth's interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. NASA shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.

Related Links

The full 2016 surface temperature data set and the complete methodology used to make the temperature calculation are available at: data.giss.nasa.gov/gistemp

The slides for the Jan. 18, 2017, news conference are available here (PDF).

For NOAA's press release on 2016 global temperatures, see: www.noaa.gov/stories/2016-marks-three-consecutive-years-of-record-warmth-for-globe

News releases on 2016 global temperatures have also been posted by the UK Met Office and by the WMO.

For the NASA/GSFC Scientific Visualization Studio’s visualization of global temperature change from 1880 to 2016, visit: svs.gsfc.nasa.gov/4546

For more information about NASA's Earth science programs, visit: www.nasa.gov/earth

PDF documents require the free Adobe Reader or compatible viewing software to be viewed.

This article was originally prepared as NASA News Release 17-006.

➤ Return to NASA Releases Index