Author Bibliographies
Publications by Marco Tedesco
This citation list includes papers published while the author has been on staff at the NASA Goddard Institute for Space Studies. It may include some publications based on research conducted prior to their having joined the institute.
2023
Preece, J.R., T.L. Mote, J. Cohen, L.J. Wachowicz, J.A. Knox, Summer atmospheric circulation over Greenland in response to Arctic amplification and diminished spring snow cover. Nat. Commun., 14, no. 1, 3759, doi:10.1038/s41467-023-39466-6.
, and G.J. Kooperman, 2023:Smith, B.E., B. Medley, X. Fettweis, T. Sutterley, Evaluating Greenland surface-mass-balance and firn-densification data using ICESat-2 altimetry. The Cryosphere, 17, no. 2, 789-808, doi:10.5194/tc-17-789-2023.
, D. Porter, and , 2023:A computationally efficient statistically downscaled 100 m resolution Greenland product from the regional climate model MAR. The Cryosphere, 17, no. 12, 5061-5074, doi:10.5194/tc-17-5061-2023.
, P. Colosio, X. Fettweis, and G. Cervone, 2023:2022
Antwerpen, R., Assessing bare ice albedo simulated by MAR over the Greenland ice sheet (2000-2021) and implications for meltwater production estimates. The Cryosphere, 16, no. 10, 4185-4199, doi:10.5194/tc-16-4185-2022.
, X. Fettweis, , and W.J. van de Berg, 2022:Colosio, P., Flood monitoring using enhanced resolution passive microwave data: A test case over Bangladesh. MDPI Remote Sens., 14, 1180, doi:10.3390/rs14051180.
, and E. Tellman, 2022:Ebtehaj, A., M. Durand, and Constrained inversion of a microwave snowpack emission model using dictionary matching: Applications for GPM satellite. IEEE Trans. Geosci. Remote Sens., 60, 4302114, doi:10.1109/TGRS.2021.3115663.
, 2022:Preece, J.R., L.J. Wachowicz, T.L. Mote, Summer Greenland blocking diversity and its impact on the surface mass balance of the Greenland Ice Sheet. J. Geophys. Res. Atmos., 127, no. 4, e2021JD035489, doi:10.1029/2021JD035489.
, and X. Fettweis, 2022:A new dataset integrating public socioeconomic, physical risk, and housing data for climate justice metrics: A test-case study in Miami. Environ. Justice, 15, no. 3, 149-159, doi:10.1089/env.2021.0059.
, C. Hultquist, and A. de Sherbinin, 2022:Measuring, mapping, and anticipating climate gentrification in Florida: Miami and Tampa case studies. Cities, 131, 103991, doi:10.1016/j.cities.2022.103991.
, J.M. Keenan, and C. Hultquist, 2022:Zheng, C., M. Ting, Y. Wu, N. Kurtz, Turbulent heat flux, downward longwave radiation and large-scale atmospheric circulation associated with the wintertime Barents-Kara Sea extreme sea ice loss events. J. Climate, 35, no. 12, 3747-3765, doi:10.1175/JCLI-D-21-0387.1.
, , R. Seager, and , 2022:2021
Ballinger, T.J., E. Hanna, R.J. Hall, J.R. Carr, S. Brasher, E.C. Osterberg, J. Cappelen, The role of blocking circulation and emerging open water feedbacks on Greenland cold-season air temperature variability over the last century. Int. J. Climatol., 51, no. S1, E2778-E2800, doi:10.1002/joc.6879.
, Q. Ding, and S.H. Mernild, 2021:Boghosian, A.L., L.H. Pitcher, L.C. Smith, E. Kosh, Development of ice-shelf estuaries promotes fractures and calving. Nat. Geosci., 14, no. 12, 899-905, doi:10.1038/s41561-021-00837-7.
, , and R.E. Bell, 2021:Colosio, P., Surface melting over the Greenland ice sheet from enhanced resolution passive microwave brightness temperatures (1979-2019). The Cryosphere, 16, no. 6, 2623-2646, doi:10.5194/tc-15-2623-2021.
, X. Fettweis, and R. Ranzi, 2021:Cooper, M.G., L.C. Smith, A.K. Rennermalm, Spectral attenuation coefficients from measurements of light transmission in bare ice on the Greenland Ice Sheet. The Cryosphere, 15, no. 4, 1931-1953, doi:10.5194/tc-15-1931-2021.
, R. Muthyala, S.Z. Leidman, S.E. Moustafa, and J.V. Fayne, 2021:Moon, T.A., Greenland ice sheet. In Arctic Report Card 2021. T.A. Moon, M.L. Druckenmiller, and R.L. Thoman, Eds., National Oceanic and Atmospheric Administration, pp. 23-31, doi:10.25923/546g-ms61.
, J.E. Box, J. Cappelen, R.S. Fausto, X. Fettweis, N.J. Korsgaard, B.D. Loomis, K.D. Mankoff, T.L. Mote, A. Wehrlé, and Ø.A. Winton, 2021:Navari, M., S.A. Margulis, Reanalysis surface mass balance of the Greenland ice sheet along K-transect (2000-2014). Geophys. Res. Lett., 48, no. 17, e2021GL094602, doi:10.1029/2021GL094602.
, X. Fettweis, and R.S.W. van de Wal, 2021:Wang, S., Characterization of ice shelf fracture features using ICESat-2 — A case study over the Amery Ice Shelf. Remote Sens. Environ., 255, 112266, doi:10.1016/j.rse.2020.112266.
, Q. Wu, , and S. Shu, 2021:2020
Law, R., N. Arnold, C. Benedek, Over-winter persistence of supraglacial lakes on the Greenland Ice Sheet: Results and insights from a new model. J. Glaciol., 66, no. 257, 362-372, doi:10.1017/jog.2020.7.
, A. Banwell, and I. Willis, 2020:Moon, T.A., Arctic Report Card 2020: Greenland Ice Sheet. Administrative Report. National Atmospheric and Oceanic Administration, doi:10.25923/ms78-g612o.
, J.E. Box, J. Cappelen, R.S. Fausto, X. Fettweis, N.J. Korsgaard, B. Loomis, K.D. Mankoff, T. Mote, C.H. Reijmer, C.J.P.P. Smeets, D. van As, and R.S.W. van de Wal, 2020:Mortimer, C., L. Mudryk, C. Derksen, K. Luojus, R. Brown, R. Kelly, and Evaluation of long term Northern Hemisphere snow water equivalent products. The Cryosphere, 14, no. 5, 1579-1594, doi:10.5194/tc-14-1579-2020.
, 2020:Sasgen, I., B. Wouters, A.S. Gardner, M.D. King, Return to rapid ice loss in Greenland and record loss in 2019 detected by the GRACE-FO satellites. Commun. Earth Environ., 1, no. 1, 8, doi:10.1038/s43247-020-0010-1.
, F.W. Landerer, C. Dahle, H. Save, and X. Fettweis, 2020:Unprecedented atmospheric conditions (1948-2019) drive the 2019 exceptional melting season over the Greenland ice sheet. The Cryosphere, 14, 1209-1223, doi:10.5194/tc-14-1209-2020.
, and X. Fettweis, 2020:Wang, S., Quantifying spatiotemporal variability of ice algal blooms and the impact on surface albedo in southwest Greenland. The Cryosphere, 14, no. 8, 2687-2713, doi:10.5194/tc-14-2687-2020.
, , M. Xu, and X. Fettweis, 2020:2019
Simulated Greenland surface mass balance in the GISS ModelE2 GCM: Role of the ice sheet surface. J. Geophys. Res. Earth Surf., 123, no. 3, 750-765, doi:10.1029/2018JF004772.
, , , , X. Fettweis, , S.M.J. Nowicki, and , 2019:Evaluating a regional climate model simulation of Greenland ice sheet snow and firn density for improved surface mass balance estimates. Geophys. Res. Lett., 46, no. 21, 12073-12082, doi:10.1029/2019GL084101.
, , L. Koenig, and X. Fettweis, 2019:Datta, R.T., The effect of foehn-induced surface melt on firn evolution over the Northeast Antarctic Peninsula. Geophys. Res. Lett., 46, no. 7, 3822-3831, doi:10.1029/2018GL080845.
, X. Fettweis, C. Agosta, S. Lhermitte, J.T.M. Lenaerts, and N. Wever, 2019:DeFries, R., O. Edenhofer, A. Halliday, G. Heal, T. Lenton, The Missing Economic Risks in Assessments of Climate Change Impacts. Grantham Research Institute on Climate Change and the Environment, doi:10.7916/d8-6f8h-md45.
, J. Rising, J. Rockström, , H.J. Schellnhuber, D. Stainforth, N. Stern, , and B. Ward, 2019:Spatial shift of Greenland moisture sources related to enhanced Arctic warming. Geophys. Res. Lett., 46, no. 24, 14723-14731, doi:10.1029/2019GL084633.
, , , and , 2019:Oltmanns, M., F. Straneo, and Increased Greenland melt triggered by large-scale, year-round cyclonic moisture intrusions. The Cryosphere, 13, 815-825, doi:10.5194/tc-13-815-2019.
, 2019:2018
Berdahl, M., A. Rennermalm, A. Hammann, J. Mioduszweski, S. Hameed, Southeast Greenland winter precipitation strongly linked to the Icelandic low position. J. Climate, 31, no. 11, 4483-4500, doi:10.1175/JCLI-D-17-0622.1.
, J. Stroeve, T. Mote, T. Koyama, and J.R. McConnell, 2018:Heilig, A., O. Eisen, M. MacFerrin, Seasonal monitoring of melt and accumulation within the deep percolation zone of the Greenland Ice Sheet and comparison with simulations of regional climate modeling. The Cryosphere, 12, 1851-1866, doi:10.5194/tc-12-1851-2018.
, and X. Fettweis, 2018:Navari, M., S.A. Margulis, Improving Greenland surface mass balance estimates through the assimilation of MODIS albedo: A case study along the K-transect. Geophys. Res. Lett., 45, no. 13, 6549-6556, doi:10.1029/2018GL078448.
, X. Fettweis, and , 2018:Wang, S., Mapping ice algal blooms in southwest Greenland from space. Geophys. Res. Lett., 45, no. 21, 11779-11788, doi:10.1029/2018GL080455.
, M. Xu, and , 2018:2017
Arrigo, K.R., G.L. van Dijken, R.M. Castelao, H. Luo, Å.K. Rennermalm, Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters. Geophys. Res. Lett., 44, no. 12, 6278-6285, doi:10.1002/2017GL073583.
, T.L. Mote, H. Oliver, and P.L. Yager, 2017:Bell, R.E., W. Chu, J. Kingslake, I. Das, Antarctic ice shelf potentially stabilized by export of meltwater in surface river. Nature, 544, no. 7650, 344-348, doi:10.1038/nature22048.
, K.J. Tinto, C.J. Zappa, M. Frezzotti, A. Boghosian, and W.S. Lee, 2017:Casey, K.A., C.M. Polashenski, J. Chen, and Impact of MODIS sensor calibration updates on Greenland Ice Sheet surface reflectance and albedo trends. The Cryosphere, 11, 1781-1795, doi:10.5194/tc-11-1781-2017.
, 2017:2016
Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003-2012). The Cryosphere, 10, 1259-1277, doi:10.5194/tc-10-1259-2016.
, , N.-J. Schlegel, S.B. Luthcke, X. Fettweis, and E. Larour, 2016:Koenig, L.S., A. Ivanoff, Annual Greenland accumulation rates (2009-2012) from airborne snow radar. The Cryosphere, 10, 1739-1752, doi:10.5194/tc-10-1739-2016.
, J.A. MacGregor, X. Fettweis, B. Panzer, J.D. Paden, R.R. Forster, I. Das, J.R. McConnell, , C. Leuschen, and P. Gogineni, 2016:Luo, H., R.M. Castelao, A.K. Rennermalm, Oceanic transport of surface meltwater from the southern Greenland ice sheet. Nat. Geosci., 9, no. 7, 528-532, doi:10.1038/ngeo2708.
, A. Bracco, P.L. Yager, and T.L. Mote, 2016:Mioduszewski, J.R., A.K. Rennermalm, A. Hammann, Atmospheric drivers of Greenland surface melt revealed by self-organizing maps. J. Geophys. Res. Atmos., 121, no. 10, 5095-5114, doi:10.1002/2015JD024550.
, , J.C. Stroeve, and T.L. Mote, 2016:Moussavi, M.S., W. Abdalati, A. Pope, T. Scambos, Derivation and validation of supraglacial lake volumes on the Greenland Ice Sheet from high-resolution satellite imagery. Remote Sens. Environ., 183, 294-303, doi:10.1016/j.rse.2016.05.024.
, M. MacFerrin, and S. Grigsby, 2016:Navari, M., S.A. Margulis, S.M. Bateni, M. Tedesco, Feasibility of improving a priori regional climate model estimates of Greenland ice sheet surface mass loss through assimilation of measured ice surface temperatures. The Cryosphere, 10, no. 1, 103-120, doi:10.5194/tc-10-103-2016.
, and X. Fettweis, 2016:The darkening of the Greenland ice sheet: Trends, drivers and projections (1981-2100). The Cryosphere, 10, 477-496, doi:10.5194/tc-10-477-2016.
, S. Doherty, X. Fettweis, , J. Jeyaratnam, and J. Stroeve, 2016:A new operational snow retrieval algorithm applied to historical AMSR-E brightness temperatures. MDPI Remote Sens., 8, no. 12, 1037, doi:10.3390/rs8121037.
, and J. Jeyaratnam, 2016:Arctic cut-off high drives the poleward shift of a new Greenland melting record. Nat. Commun., 7, 11723, doi:10.1038/ncomms11723.
, T. Mote, X. Fettweis, E. Hanna, J. Jeyaratnam, J.F. Booth, R. Datta, and K. Briggs, 2016:2013
Monteleoni, C., Climate informatics. In Computational Intelligent Data Analysis for Sustainable Development. T. Yu, N. Chawla, and S. Simoff, Eds., Data Mining and Knowledge Discovery Series, Chapman and Hall/CRC, pp. 81-126.
, F. Alexander, A. Niculescu-Mizil, K. Steinhaeuser, M. Tippett, A. Banerjee, M.B. Blumenthal, A.R. Ganguly, J.E. Smerdon, and M. Tedesco, 2013:Tedesco, M., I.C Willis, M.J Hoffman, A.F Banwell, Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet. Environ. Res. Lett., 8, no. 3, 034007, doi:10.1088/1748-9326/8/3/034007.
, and N.S Arnold, 2013: