Author Bibliographies
Publications by Florian Tornow
This citation list includes papers published while the author has been on staff at the NASA Goddard Institute for Space Studies. It may include some publications based on research conducted prior to their having joined the institute.
Submitted / In Review
High accumulation mode aerosol concentration and moderate aerosol hygroscopicity limit impacts of recent particle formation on Northwest Atlantic post-frontal clouds. Geophys. Res. Lett., submitted.
, E. Crosbie, , , L.D. Ziemba, , , D. Painemal, S. Chellappan, P. Zuidema, C. Voigt, S. Kirschler, and A. Sorooshian, 2025:In Press / Accepted
Measurement report: A survey of meteorological and cloud properties during ACTIVATE's postfrontal flights and their suitability for Lagrangian case studies. Atmos. Chem. Phys., accepted.
, , , , , S. Chellappan, D. Painemal, P. Zuidema, C. Voigt, S. Kirschler, and A. Sorooshian, 2025:2025
Wu, P., M. Ovchinnikov, H. Xiao, C.P. Lackner, B. Geerts, Effect of ice number concentration on the evolution of boundary layer clouds during Arctic marine cold-air outbreaks. J. Geophys. Res. Atmos., 130, no. 3, e2024JD041282, doi:10.1029/2024JD041282.
, and , 2025:2024
Chellappan, S., P. Zuidema, S. Kirschler, C. Voigt, Microphysical evolution in mixed-phase midlatitude marine cold-air outbreaks. J. Atmos. Sci., 81, no. 10, 1725-1747, doi:10.1175/JAS-D-23-0203.1.
, E.C. Crosbie, R. Ferrare, J. Hair, D. Painemal, T. Shingler, M. Shook, K.L. Thornhill, , and A. Sorooshian, 2024:Mülmenstädt, J., Can general circulation models (GCMs) represent cloud liquid water path adjustments to aerosol-cloud interactions? Atmos. Chem. Phys., 24, no. 23, 13633-13652, doi:10.5194/acp-24-13633-2024.
, , M. Huang, P.-L. Ma, N. Mahfouz, , S.M. Burrows, M.W. Christensen, S. Dipu, A. Gettelman, L.R. Leung, , J. Quaas, A.C. Varble, H. Wang, K. Zhang, and Y. Zheng, 2024:Mülmenstädt, J., E. Gryspeerdt, S. Dipu, J. Quaas, General circulation models simulate negative liquid water path-droplet number correlations, but anthropogenic aerosols still increase simulated liquid water path. Atmos. Chem. Phys., 24, no. 12, 7331-7345, doi:10.5194/acp-24-7331-2024.
, , , , A. Gettelman, Y. Ming, Y. Zheng, P.-L. Ma, H. Wang, K. Zhang, M.W. Christensen, A.C. Varble, L.R. Leung, X. Liu, D. Neubauer, D.G. Partridge, P. Stier, and T. Takemura, 2024:Williams, A.S., J.L. Dedrick, L.M. Russell, Aerosol size distribution properties associated with cold-air outbreaks in the Norwegian Arctic. Atmos. Chem. Phys., 24, no. 20, 11791-11805, doi:10.5194/acp-24-11791-2024.
, I. Silber, , B. Swanson, P.J. DeMott, P. Zieger, and R. Krejci, 2024:2023
Li, X.-Y., H. Wang, J. Chen, S. Endo, S. Kirschler, C. Voigt, E. Crosbie, L.D. Ziemba, D. Painemal, Large-eddy simulations of marine boundary layer clouds associated with cold-air outbreaks during the ACTIVATE Campaign. Part II: Aerosol-meteorology-cloud interaction. J. Atmos. Sci., 80, no. 4, 1025-1045, doi:10.1175/JAS-D-21-0324.1.
, J.W. Hair, A.F. Corral, C. Robinson, H. Dadashazar, A. Sorooshian, G. Chen, R.A. Ferrare, M.M. Kleb, H. Liu, R. Moore, A.J. Scarino, M. Shook, T.J. Shingler, K.L. Thornhill, , H. Xiao, and X. Zeng, 2023:Painemal, D., S. Chellappan, W.L. Smith Jr., D. Spangenberg, J.M. Park, Wintertime synoptic patterns of midlatitude boundary layer clouds over the western North Atlantic: Climatology and insights from in-situ ACTIVATE observations. J. Geophys. Res. Atmos., 128, no. 11, e2022JD037725, doi:10.1029/2022JD037725.
, J. Chen, E. Crosbie, R. Ferrare, J. Hair, S. Kirschler, X.-Y. Li, A. McComiskey, R.H. Moore, K. Sanchez, A. Sorooshian, , C. Voigt, H. Wang, E. Winstead, X. Zeng, L. Ziemba, and P. Zuidema, 2023:On the impact of a dry intrusion driving cloud-regime transitions in a mid-latitude cold-air outbreak. J. Atmos. Sci., 80, no. 12, 2881-2896, doi:10.1175/JAS-D-23-0040.1.
, , , , , D. Painemal, and , 2023:2022
Li, X.-Y., H. Wang, J. Chen, S. Endo, G. George, Large-eddy simulations of marine boundary-layer clouds associated with cold air outbreaks during the ACTIVATE campaign — Part I: Case setup and sensitivities to large-scale forcings. J. Atmos. Sci., 79, no. 1, 73-100, doi:10.1175/JAS-D-21-0123.1.
, S. Chellappan, X. Zeng, S. Kirschler, C. Voigt, A. Sorooshian, E. Crosbie, G. Chen, R.A. Ferrare, W.I. Gustafson, J.W. Hair, M.M. Kleb, H. Liu, R. Moore, D. Painemal, C. Robinson, A.J. Scarino, M. Shook, T.J. Shingler, K.L. Thornhill, , H. Xiao, L.D. Ziemba, and P. Zuidema, 2022:Dilution of boundary layer cloud condensation nucleus concentrations by free tropospheric entrainment during marine cold air outbreaks. Geophys. Res. Lett., 49, no. 11, e2022GL098444, doi:10.1029/2022GL098444.
, , , , E.C. Crosbie, S. Kirschler, R.H. Moore, D. Painemal, C.E. Robinson, C. Seethala, M.A. Shook, C. Voigt, E.L. Winstead, L.D. Ziemba, P. Zuidema, and A. Sorooshian, 2022:2021
Gristey, J.J., W. Su, N.G. Loeb, T.H. Vonder Haar, Shortwave radiance to irradiance conversion for Earth radiation budget satellite observations: A review. MDPI Remote Sens., 13, no. 13, 2640, doi:10.3390/rs13132640.
, S.K. Schmidt, M.Z. Hakuba, P. Pilewskie, and J.E. Russell, 2021:Seethala, C., P. Zuidema, J. Edson, M. Brunke, G. Chen, X.-Y. Li, D. Painemal, C. Robinson, T. Shingler, M. Shook, A. Sorooshian, L. Thornhill, On assessing ERA5 and MERRA2 representations of cold-air outbreaks across the Gulf Stream. Geophys. Res. Lett., 48, no. 19, e2021GL094364, doi:10.1029/2021GL094364.
, H. Wang, X. Zeng, and L. Ziemba, 2021:Preconditioning of overcast-to-broken cloud transitions by riming in marine cold air outbreaks. Atmos. Chem. Phys., 21, no. 15, 12049-12067, doi:10.5194/acp-21-12049-2021.
, , and , 2021:Changes in TOA SW fluxes over marine clouds when estimated via semi-physical angular distribution models. J. Atmos. Ocean. Technol., 38, no. 3, 669-684, doi:10.1175/JTECH-D-20-0107.1.
, C. Domenech, J.N.S. Cole, N. Madenach, and J. Fischer, 2021:2020
Using two-stream theory to capture fluctuations of satellite-perceived TOA SW radiances reflected from clouds over ocean. Atmos. Meas. Tech., 13, 3909-3922, doi:10.5194/amt-13-3909-2020.
, C. Domenech, H.W. Barker, R. Preusker, and J. Fischer, 2020:2019
On the use of geophysical parameters for the top-of-atmosphere shortwave clear-sky radiance-to-flux conversion in EarthCARE. J. Atmos. Ocean. Technol., 36, no. 4, 717-732, doi:10.1175/JTECH-D-18-0087.1.
, C. Domenech, and J. Fischer, 2019:2018
Tornow, F., H.W. Barker, V. Blázquez, C. Domenech, and J. Fischer, 2018: EarthCARE's Broadband Radiometer: Uncertainties associated with cloudy atmospheres. J. Atmos. Ocean. Technol., 35, no. 11, 2201-2211, doi:10.1175/JTECH-D-18-0083.1.
Top-of-atmosphere shortwave anisotropy over liquid clouds: Sensitivity to clouds' microphysical structure and cloud-topped moisture. MDPI Atmos., 9, no. 7, 256, doi:10.3390/atmos9070256.
, R. Preusker, C. Domenech, C.K. Carbajal Henken, S. Testorp, and J Fischer, 2018:2017
An improved method to estimate reference cloud-free images for the visible band of geostationary satellites. Int. J. Remote Sens., 38, no. 23, 7220-7241, doi:10.1080/01431161.2017.1372859.
, N. Clerbaux, A. Ipe, and M. Urbain, 2017:Urbain, M., N. Clerbaux, A. Ipe, The CM SAF TOA radiation data record using MVIRI and SEVIRI. MDPI Remote Sens., 9, no. 5, 466, doi:10.3390/rs9050466.
, R. Hollmann, E. Baudrez, A. Velazquez Blazquez, and J. Moreels, 2017:2015
Barker, H.W., J.N.S. Cole, C. Domenech, M.W. Shephard, C.E. Sioris, Assessing the quality of active-passive satellite retrievals using broad-band radiances. Q. J. Roy. Meteorol. Soc., 141, no. 689, 1294-1305, doi:10.1002/qj.2438.
, and T. Wehr, 2015:On the use of simulated photon paths to co-register top-of-atmosphere radiances in EarthCARE radiative closure experiments. Q. J. Roy. Meteorol. Soc., 141, no. 693, 3239-3251, doi:10.1002/qj.2606.
, H.W. Barker, and C. Domenech, 2015: