Publication Abstracts

Riihimaki et al. 2024

Riihimaki, L.D., M.F. Cronin, R. Acharya, N. Anderson, J. Augustine, K.A. Balmes, P. Berk, R. Bozzano, A. Bucholtz, K.J. Connell, C. Cox, A.G. Di Sarra, J.B. Edson, C. Fairall, J.T. Farrar, K. Grissom, M.T. Guerra, V. Hormann, K.J. Joseph, C. Lanconelli, F. Melin, D. Meloni, M. Ottaviani, S. Pensieri, K Ramesh, D. Rutan, N. Samarinas, S.R. Smith, S. Swart, A. Tandon, R. Venkatesan, E. Thompson, R.K. Verma, V. Vitale, K.S. Watkins-Brandt, R.A. Weller, C.J. Zappa, and D. Zhang, 2024: Ocean surface radiation measurement best practices. Front. Mar. Sci., 11, 1359149, doi:10.3389/fmars.2024.1359149.

Ocean surface radiation measurement best practices have been developed as a first step to support the interoperability of radiation measurements across multiple ocean platforms and between land and ocean networks. This document describes the consensus by a working group of radiation measurement experts from land, ocean, and aircraft communities. The scope was limited to broadband shortwave (solar) and longwave (terrestrial infrared) surface irradiance measurements for quantification of the surface radiation budget. Best practices for spectral measurements for biological purposes like photosynthetically active radiation and ocean color are only mentioned briefly to motivate future interactions between the physical surface flux and biological radiation measurement communities. Topics discussed in these best practices include instrument selection, handling of sensors and installation, data quality monitoring, data processing, and calibration. It is recognized that platform and resource limitations may prohibit incorporating all best practices into all measurements and that spatial coverage is also an important motivator for expanding current networks. Thus, one of the key recommendations is to perform interoperability experiments that can help quantify the uncertainty of different practices and lay the groundwork for a multi-tiered global network with a mix of high-accuracy reference stations and lower-cost platforms and practices that can fill in spatial gaps.

Export citation: [ BibTeX ] [ RIS ]

BibTeX Citation

@article{ri01110h,
  author={Riihimaki, L. D. and Cronin, M. F. and Acharya, R. and Anderson, N. and Augustine, J. and Balmes, K. A. and Berk, P. and Bozzano, R. and Bucholtz, A. and Connell, K. J. and Cox, C. and Di Sarra, A. G. and Edson, J. B. and Fairall, C. and Farrar, J. T. and Grissom, K. and Guerra, M. T. and Hormann, V. and Joseph, K. J. and Lanconelli, C. and Melin, F. and Meloni, D. and Ottaviani, M. and Pensieri, S. and Ramesh, K and Rutan, D. and Samarinas, N. and Smith, S. R. and Swart, S. and Tandon, A. and Venkatesan, R. and Thompson, E. and Verma, R. K. and Vitale, V. and Watkins-Brandt, K. S. and Weller, R. A. and Zappa, C. J. and Zhang, D.},
  title={Ocean surface radiation measurement best practices},
  year={2024},
  journal={Frontiers in Marine Science},
  volume={11},
  pages={1359149},
  doi={10.3389/fmars.2024.1359149},
}

[ Close ]

RIS Citation

TY  - JOUR
ID  - ri01110h
AU  - Riihimaki, L. D.
AU  - Cronin, M. F.
AU  - Acharya, R.
AU  - Anderson, N.
AU  - Augustine, J.
AU  - Balmes, K. A.
AU  - Berk, P.
AU  - Bozzano, R.
AU  - Bucholtz, A.
AU  - Connell, K. J.
AU  - Cox, C.
AU  - Di Sarra, A. G.
AU  - Edson, J. B.
AU  - Fairall, C.
AU  - Farrar, J. T.
AU  - Grissom, K.
AU  - Guerra, M. T.
AU  - Hormann, V.
AU  - Joseph, K. J.
AU  - Lanconelli, C.
AU  - Melin, F.
AU  - Meloni, D.
AU  - Ottaviani, M.
AU  - Pensieri, S.
AU  - Ramesh, K
AU  - Rutan, D.
AU  - Samarinas, N.
AU  - Smith, S. R.
AU  - Swart, S.
AU  - Tandon, A.
AU  - Venkatesan, R.
AU  - Thompson, E.
AU  - Verma, R. K.
AU  - Vitale, V.
AU  - Watkins-Brandt, K. S.
AU  - Weller, R. A.
AU  - Zappa, C. J.
AU  - Zhang, D.
PY  - 2024
TI  - Ocean surface radiation measurement best practices
JA  - Front. Mar. Sci.
JO  - Frontiers in Marine Science
VL  - 11
SP  - 1359149
DO  - 10.3389/fmars.2024.1359149
ER  -

[ Close ]

• Return to 2024 Publications

• Return to Publications Homepage