Publication Abstracts
Paudel et al. 2025, submitted
Paudel, D., M. Kallenberg, S. Ofori-Ampofo, H. Baja, R. van Bree, A. Potze, P. Poudel, A. Saleh, W. Anderson, M. von Bloh,
, O. Ennaji, R. Hamed, R. Laudien, D. Lee, I. Luna, M. Meroni, J.M. Mutuku, S. Mkuhlani, J. Richetti, , R. Sahajpal, G. Shai, V. Sitokonstantinou, R. de Souza Nóia Júnior, A.K. Srivastava, R. Strong, L. Sweet, P. Vojnovic, and I.N. Athanasiadis, 2025: CY-Bench: A comprehensive benchmark dataset for sub-national crop yield forecasting. Earth Syst. Sci. Data, submitted.In-season, pre-harvest crop yield forecasts are essential for enhancing transparency in commodity markets and improving food security. They play a key role in increasing resilience to climate change and extreme events and thus contribute to the United Nations' Sustainable Development Goal 2 of zero hunger. Pre-harvest crop yield forecasting is a complex task, as several interacting factors contribute to yield formation, including in-season weather variability, extreme events, long-term climate change, soil, pests, diseases and farm management decisions. Several modeling approaches have been employed to capture complex interactions among such predictors and crop yields. Prior research for in-season, pre-harvest crop yield forecasting has primarily been case-study based, which makes it difficult to compare modeling approaches and measure progress systematically. To address this gap, we introduce CY-Bench (Crop Yield Benchmark), a comprehensive dataset and benchmark to forecast maize and wheat yields at a global scale. CY-Bench was conceptualized and developed within the Machine Learning team of the Agricultural Model Intercomparison and Improvement Project (AgML) in collaboration with agronomists, climate scientists, and machine learning researchers. It features publicly available sub-national yield statistics and relevant predictors — such as weather data, soil characteristics, and remote sensing indicators — that have been pre-processed, standardized, and harmonized across spatio-temporal scales. With CY-Bench, we aim to: (i) establish a standardized framework for developing and evaluating data-driven models across diverse farming systems in more than 25 countries across six continents; (ii) enable robust and reproducible model comparisons that address real-world operational challenges; (iii) provide an openly accessible dataset to the earth system science and machine learning communities, facilitating research on time series forecasting, domain adaptation, and online learning. The dataset and accompanying code are openly available to support the continuous development of advanced data driven models for crop yield forecasting to enhance decision-making on food security.
Export citation: [ BibTeX ] [ RIS ]
BibTeX Citation
@unpublished{pa00800c, author={Paudel, D. and Kallenberg, M. and Ofori-Ampofo, S. and Baja, H. and van Bree, R. and Potze, A. and Poudel, P. and Saleh, A. and Anderson, W. and von Bloh, M. and Castellano, A. and Ennaji, O. and Hamed, R. and Laudien, R. and Lee, D. and Luna, I. and Meroni, M. and Mutuku, J. M. and Mkuhlani, S. and Richetti, J. and Ruane, A. C. and Sahajpal, R. and Shai, G. and Sitokonstantinou, V. and de Souza Nóia Júnior, R. and Srivastava, A. K. and Strong, R. and Sweet, L. and Vojnovic, P. and Athanasiadis, I. N.}, title={CY-Bench: A comprehensive benchmark dataset for sub-national crop yield forecasting}, year={2025}, journal={Earth System Science Data}, note={Manuscript submitted for publication} }
[ Close ]
RIS Citation
TY - UNPB ID - pa00800c AU - Paudel, D. AU - Kallenberg, M. AU - Ofori-Ampofo, S. AU - Baja, H. AU - van Bree, R. AU - Potze, A. AU - Poudel, P. AU - Saleh, A. AU - Anderson, W. AU - von Bloh, M. AU - Castellano, A. AU - Ennaji, O. AU - Hamed, R. AU - Laudien, R. AU - Lee, D. AU - Luna, I. AU - Meroni, M. AU - Mutuku, J. M. AU - Mkuhlani, S. AU - Richetti, J. AU - Ruane, A. C. AU - Sahajpal, R. AU - Shai, G. AU - Sitokonstantinou, V. AU - de Souza Nóia Júnior, R. AU - Srivastava, A. K. AU - Strong, R. AU - Sweet, L. AU - Vojnovic, P. AU - Athanasiadis, I. N. PY - 2025 TI - CY-Bench: A comprehensive benchmark dataset for sub-national crop yield forecasting JA - Earth Syst. Sci. Data JO - Earth System Science Data ER -
[ Close ]