Publication Abstracts

Muller-Karger et al. 2018

Muller-Karger, F.E., E. Hestir, C. Ade, K. Turpie, D.A. Roberts, D. Siegel, R.J. Miller, D. Humm, N. Izenberg, M. Keller, F. Morgan, R. Frouin, A.G. Dekker, R. Gardner, J. Goodman, B. Schaeffer, B.A. Franz, N. Pahlevan, A.G. Mannino, J.A. Concha, S.G. Ackleson, K.C. Cavanaugh, A. Romanou, M. Tzortziou, E.S. Boss, R. Pavlick, A. Freeman, C.S. Rousseaux, J. Dunne, M.C. Long, E. Klein, G.A. McKinley, J. Goes, R. Letelier, M. Kavanaugh, M. Roffer, A. Bracher, K.R. Arrigo, H. Dierssen, X. Zhang, F.W. Davis, B. Best, R. Guralnick, J. Moisan, H.M. Sosik, R. Kudela, C.B. Mouw, A.H. Barnard, S. Palacios, C. Roesler, E.G. Drakou, W. Appeltans, and W. Jetz, 2018: Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems. Ecol. Appl., 28, no. 3, 749-760, doi:10.1002/eap.1682.

The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm<in the visible and 10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3-d repeat low-Earth orbit could sample 30-km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.ppl.

Export citation: [ BibTeX ] [ RIS ]

BibTeX Citation

@article{mu07100r,
  author={Muller-Karger, F. E. and Hestir, E. and Ade, C. and Turpie, K. and Roberts, D. A. and Siegel, D. and Miller, R. J. and Humm, D. and Izenberg, N. and Keller, M. and Morgan, F. and Frouin, R. and Dekker, A. G. and Gardner, R. and Goodman, J. and Schaeffer, B. and Franz, B. A. and Pahlevan, N. and Mannino, A. G. and Concha, J. A. and Ackleson, S. G. and Cavanaugh, K. C. and Romanou, A. and Tzortziou, M. and Boss, E. S. and Pavlick, R. and Freeman, A. and Rousseaux, C. S. and Dunne, J. and Long, M. C. and Klein, E. and McKinley, G. A. and Goes, J. and Letelier, R. and Kavanaugh, M. and Roffer, M. and Bracher, A. and Arrigo, K. R. and Dierssen, H. and Zhang, X. and Davis, F. W. and Best, B. and Guralnick, R. and Moisan, J. and Sosik, H. M. and Kudela, R. and Mouw, C. B. and Barnard, A. H. and Palacios, S. and Roesler, C. and Drakou, E. G. and Appeltans, W. and Jetz, W.},
  title={Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems},
  year={2018},
  journal={Ecological Applications},
  volume={28},
  number={3},
  pages={749--760},
  doi={10.1002/eap.1682},
}

[ Close ]

RIS Citation

TY  - JOUR
ID  - mu07100r
AU  - Muller-Karger, F. E.
AU  - Hestir, E.
AU  - Ade, C.
AU  - Turpie, K.
AU  - Roberts, D. A.
AU  - Siegel, D.
AU  - Miller, R. J.
AU  - Humm, D.
AU  - Izenberg, N.
AU  - Keller, M.
AU  - Morgan, F.
AU  - Frouin, R.
AU  - Dekker, A. G.
AU  - Gardner, R.
AU  - Goodman, J.
AU  - Schaeffer, B.
AU  - Franz, B. A.
AU  - Pahlevan, N.
AU  - Mannino, A. G.
AU  - Concha, J. A.
AU  - Ackleson, S. G.
AU  - Cavanaugh, K. C.
AU  - Romanou, A.
AU  - Tzortziou, M.
AU  - Boss, E. S.
AU  - Pavlick, R.
AU  - Freeman, A.
AU  - Rousseaux, C. S.
AU  - Dunne, J.
AU  - Long, M. C.
AU  - Klein, E.
AU  - McKinley, G. A.
AU  - Goes, J.
AU  - Letelier, R.
AU  - Kavanaugh, M.
AU  - Roffer, M.
AU  - Bracher, A.
AU  - Arrigo, K. R.
AU  - Dierssen, H.
AU  - Zhang, X.
AU  - Davis, F. W.
AU  - Best, B.
AU  - Guralnick, R.
AU  - Moisan, J.
AU  - Sosik, H. M.
AU  - Kudela, R.
AU  - Mouw, C. B.
AU  - Barnard, A. H.
AU  - Palacios, S.
AU  - Roesler, C.
AU  - Drakou, E. G.
AU  - Appeltans, W.
AU  - Jetz, W.
PY  - 2018
TI  - Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems
JA  - Ecol. Appl.
JO  - Ecological Applications
VL  - 28
IS  - 3
SP  - 749
EP  - 760
DO  - 10.1002/eap.1682
ER  -

[ Close ]

• Return to 2018 Publications

• Return to Publications Homepage