Publication Abstracts
Lukashin et al. 2013
Lukashin, C., B.A. Wielicki, D.F. Young, K. Thome,
, and W. Sun, 2013: Uncertainty Estimates for Imager Reference Inter-Calibration With CLARREO Reflected Solar Spectrometer. IEEE Trans. Geosci. Remote Sens., 51, no. 3, 1425-1436, doi:10.1109/TGRS.2012.2233480.One of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission objectives is to provide a high accuracy calibration standard on orbit to enable inter-calibration of existing sensors. In order to perform an accurate inter-calibration of imaging radiometers, such as VIIRS, one must take into account instrument sensitivity to polarization of incoming light. Even if the sensitivity to polarization of an instrument is established or known on orbit, the knowledge of the polarization state of reflected light is required to make relevant radiometric corrections. In the case when coincident polarimetric measurements are not available, we propose to use a combination of empirical and theoretical models to predict the polarization of solar reflected light at the top-of-atmosphere. We used observations from on-orbit polarimeter PARASOL to derive a global set of empirical Polarization Distribution Models (PDM) as a function of scene type and viewing geometry. The PDM accuracy for the mean values is estimated to match the 3% PARASOL uncertainty in its polarization measurements. The instantaneous single sample uncertainty of the prototype PDMs for the linear degree of polarization is contained within 15%. We also present the formalism and numeric estimates for resulting uncertainty for inter-calibration of an imaging radiometer with the CLARREO reference observations, including uncertainty due to instrument sensitivity to polarization. The uncertainty estimates consider a range of scenarios with varying data sampling, uncertainty of polarization, and imaging radiometer sensitivity to polarization. These results are used to recommend CLARREO mission requirements relevant to reference inter-calibration and polarization effects.
Export citation: [ BibTeX ] [ RIS ]
BibTeX Citation
@article{lu04100o, author={Lukashin, C. and Wielicki, B. A. and Young, D. F. and Thome, K. and Jin, Z. and Sun, W.}, title={Uncertainty Estimates for Imager Reference Inter-Calibration With CLARREO Reflected Solar Spectrometer}, year={2013}, journal={IEEE Transactions on Geoscience and Remote Sensing}, volume={51}, number={3}, pages={1425--1436}, doi={10.1109/TGRS.2012.2233480}, }
[ Close ]
RIS Citation
TY - JOUR ID - lu04100o AU - Lukashin, C. AU - Wielicki, B. A. AU - Young, D. F. AU - Thome, K. AU - Jin, Z. AU - Sun, W. PY - 2013 TI - Uncertainty Estimates for Imager Reference Inter-Calibration With CLARREO Reflected Solar Spectrometer JA - IEEE Trans. Geosci. Remote Sens. JO - IEEE Transactions on Geoscience and Remote Sensing VL - 51 IS - 3 SP - 1425 EP - 1436 DO - 10.1109/TGRS.2012.2233480 ER -
[ Close ]