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Green Band: Habitable Zone

Traditional Habitable Zones
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Habitable Zone of TOI-700
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Stellar flare-CME events have 
been observed (Argiroffi et 
al., 2019, Nat Astro)!

Space Weather: Stellar Wind and Activity



Atmospheric Ion Loss from Magnetized Earth



Atmospheric Ion Loss from Unmagnetized Venus

Analogy: Blow-Dry Your Hair Credit: NASA/GSFC

MAVEN Measured Atmospheric Ion Escape



How Does the Sun/Star Affect the Planetary System?
Solar Wind

/CME

Exosphere

Earth-like
Magnetized Venus/Mars-like

Unmagnetized



Thermosphere and Ionosphere (Venus, Earth, and Mars)
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Mendillo et al., 2018 



Alfven Wave Solar Model (AWSoM) [van der Holst et al. 2014]
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Velocity
Plasm

a Beta

• Data-driven inner boundary condition by 
synoptic magnetograms.

• Coronal heating and solar wind accelerating 
by Alfven waves.

• Physically consistent treatment of wave 
reflection, dissipation, and heat partitioning 
between the electrons and protons.

• Model starts from upper chromosphere 
including heat conduction (both collisional 
and collisionless) and radiative cooling.

• Adaptive mesh refinement (AMR) to resolve 
structures (e.g., current sheets, shocks).



Calculated Stellar Wind Profiles from TRAPPIST-1 and TOI-700

11 Dong et al., 2018, PNAS; Dong et al., 2020, ApJL
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3-D BATS-R-US Multifluid MHD Model
(Earth: Dong et al., 2019; Venus: Dong et al., 2020)

Illustration of the grid system used in the 
calculation.

Ø Four ion fluids: H+, O2
+, O+, CO2

+; two background neutrals: CO2, O; 
and eight photochemical reactions.

Ø Spherical grids:
Ø Radial resolution varies from 5 km in the ionosphere to 

3000 km far from the
planet.

Ø Angular resolution is 2.50

Ø 10 million cells
Ø Inner Boundary Conditions

Ø Inner boundary at 100 km
Ø [O2

+] , [O+] and [CO2
+] are in photochemical equilibrium 

(SZA and optical depth considered)
Ø Absorbing boundary condition for U and B

Ø Chemical reactions
Ø Photoionization
Ø Charge exchange
Ø Electron impact ionization
Ø Electron Recombination



Atmospheric O+ Ion Source and Loss (Earth/Earth-like Exoplanets)
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Charge Exchange

Electron Impact Ionization

Photoionization

Ancient (4.02 Gyr) solar 
wind parameters at 1 au 
(Boesswetter et al. 2010).

An extreme “Carrington-
type” space weather 
event (Ngwira et al. 2014)

Joule/Ohmic 
heating included:



Case Studied
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Pressure Balance during the Stellar Wind-Planet Interaction

15 Dong et al., 2020, ApJL

Venus-like Earth-like Pmin

Pmax

Venus-like Earth-like



Atmospheric Escape From TOI-700 d (an exoplanet): Venus versus Earth Analogs

16 Dong et al., 2020, ApJL

Unmagnetized Venus Unmagnetized  Earth Magnetized  Earth

2.10×1026 S-1 1.18×1028 S-1 1.39×1027 S-1

Assuming Venus-like and Earth-like planets orbiting an M-type star instead of the Sun. In 
general, an M-type star has higher stellar radiation and stronger stellar wind pressure than 
our Sun, therefore, the ion escape rates are also larger than current Venus and Earth.



Conclusion

• We assess the feasibility of TOI-700 d to retain an atmosphere 
– one of the chief ingredients for surface habitability – over 
long timescales by employing state-of-the-art 
magnetohydrodynamic models to simulate the stellar wind 
and the associated rates of atmospheric escape. 

• The simulations show that the unmagnetized TOI-700 d with a 
1 bar Earth-like atmosphere could be stripped away rather 
quickly (< 1 gigayear), while the unmagnetized TOI-700 d with 
a 1 bar CO2-dominated atmosphere could persist for many 
billions of years; we find that the magnetized Earth-like case 
falls in between these two scenarios.

• Space weather and stellar wind-induced atmospheric loss 
need to be taken into account for planetary habitability!



Thanks for Your Attention and Questions!


