Indirect aerosol forcing

Leon Rotstayn
CSIRO Atmospheric Research
Aspendale, Victoria, Australia
- Highly uncertain, but possibly *(probably)* substantial
- Composition specificity?
- Spatial variation?
First indirect aerosol effect

Polluted airmass has more aerosols, hence more cloud droplets.

<table>
<thead>
<tr>
<th>Unpolluted</th>
<th>Polluted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Cloud albedo depends on droplet surface area, so second cloud is brighter ("Twomey effect", or "first indirect effect").
- Quantified by effective radius R_{eff}.
- Lots of evidence to support this effect.
Second indirect aerosol effect

Suppression of precipitation in polluted clouds.

- “Cloud lifetime” or “second indirect” effect
- Much less evidence for this one.
Observational evidence: Ship tracks

“Textbook” example of indirect aerosol effect (e.g., Coakley et al., Science, 1987).

Figure 1: Ship tracks off the coast of Washington
Observational evidence: Near-global retrieval

From Bréon et al., Science 2002: Droplet effective radius
From Bréon et al., Science 2002: Aerosol Index ($\approx N_a$)
First indirect aerosol forcing from GCMs

Table S.11: Comparison of model predicted indirect forcing without cloud aerosol and liquid water path feedback.

<table>
<thead>
<tr>
<th>Model</th>
<th>Pre-industrial aerosol (Tg)</th>
<th>Industrial aerosol (Tg)</th>
<th>N<sub>i</sub> parameterisation</th>
<th>Cloud cover parameterisation</th>
<th>Forcing (Wm<sup>-2</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H<sub>2</sub>O (1995)</td>
<td>0.34 Tg S</td>
<td>Sulphate: 0.44 Tg S</td>
<td>Various empirical results</td>
<td>Le Treut and Li (1951); Noolkunwar et al. (1971)</td>
<td>-0.5 to -1.4; 0.5 to 1.5</td>
</tr>
<tr>
<td>Jones and Stimpson (1996)</td>
<td>0.16 Tg S</td>
<td>Sulphate: 0.3 Tg S</td>
<td>Jones et al. (1994); Hegg (1994); B&L (1955)</td>
<td>Smith (1996)</td>
<td>-1.5; -0.5; 0.6</td>
</tr>
<tr>
<td>Chang et al. (1997)</td>
<td>Sulphate: 0.25 Tg S, Carbon aerosol: 1.72 Tg</td>
<td>Sulphate: 0.30 Tg S</td>
<td>Chang and Permar (1995)</td>
<td>NASA-CCM1</td>
<td>-1.32 to -1.74 (sulfate mix); -1.04 (carbon mix)</td>
</tr>
<tr>
<td>Fielder et al. (1997)</td>
<td>Sulphate: 0.3 Tg S</td>
<td>Sulphate: 0.36 Tg</td>
<td>B&L (1955)</td>
<td>Sandström et al. (1988)</td>
<td>-0.76</td>
</tr>
<tr>
<td>Lehmann and Stoffel (1997)</td>
<td>Sulphate: 0.3 Tg S</td>
<td>Sulphate: 0.36 Tg</td>
<td>B&L (1955)</td>
<td>Sandström et al. (1988)</td>
<td>-4.0</td>
</tr>
<tr>
<td>Chang et al. (2000)</td>
<td>Sea salt: 0.3 Tg, Dust: 0.5 Tg, Sulphate: 0.25 Tg, Organic matter: 1.4 Tg, BC: 0.15 Tg</td>
<td>Sulphate: 0.39 Tg, Organic matter: 1.4 Tg, BC: 0.15 Tg</td>
<td>Chang and Permar (1995)</td>
<td>-1.15 (all aerosols); -1.11 (all carbon aerosols); -1.16 (biomass aerosols only); -0.33 (sulphate only)</td>
<td></td>
</tr>
<tr>
<td>Kiehl et al. (2000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rossa et al. (1999)</td>
<td>Sulphate: 0.23 Tg S</td>
<td>Sulphate: 0.23 Tg S</td>
<td>Marshall et al. (1994); Bass and Krijevan (1995); Jones et al. (1994); B&L (1955); Tarpley et al. (1994), Smith (1990)</td>
<td>-0.68; -0.46; -0.00; -1.70</td>
<td></td>
</tr>
<tr>
<td>Ivanova et al. (2000)</td>
<td>Sulphate: 0.14 Tg S, BC: 0.2 Tg C, Sea salt and dust included, but not quantified</td>
<td>Sulphate: 0.6 Tg, BC: 0.15 Tg C</td>
<td>Similar to Chang and Permar (1995)</td>
<td>Ross and Krijevan (1990)</td>
<td>1.26</td>
</tr>
</tbody>
</table>
“Consensus” of global results (Penner et al., 2001)

- First (Twomey) effect only: -0.3 to -1.8 W m$^{-2}$.
- First and second effects: -0.65 to -4.8 W m$^{-2}$.
- Average for first effect ≈ 1 W m$^{-2}$.
- Second effect $> 50\%$ of first effect.

- Most studies only consider sulfate, but some of these implicitly include the effect of other industrial aerosols.
An empirical parameterization of droplet number N_d

![Graph showing the relationship between CCN/CDNC (cm$^{-3}$) and nss-sulfate (µg S m$^{-3}$).](image)

Used by Boucher & Lohmann (Tellus, 1995) to express $N_d = f(SO_4^{2-})$ in a GCM.
Composition specificity of indirect effect

Two studies considered effects of sulfate and carbonaceous aerosols separately:

- For first effect, Chuang et al. (2000) obtained: -1.85 (total forcing), -1.51 (all carbon aerosols), -1.16 (biomass aerosols only), -0.30 (sulfate only).

- For first and second effects, Lohmann et al. (2000a) obtained: -1.1 to -1.9 (total forcing), -0.9 (carbon only), -0.4 (sulfate only).

But both used a similar cloud-droplet parameterization, which forces the carbonaceous indirect forcing to be stronger than the sulfate indirect forcing. (Anthropogenic OC forms new particles quickly, but anthropogenic sulfate assumed to add to mass of pre-existing particles.)
Observations: Sulfate is important.

From Boucher & Rodhe (Univ. Stockholm tech report, 1994) (see also Boucher & Lohmann, Tellus, 1995)
Observations: Organic carbon important too.

- Organics may be the dominant source of potential CCN in some circumstances (Novakov & Penner, Nature 1993).

- Pure organic aerosols can be intrinsically CCN active (Novakov & Corrigan, GRL, 1996)

But aerosols are usually internally mixed:

- Aerosols from biomass burning are primarily organic, but associated inorganics may enhance their CCN activity (van Dinh et al., Atmos. Res. 1994).

- Or, if the aerosol is primarily sulfate, associated organics may decrease the critical supersaturation for cloud droplet formation (Shulman et al., GRL 1996, Facchini et al., Nature 1999).
Indirect aerosol forcing varies in space

Equilibrium surface temperature change in an AGCM

CSIRO AGCM, coupled to mixed-layer ocean: T_s response to the indirect effect of sulfate aerosol [present-day (1985) minus preindustrial].
Rainfall response to the above T_3 change

Modelled change (1985 minus preindustrial) and observed 1900–1998 trend in rainfall over land (from Rotstayn & Lohmann, J. Climate, in press 2002). Asterisks denote trend significant at 5% level.
(a) Modeled rainfall change; (b) observed trend
On the extended Sahelian drought

- Strong drying trend observed from 1950 to 1985; some amelioration of drought since then.

- European and North American sulfur emissions increased strongly from 1945 to late 1970s.

- Dry Sahelian conditions associated with quasi-hemispheric SST anomaly pattern: cool in NH and warm in SH (e.g., Folland et al., Nature, 1986).

- Dynamical changes in model (in response to indirect aerosol effect) are similar to those observed in dry periods, e.g., stronger African easterly jet and weaker tropical easterly jet.

The above suggests that indirect sulfate aerosol forcing may have contributed to the extended Sahelian drought.
Indirect aerosol effect and Chinese rainfall?

Abrupt change of the mid-summer climate in central east China by the influence of atmospheric pollution

Qun Xu

Jiangsu Meteorological Institute, Beijing, No. 2, Nanjing 200068, People's Republic of China

Received 15 September 2000; accepted 20 May 2001

Author blames recent summer pattern of “north drought with south flooding” in eastern China on direct effect of sulfate aerosol (but it could be the indirect effect too!)
Summary

- Observational evidence to support (first) indirect aerosol effect is now very strong.

- Difficult to quantify composition specificity at present, but both sulfate and organic carbon appear to be important.

- Spatial variability of indirect forcing is important – crucially affects climatic response, especially in tropics.

- Possible links to Sahelian and Chinese rainfall demand further investigation.

- More observational work strongly needed, especially regarding role of different aerosol types.