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Global Codes (A-OGCMs, Stellar Codes) resolve the large scales 

Need: Reynolds stresses, heat fluxes, salt fluxes, etc

OCEANS

Stably stratified (cold waters at the bottom)

Eddies are in general small

Richardson Number:

MIXED LAYER

• First ~ 100 meters 

• Source of Mixing: Wind ~ 1TW

• Typical Values: D=200 cm2s-1, ν=10-3 cm2s-1, Re=D/ν=105

• Due to Stable Stratification, Local models are OK:

Critical issue:                                  Ri(cr)

Mellor-Yamada  Ri(cr)=0.2; Empirical studies Ri(cr)=O(1)

• RSM Ri(cr)= 1
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No Ri(cr)
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DOUBLE DIFFUSION

 Weak turbulence:  K(h) ≠K(s) 

 NATRE: K(s)=1.38K(h)

SALT FINGERS

Salty-warm /cold-fresh waters (Mediterranean Sea)

Star analogy: helium flask off center

 Higher μ, hot/colder, low μ gas

DIFFUSIVE CONVECTION

Cold-fresh/warm-salty waters (Read Sea)

Star analogy: Semi-convection SN 1987A-Red vs. Blue

ρ

β S/ z
Ri, R

α T/ z
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Lab. Data
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SF 2

hK = ΓεN
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Labrador Sea, Gulf of Lyon, Waddle Sea

DEEP CONVECTION

Strong winds lower the temperature

Loss of Buoyancy

Cooling from above

Fast Process: Days, 1-2km,    w ~ a few cm/sec

Labrador Data on the Depth of the Mixed layer

Rotation ??

Atmospheric analogy: Cloud Capped PBL

Stellar analogy: cooling from the top due to change

in opacity



















13

H

z

h

0

T
J(z) K dz

z




h

T
J(z) K

z


 



Local

Small eddies

Non-Local

Large eddies

No H H



14



15



1

MLD at ACC: Observations (Dong et al. 2006)



MLD at ACC: KPP Model 



MLD at ACC: GISS Model 2011 
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STARS (e.g. Sun)

Last 30% is governed by CONVECTION

Heated from Below, Cooled from Above

Unstable Stratification.  Large Eddies

Non-Local Model

OVERSHOOTING. Unsolved problem: OV = ?Hp

K
F(K) = J ε

t z

 
 

 

In the OV, stratification is stable, there is no local source of mixing

F(K), flux of turbulent kinetic energy, acts like a  Non-Local Source

RHS < 0

LHS  < 0


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F(K) is a TOM (third-order moment)

•TOM can be derived from FOM (4-th order 

moments ) and so on….

•New aircraft measurements on FOM have 

changed the scenario

•New FOM mean new TOM and thus a Non-

Local Model can be constructed
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New FOM Model (JAS, 2005)
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Dashed lines: 

Gryanik-Hartman

Dotted lines: QN  

Solid lines: New Model

Fourth order moments

in a convective PBL 

Circles: aircraft data of

Hartmann et al. (1999)
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Filled Circles: aircraft data

Third order moments

in a convective PBL

Solid lines: New Model

Dash-Dotted lines: QN
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PLUME MODEL

Atmospheric LES

Skinny downflows (Twiggy-like), fat upflows

Plume Model is suggestive, WHO’s?

Only one:Taylor, Turner and Morton. TTM model

Can be applied to stars? 

TTM model assumptions:

A. Quiescent Environment 

B. Isolated Plume

C. Entrainment is an adjustable parameter

Mass conservation law:

A) means that we tends to zero. Thus:

Isolated plume, B) above 

p eλw (1-λ)w 0  p

p e

λ



 

λ 1
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Is this correct?

• As Twiggy descends into a stably stratified medium, wp must slow down. 

• “Entrainment” of surrounding material makes Twiggy fatter

 Thus,  λ increases with time until the Plume merges with Environment

λ and 1- λ become the same and thus:

λ =1/2

• TTM model demands:

λ <<1

 The TTM model is valid only for the initial phases of the Plume’s life

• A PM must account for the whole process. It must be invariant under:

λ →1- λ,   w(p) → w(e)

• TTM is not invariant under such transformation. Can it be made invariant?
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Entrainment, E

•TTM: E is an adjustable parameter

•Ellison-Turner (1959): E=E(Ri), lab experiment

•GISS Model (2004): reproduced it

Comparison with the data:  Rather poor

GISS Model: E=E(Ri, Rρ)

Better fit to the data
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GISS Model 

GISS Model 
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Back to the OV Problem

 How do you define the extent of the OV?

• J(z) vanishes

• w(z) vanishes, w(p) vanishes

Plumes take up the whole space. Not very likely

• Suggestion for the OV extent:

 Plumes and Environment become indistinguishable

p eλw (1-λ)w 0, λ 1  

(λ=1/2)<  (λ=1)OV OV

λ 1/2
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• TTM: only Advective;  Local TM:  only Diffusive

• How about having both Advection and Diffusion?

• A Non-Local Turbulence Model? Automatically invariant

• Can be written in Plume language assuming: up and down flows.

• Buoyancy flux is contributed by both Diffusion and Advection

2

1 b 2 w

B
B =-A (λ)K N A (λ) S

z
LOCAL

NON-LOCAL

Advection
Diffusion






3
-1/2

b p w 3/2
2

w
K = w , S = =(2λ-1)[λ(1-λ)]

w

wλ 1/2, S 0, Advection 0  
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Table

Stage λ Sw P vs E Adv Diff

Initial Small <0 wp>>w
e

Yes No

Final 1/2 ≈0 wp ≈we No Yes

TM PM

Thus :

PMTM



38

BOTTOM

Data show an increase in diffusivity

Source of energy:

TIDES 3.75Tw

Example:  E=1/2 IΩ2

E(dot) =I Ω Ω (dot)

Astronomical data P(dot)/P= 1-2 millisec/year

E(dot) few TW

ε:

E(dot)/mass ocean = 10-2 cm2s-3

K = γε/N2

Barotropic Tides transform into Baroclinic ones which then scatter

Fragment against rough topography and generate mixing
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