


Regional climate: simulatiens
ARCMIP. Study Time in months (1997 - 1998)
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Liquid water significantly
under-estimated during
the winter in all models
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Radiative Impact

Downwelling long wave radiation

60 — ARCSyM
— Polar MM5

— coAMPS™

— RCA
Small errors —— REMO

centered around O

Negative bias during

cloudy conditions Radiation error (W m'2)

Too little liquid leeds to too much surface infrared Prenni et al. (Z2007)
loss => predicting liquid important !



Ilce Nuclel Parameterization

Alrcratt measurement of IN MeyersiN
from| Colorado State’s CFDC (Standard RAVEL
(Brenni et alt, 200i7)

Measurements == Venry low
concentrations ofi IN
threughout the experment.

Deposition/conaensation
freezing| parameterization

(Meyers et al, 1992) == new
fit from obs data (After Prenni et al., 2007)

02_ 03 _ 04
ice supersaturation [%]

Because concentrations not well known == Sensitivities to these
guantities.



Standard IN == cannot
maintain liguid
a Crystals remain small;
I cleud residence time |
rises, Bergeron
Process rapid.

MPACE IN' == |
SuUpercooled liguidiclouds) &
threugheut two days |

a Continual light snew
precipitation frem
liguidl layers



Mesoscale simulation results

observations LWP at OllktOk
Timeseries; of L\WP: at / \ ,.

Oliktok el

a Comparisoen best with
MPACE IN

a Doeulblmgl IN == reduces
WP by ~ half 2 x MPACE IN
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Radiative influences

Net long-wave flux at Oliktok

MPACE IN

Comparisen best With
MPACE IN

gradually decreasing with | 2 x MPACE IN
INIncrease

errors up: to 90 \W/m?
similar ter ARCMIP moedels

10 x MPACE IN

standard IN

MPACE IN
no IN depletion
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Simulated cleuds are highly sensitive to IIN
concentrations.

Pooer Arctic aeresol (IN) parameternzations, may: lead te
pPoor lIiguid predictions and large: radiative: erroers.

Buit, ether studies (Fridlind et al., 2007; Morrison
et al., 2008) do not shew! the streng sensitivity te
INfconcentrations that eur simulaticons Snew.
WhHRy/?



Liquid depletion

D e A G e

Ice crystal
# concentration

Ice crystal
growth
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IN concentration
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In-cloud
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M-D relationship
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IHOW dBEs the habit Impact simulatiens; ?

sedimentauon; Velocity — parameterzed as
a fiunctien of cry/stal size; different for
each halit

capacitance term in the mass growth
eguation: dm
g o = DSV,

mass-dimensional relation — needed 1 2-

MEMmMEnNt SCHEmES, also! different for each
nabit




Ice cry/stal Raniits

Valying cenditions eff temperature and Vapor pressurke
lead torgrowin off different cry/stalline forms

Columns and Plates
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volution

Snow Crystal Growth and “The No-Two-Alike Conjecture”

.

Y

* Nucleation around a dust particle

Grows to hexagonal prism, since smooth facets grow
most slowly

i

Simple plate unstable as crystal grows larger ... corners
sprout arms

Crystal moves to different temperature ... plates
grow on arms

Crystal moves through many different temperatures ...
each change causes new growth behavior on arms

Complex history > Complex crystal shape
Each arm experiences same history > Symmetry
No two paths similar > No two alike

W STIOWCTY/SEAIS. COMI.



Real lifie: crystals
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M=PACE Viedell Inter-comparison: Stuady/

Case A: Oct 5 — 8, 2004

severalliguid layersiwithiice
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Case B: Oct 9— 11, 2004

single layer mixed-phase £
cloud : !
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Simulation; design

Moedel: RAMS@CSUlin CRM
configuration

3 hasic hahits selected:
spheres; hexagonal plates
and dendrites

the limits off M-Dranad
terminal’ velecity relations
Wwere identified fer each of
the habits

a series of simulations for
gach combinations, off these
lImIts for each habit
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WP and WP ranges
single layer case

Spheres anadl hexagonal
plates: largest liguid and
IOWEST ICe Watel: pati. LW,
10 moderate sensitivity ter IIN
Concentratiens:

Dendrites: greater ice and
lower liquidiwater path.
Extremely high sensitivity to
INFeoncentrations.
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WP anar INVP ranges o Liquid water path
mulu=layered case

m Similar results for multi-
layered case.

5 Spheres and hexagonal
plates: largest liguid and
loWest: Ice water patn. LLow.
10, moderate: sensitivity: o IIN
Concentrations.

s Dendrites: greater iceranad
lower liquidhwater path.
Extremely high sensitivity: to
INFeconcentrations.
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Liguidi and Ice wWater pah
Single layer case

® dendrites
+ hexagonal plates
& spheres

(7]

_
g
e
[R——
—
)
=
o
B
=
z
5}
2

dendrites

_ oo® Ot .
hexagonal plates < i ++$?¢<>O<>$%% 000080s

spheres + +
p "+-:.t Y

6
time [hours] time [hours]




Liguidi and Ice wWater pah
mul=layered case

+  dendrites
® hexagonal plates
¢ spheres

+ dendrites
® hexagonal plates
¢ spheres
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Liguidi and Iice water content
mul=layered case
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Shape: parameter

Summary by habit

realistic aspect ratios KSD]ld sphere C/D=0.5

thick arms

6 bullst rosette ‘ ‘
coltynns depdrites 33813;51[351

4 bullétrosette
thin arms

ar=10 ar=10
(skinny arms) (long & skinny)

all values in the range C/Dmax=0.25 * 30%

aspect ratio [log scale]

Westorook er al. (2007)



SHape parameter infiience

a Crystal capacitance: Is
parameterzed as a
function of crystalf size
and “shiape parameter”.

s For spheres and
nexagonall platesithe
shiape parameter Is
KINOWR,

= Dendrites: varies
depending on the anms —
g relative IN concentration
aspect Fatio.
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Conclusions

Simulated mixed-phase clouds ARE sensitive 1o, IN
concentration.

The ice/liquid water partitiening inlsimulated clouds ana
the INFsensitivity, as Well, depend strengly. en the
assuimed crystal hahit and associated mass-dimensienal
andi terminalffallfvelecity relationships.

Almest ANY- range: off LWP and/oer INVP can be: preduced
Py carefuli choice off crystal habit and asseciated Wit it
mass and terminallfiall speed relations.

The ice crystal habit — too pewerful “tuning kneh’



Conclusions

Eixead habit approach appears to e Inadeguate
as applied infmixed-phase: cloud: simulations

SImulating changes In chystalkhabit (similar te
“adaptive: growthrt concept off Chen and Lamio,
1994 S of Vital\impertance: for simulations of
mixed-phase: clouds

Researchimodels prediciting hanit changes:
IHashine and Tapelir (2007), Merrsen and
GralewWsKi
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