As cold clouds warm, their lifetime increases: a negative feedback underestimated in GCMs

Johannes Mülmenstädt,1 Sabine Hörnig,1 Jennifer E. Kay,2 Marc Salzmann,1 Po-Lun Ma3

1Universität Leipzig 2University of Colorado, Boulder 3Pacific Northwest National Laboratory

3 October 2019
Midlatitude phase feedbacks: optics and lifetime

- Liquid clouds are more reflective than ice clouds: $\alpha(L = x) > \alpha(I = x)$

- Liquid clouds also live longer than ice clouds because warm precipitation is less efficient than cold precipitation

- GCMs overdo warm precipitation, so they underestimate the magnitude of the lifetime feedback
Aside slide

1. Feedback underestimate is the result of a base state bias

2. Use observations to reduce base state bias

3. Constrain using precipitation process variables rather than state variables
Rain from pure liquid clouds ("warm rain") is very rare over the extratropical continents

\[f_{\text{warm}}(\lambda, \phi) = \frac{n_{\text{warm\ rain}}(\lambda, \phi)}{n_{\text{warm\ rain}}(\lambda, \phi) + n_{\text{cold\ rain}}(\lambda, \phi)} \]

\(f_{\text{warm}} \) is the temporal fractional occurrence of warm rain, normalized by the occurrence of any type of rain, within a grid box at latitude \(\phi \) and longitude \(\lambda \):

Modeled warm rain fraction is diverse

CAM5.3_CLUBB Satellite
SPRINTARS IFS
180° 120°W 60°W 0 60°E 120°E 180° 120°W 60°W 0 60°E 120°E
60°S
30°S
0
30°N
60°N
60°S
30°S
0
30°N
60°N
\(f_{\text{warm}} \)
0.05 0.1 0.2 0.4 0.6 0.8 1
Warm rain fraction in ECHAM–HAM AMIP
In AMIP+4 K, the warm rain fraction increases, particularly in the SH midlatitudes.
Warm rain leads to longer cloud condensate lifetime

For a first-order process given by

$$P = -\frac{\partial(L + I)}{\partial t} = \xi(L + I)$$

(with P the precipitation rate, L the liquid water path, and I the ice water path), we can define a “condensate lifetime” as the e-folding time constant ξ of the sink process. The lifetime can then be diagnosed from the model output:

$$t_{1/e} = \frac{L + I}{P} = \xi$$
Estimate of condensate lifetime increase $\Delta t_{1/e}$ under 4 K SST increase
Warm clouds are too rainy in models (but scaling down autoconversion reduces the bias)
As a result, models underestimate the magnitude of the lifetime increase

\[Q_{\text{aut}} \times 4 \text{ (reference)} \]

\[Q_{\text{aut}} \times 0.1 \text{ (better agreement with satellite)} \]

\[\Delta t_{1/e} \text{ (h)} \]

-0.5 -0.25 0 0.25 0.5
Quantification of feedbacks: PRP on cloud phase and cloud condensate

\[
\Delta t_{1/e} (h)
\]

<table>
<thead>
<tr>
<th>Feedback</th>
<th>(W m(^{-2}) K(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>60°S 0 60°N</td>
<td>-2</td>
</tr>
<tr>
<td>(Q_{\text{aut}} \times 0.1) (better agreement with satellite)</td>
<td></td>
</tr>
<tr>
<td>(Q_{\text{aut}} \times 4) (reference)</td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{lifetime}
\]

\[
\text{optics}
\]

\[
60°S \quad 0 \quad 60°N
\]
Conclusions

- Warm precip efficiency is too high in GCMs; therefore, they underestimate the lifetime feedback in midlatitude clouds

- Use more process-oriented observational constraints