On the remote impact of observed Southern Ocean cooling

A pacemaker study

Xiyue (Sally) Zhang and Clara Deser
NCAR

CFMIP Oct 2, 2019
Observed SST trend during satellite era (1979-2013)

ERSSTv3b

LENS = CESM Large Ensemble (40 ens)
Stippling indicates trends significant above 95% level
Observed SST trend during satellite era (1979-2013)

- SST trend shows strong zonal asymmetry in the Pacific
- The Pacific sector of the Southern Ocean shows significant SST cooling
- Cooling trend is absent in the anthropogenic forced SST response in CESM, suggesting a role internal variability plays in shaping the observed pattern
Observed SST trend during satellite era (1979-2013)

- SST trend shows strong zonal asymmetry in the Pacific
- The Pacific sector of the Southern Ocean shows significant SST cooling
- Cooling trend is absent in the anthropogenic forced SST response in CESM, suggesting a role internal variability plays in shaping the observed pattern
Observed SST trend during satellite era (1979-2013)

- SST trend shows strong zonal asymmetry in the Pacific
- The Pacific sector of the Southern Ocean shows significant SST cooling
- Cooling trend is absent in the anthropogenic forced SST response in CESM, suggesting a role internal variability plays in shaping the observed pattern
Teleconnection processes
(Not a comprehensive list…)

ERSSTv3b

Tropics —> Extratropics

Hadley Cell

Atmospheric Rossby Waves
(e.g. Tropical Pacemaker,
Schneider and Deser, 2018)
Teleconnection processes
(Not a comprehensive list…)

ERSSTv3b

Tropics —> Extratropics
Extratropics —> Tropics

Hadley Cell

Atmospheric Rossby Waves
(e.g. Tropical Pacemaker,
Schneider and Deser, 2018)

Stochastic atmospheric forcing
(e.g. seasonal footprinting mechanism)

Thermohaline circulation

Southern Ocean Pacemaker
Teleconnection processes

(Not a comprehensive list…)

ERSSTv3b

Tropics —> Extratropics

Extratropics —> Tropics

Hadley Cell

Atmospheric Rossby Waves
(e.g. Tropical Pacemaker, Schneider and Deser, 2018)

Ocean Gyre/Subtropical Cell

Wind-SST-Evaporation feedback

Clouds

Stochastic atmospheric forcing
(e.g. seasonal footprinting mechanism)

Thermohaline circulation

Southern Ocean Pacemaker
Southern Ocean’s effects on global SST pattern
(Idealized and/or strong forcing experiments)

Effect of Southern Ocean heat uptake in slab ocean GCM:
Anomalous SST response to CO2 quadrupling shows zonal asymmetry, due to wind-evaporation-SST and cloud feedbacks

Hwang et al. (2017)
Southern Ocean’s effects on global SST pattern

(Idealized and/or strong forcing experiments)

Effect of Southern Ocean heat uptake in slab ocean GCM:
Anomalous SST response to CO2 quadrupling shows zonal asymmetry, due to wind-evaporation-SST and cloud feedbacks

Decreased insolation over southern extratropics in coupled GCM:
Equilibrium response of SST pattern shows zonal asymmetry; tropical response is damped by sub polar ocean heat uptake

Hwang et al. (2017)
Kang et al. (2019)
Southern Ocean’s effects on global SST pattern

Effect of Southern Ocean heat uptake in slab ocean GCM:
Anomalous SST response to CO2 quadrupling shows zonal asymmetry, due to wind-evaporation-SST and cloud feedbacks

Decreased insolation over southern extratropics in coupled GCM:
Equilibrium response of SST pattern shows zonal asymmetry; tropical response is damped by sub polar ocean heat uptake

Effect of Antarctic ice sheet melt in coupled GCM:
Meltwater induced SST cooling shows zonal asymmetry
Southern Ocean’s effects on global SST pattern

(Idealized and/or strong forcing experiments)

Effect of Southern Ocean heat uptake in slab ocean GCM:
Anomalous SST response to CO2 quadrupling shows zonal asymmetry, due to wind-evaporation-SST and cloud feedbacks

Decreased insolation over southern extratropics in coupled GCM:
Equilibrium response of SST pattern shows zonal asymmetry; tropical response is damped by sub polar ocean heat uptake

Effect of Antarctic ice sheet melt in coupled GCM:
Meltwater induced SST cooling shows zonal asymmetry

- All studies show more SST cooling on the eastern basins
- Forcing is idealized and/or strong (10s of W/m²)
Does Southern Ocean cooling contribute to SST changes in the subtropics and beyond during the satellite era?

0.3 K/dec SST cooling is equivalent of -0.4 W/m² forcing (not ideal for identifying process…)

Southern Ocean Pacemaker
Pacemaker setup

- Fully coupled CESM1.1
- 20 ensemble members (branched out from LENS 1st ensemble member at 1975)
- Historical + RCP8.5 forcing

Kosaka & Xie (2013), Deser et al. (2017)

- Southern Ocean SST monthly anomaly is nudged to observations (1975-2013)
- Nudging domain is south of 40 S, with linear buffer zone to 35 S
- In climatological sea ice covered region, SST is nudged to melting temperature (-1.8 C)

Tropical pacemaker experiment results were published by Schneider and Deser (2018).
Ensemble mean surface temperature and sea level pressure trends

TPACE = Tropical pacemaker (20 ens)
SOPACE = Southern Ocean pacemaker (20 ens)
LENS = CESM Large Ensemble (40 ens)
Stippling indicates trends significant above 95% level

Schneider & Deser (2018); Zhang & Deser (in prep)
Ensemble mean surface temperature and sea level pressure trends

TPACE = Tropical pacemaker (20 ens)
SOPACE = Southern Ocean pacemaker (20 ens)
LENS = CESM Large Ensemble (40 ens)
Stippling indicates trends significant above 95% level

Radiatively forced
Internally forced

Schneider & Deser (2018); Zhang & Deser (in prep)
Ensemble mean surface temperature and sea level pressure trends

(a) OBS (ERSSTv3b) TPACE SOPACE

Radiatively forced

TPACE = Tropical pacemaker (20 ens)
SOPACE = Southern Ocean pacemaker (20 ens)
LENs = CESM Large Ensemble (40 ens)
Stippling indicates trends significant above 95% level

Schneider & Deser (2018); Zhang & Deser (in prep)
Ensemble mean precipitation trends

TPACE = Tropical pacemaker (20 ens)
SOPACE = Southern Ocean pacemaker (20 ens)
LENS = CESM Large Ensemble (40 ens)
Stippling indicates trends significant above 95% level
Magenta contours show climatological precip of 7 mm/day

Schneider & Deser (2018); Zhang & Deser (in prep)
Ensemble mean precipitation trends

TPACE = Tropical pacemaker (20 ens)
SOPACE = Southern Ocean pacemaker (20 ens)
LENS = CESM Large Ensemble (40 ens)
Stippling indicates trends significant above 95% level
Magenta contours show climatological precip of 7 mm/day

Schneider & Deser (2018); Zhang & Deser (in prep)
Ensemble mean precipitation trends

(b) OBS (GPCP) TPACE SOPACE
LenS TPACE - LENS SOPACE - LENS

Radiatively forced Internally forced

TPACE = Tropical pacemaker (20 ens)
SOPACE = Southern Ocean pacemaker (20 ens)
LENS = CESM Large Ensemble (40 ens)
Stippling indicates trends significant above 95% level
Magenta contours show climatological precip of 7 mm/day

Schneider & Deser (2018); Zhang & Deser (in prep)
Ensemble mean precipitation trends

Radiatively forced

Internally forced

TPACE = Tropical pacemaker (20 ens)
SOPACE = Southern Ocean pacemaker (20 ens)
LENS = CESM Large Ensemble (40 ens)
Stippling indicates trends significant above 95% level
Magenta contours show climatological precip of 7 mm/day

Schneider & Deser (2018); Zhang & Deser (in prep)
Surface energy budget

Linear trend in SST and surface fluxes

SOPACE (20 ens) ensemble mean linear trend 1979-2013
Contours and vectors show climatological SST and surface winds

Zhang & Deser (in prep)
Surface energy budget

Linear trend in SST and surface fluxes

Contours and vectors show climatological SST and surface winds

Southern Ocean Pacemaker

SOPACE (20 ens) ensemble mean linear trend 1979-2013
Contours and vectors show climatological SST and surface winds

Zhang & Deser (in prep)

Xiyue (Sally) Zhang, CFMIP 2019
Cooling pattern dominated by cloud changes

• Surface net SW trend is dominated by cloud radiative effect
• Increased low cloud fraction and liquid water path along the eastern Pacific and Atlantic basins, where climatological values are high

SW CLD

CLDLOW

LWP

SOPACE (20 ens) ensemble mean linear trend 1979-2013
Contours show climatology

Zhang & Deser (in prep)
Cooling pattern dominated by cloud changes

- Surface net SW trend is dominated by cloud radiative effect
- Increased low cloud fraction and liquid water path along the eastern Pacific and Atlantic basins, where climatological values are high

SOPACE (20 ens) ensemble mean linear trend 1979-2013
Contours show climatology

Lead correlation: LWP leads SST (box)

Zhang & Deser (in prep)
Xiyue (Sally) Zhang, CFMIP 2019
• We conducted a pacemaker experiment to study the impact of Southern Ocean cooling during the satellite era (1979-2013) in CESM:
 - South Atlantic SST trend pattern is consistent with observation
 - The observed SO cooling’s overall contribution to tropical SST and precipitation trends is limited
 - An increase in low cloud amount (as opposed to latent heat flux) is found to contribute to the southeastern Pacific and Atlantic cooling
• We conducted a pacemaker experiment to study the impact of Southern Ocean cooling during the satellite era (1979-2013) in CESM:
 • South Atlantic SST trend pattern is consistent with observation
 • The observed SO cooling’s overall contribution to tropical SST and precipitation trends is limited
 • An increase in low cloud amount (as opposed to latent heat flux) is found to contribute to the southeastern Pacific and Atlantic cooling
Additional slides
Diverse ensemble members in SOPACE

Temperature and sea level pressure trends

Precipitation trends

Sea ice fraction, sea level pressure, and surface wind trends

TPACE = Tropical pacemaker (20 ens)
SOPACE = Southern Ocean pacemaker (20 ens)
LENS = CESM Large Ensemble (40 ens)

Stippling indicates trends significant above 95% level

* spatial correlation coefficient with OBS 70S to 70N

Zhang & Deser (in prep)
Decomposing latent heat budget

SST and wind terms dominate, and contribute in opposite ways to the latent heat trend that is much weaker than SW CRE.

Zhang & Deser (in prep)
Lead correlation: LWP leads TS (box)

SOPACE

LENSS

Zhang & Deser (in prep)
Ensemble mean surface temperature trends

TPACE = Tropical pacemaker (20 ens)
SOPACE = Southern Ocean pacemaker (20 ens)
LENS = CESM Large Ensemble (40 ens)
Stippling indicates trends significant above 95% level

Schneider & Deser (2018); Zhang & Deser (in prep)