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CMIP5 multi-model ensemble-mean RCP8.5 scenario:

surface temperature change: 2081-2100 to 1986-2005 



What controls equatorial warming?

CMIP5 multi-model ensemble-mean RCP8.5 scenario:

surface temperature change: 2081-2100 to 1986-2005 



More precisely: 
What quantitative role do forcing, feedbacks, and heat transport changes 

in the ocean and atmosphere play for equatorial warming?

CMIP5 multi-model ensemble-mean RCP8.5 scenario:

surface temperature change: 2081-2100 to 1986-2005 
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Deciphering the roles of local vs remote forcing and feedbacks 

Previous Approach:  

Idealized forcing experiments in aquaplanet models



Kang, Park, Jin & Stuecker (2017)

Based on this idea, we now want to understand the climate response 
to remote and local forcing in the fully coupled system

Previous Approach:  

Idealized forcing experiments in aquaplanet models

Deciphering the roles of local vs remote forcing and feedbacks 



Deciphering the roles of local vs remote forcing and feedbacks 

We already employed this new method to understand the dominant 
processes controlling polar amplification:



Our new approach



Using CESM in fully coupled setting (allowing all feedbacks to operate): 
CAM4 with 2 degree FV atmosphere and 1 degree ocean (POP) 
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Using CESM in fully coupled setting (allowing all feedbacks to operate): 
CAM4 with 2 degree FV atmosphere and 1 degree ocean (POP) 

Prescribing abrupt 4xCO2 with different forcing structures:  
EQUATORIAL (15S-15N) and OFF-EQUATORIAL (16N/S-32N/S) forcing 

(plus a GLOBAL forcing experiment)

average years 11-60 after the perturbation (transient response):  
ocean has not equilibrated with the forcing

We also did slab ocean experiments to determine the equilibrium 
response in the absence of ocean circulation changes 

(not discussed today)

Our new approach
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(EQ and OFFEQ are chosen to be same area size to have the 
same total forcing magnitude)
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Important:  
using additional experiments with forcing over the mid-latitudes and 
poles, we can demonstrate that the climate response is largely linear, 
that is the sum of the response to regional forcing approx. equals the 

response to global forcing
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[°C]

Global CO2 forcing Equatorial CO2 forcing Off-equatorial CO2 forcing
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Surface temperature response to 4xCO2 forcing

Surface temperature response to 4xCO2 forcing

GLOBAL forcing shows the typical CMIP5 model warming pattern
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Global CO2 forcing Equatorial CO2 forcing Off-equatorial CO2 forcing

1 2 3 4 50-1-2-3-4-5

Surface temperature response to 4xCO2 forcing

Surface temperature response to 4xCO2 forcing

Equatorial forcing results in warming on the equator, but not large in 
amplitude (less than 1 ºC for a quadrupling of CO2)
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Surface temperature response to 4xCO2 forcing

largest absolute equatorial warming (15S-15N) occurs in response to 
off-equatorial forcing. Why?

Surface temperature response to 4xCO2 forcing



EQ forcing

SST warming

CO2

equatorial CO2 forcing warms initially the 
equator but not other regions

Dynamical mechanisms for EQ and OFFEQ forcing

NS EQ
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Dynamical mechanisms for EQ and OFFEQ forcing

increased merid. energy gradient leads to 
Hadley circulation strengthening; increasing 
ITCZ rainfall; net equatorial energy export via 

dry static energy component
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equatorial CO2 forcing warms initially the 
equator but not other regions

Increased meridional 
 temperature gradient
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Dynamical mechanisms for EQ and OFFEQ forcing

NS EQ

moist static energy  
(measures energy of an air parcel: J/kg) =  

latent heat + dry static energy 

latent heat = 

dry static energy = 

Lv ⋅ q

cp ⋅ T + g ⋅ z

equatorial CO2 forcing warms initially the 
equator but not other regions

increased merid. energy gradient leads to 
Hadley circulation strengthening; increasing 
ITCZ rainfall; net equatorial energy export via 

dry static energy component
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Dynamical mechanisms for EQ and OFFEQ forcing

NS EQ

even though there is more convergence of 
moisture (latent heat) on the equator due 
to the Hadley circulation strengthening, 
this is over-compensated by dry static 

energy export (e.g., Held & Soden 2006) 

equatorial CO2 forcing warms initially the 
equator but not other regions

increased merid. energy gradient leads to 
Hadley circulation strengthening; increasing 
ITCZ rainfall; net equatorial energy export via 

dry static energy component
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Dynamical mechanisms for EQ and OFFEQ forcing

increased convection (and increased 
subsidence) result in a strong net negative 

cloud radiative effect on the equator

NS EQ

equatorial CO2 forcing warms initially the 
equator but not other regions

increased merid. energy gradient leads to 
Hadley circulation strengthening; increasing 
ITCZ rainfall; net equatorial energy export via 

dry static energy component

SW CRE LW CRE
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Dynamical mechanisms for EQ and OFFEQ forcing

Hadley circulation strengthening spins up the 
subtropical cells and leads to more cold 
water upwelling, damping equatorial SST

equatorial CO2 forcing warms initially the 
equator but not other regions

increased convection (and increased 
subsidence) result in a strong net negative 

cloud radiative effect on the equator

increased merid. energy gradient leads to 
Hadley circulation strengthening; increasing 
ITCZ rainfall; net equatorial energy export via 

dry static energy component
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Dynamical mechanisms for EQ and OFFEQ forcing

Hadley circulation strengthening spins up the 
subtropical cells and leads to more cold 
water upwelling, damping equatorial SST

all three processes damp equatorial 
temperatures!

equatorial CO2 forcing warms initially the 
equator but not other regions

increased convection (and increased 
subsidence) result in a strong net negative 

cloud radiative effect on the equator

increased merid. energy gradient leads to 
Hadley circulation strengthening; increasing 
ITCZ rainfall; net equatorial energy export via 

dry static energy component



Dynamical mechanisms for EQ and OFFEQ forcing

SST warming

OFFEQ forcing

EQ NS

CO2 CO2

off-equatorial CO2 forcing warms initially 
the off-equatorial regions
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Dynamical mechanisms for EQ and OFFEQ forcing

decreased merid. energy gradient leads 
to Hadley circulation weakening; 

decreasing ITCZ rainfall; net equatorial 
energy import via dry static energy 

component

off-equatorial CO2 forcing warms initially 
the off-equatorial regions

Decreased meridional 
 temperature gradient



SST warming
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Dynamical mechanisms for EQ and OFFEQ forcing

no net cloud radiative effect changes in 
the equatorial band

off-equatorial CO2 forcing warms initially 
the off-equatorial regions

decreased merid. energy gradient leads 
to Hadley circulation weakening; 

decreasing ITCZ rainfall; net equatorial 
energy import via dry static energy 

component
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Dynamical mechanisms for EQ and OFFEQ forcing

no net cloud radiative effect changes in 
the equatorial band

Hadley circulation weakening slows down 
the subtropical cells and leads to less cold 
water upwelling, amplifying equatorial SST
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Dynamical mechanisms for EQ and OFFEQ forcing

no net cloud radiative effect changes in 
the equatorial band

Hadley circulation weakening slows down 
the subtropical cells and leads to less cold 
water upwelling, amplifying equatorial SST

both processes increase equatorial 
temperatures!
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the off-equatorial regions

decreased merid. energy gradient leads 
to Hadley circulation weakening; 

decreasing ITCZ rainfall; net equatorial 
energy import via dry static energy 

component



strong coupling between Hadley circulation, clouds, and 
the shallow ocean circulation
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Off-equatorial radiative forcing can thereby play a key 
role for equatorial warming due to non-locally determined 

feedbacks
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response to GLOBAL forcing is largely the residual of 
competing effects of EQ and OFFEQ forcings
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Conclusions
The climate response is linear (additive) for regional forcings in a 
fully coupled model (for 50 year averaged response)

Equatorial 4xCO2 forcing results in equatorial warming of less than 1 K

Off-equatorial forcing is responsible for most of the equatorial warming 

Decomposing the climate response into forcing, feedback, and heat 
transport changes, we find that equatorial feedback is much less 
negative for off-equatorial forcing (-2.33 W m-2 K-1) than for 
equatorial forcing (-3.51 W m-2 K-1), mostly due to less negative cloud 
feedbacks

Hadley circulation and subtropical cell changes in response to different 
forcing structures result not only in heat transport changes, but also in 
very different equatorial feedbacks

Hence, off-equatorial forcing (for instance future reduction of aerosols 
in Asia) can result in pronounced equatorial warming
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Vertically integrated moisture budget for EQ CPL [mm day-1]
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Vertically integrated moisture budget for EQ SOM [mm day-1]
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Vertically integrated moisture budget for OFFEQ SOM [mm day-1]
precipitation evaporation residual (eddies)
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