How does convective self-aggregation impact precipitation extremes?

Caroline Muller
CNRS / Laboratoire de Météorologie Dynamique (LMD)
Ecole Normale Supérieure Paris

Nicolas Da Silva
University of East Anglia UK

Sara Shamekh
Laboratoire de Météorologie Dynamique

Yukari Takayabu
The university of Tokyo

With funding from
Recent trends in tropical precipitation linked to organization

Mesoscale Convective System

Change in monthly mean precipitation (1998 to 2009)

- Contribution from changes in frequency of organized deep convection
- Contribution from other convective regimes

[Tan et al, Nature 2015]
Self-aggregation of deep convection

- SAM [Khairoutdinov & Randall 03]
- SST=300K uniform
- No Coriolis (f=0)
- Doubly periodic
- No large-scale forcing
- In RCE

Clouds over near-surface temperature in cloud-resolving model SAM

Self Aggregation = Instability of disorganized Radiative-Convective Equilibrium “pop corn” state

Question addressed

How does convective self-aggregation impact precipitation extremes?
Why?
How does convective self-aggregation impact precipitation extremes? Why?

How does convective self-aggregation change with warming?

Sara Shamekh poster A27 session 1
Self-aggregation leads to enhanced moisture variability (moister moist region, drier dry region)

- Overall drying
- Overall warming (warmer moist adiabat)

[Muller & Held, JAS 2012]
Precipitation extremes with self-aggregation

⇒ increased instantaneous precipitation extremes (even more when time-accumulate)

consistent with [Bao Sherwood 2019]
Precipitation extremes with self-aggregation

\[+ 20\% \text{ increase} \]

\[+ 20\% \text{ increase of instantaneous precip extremes} \]

(large variability with aggregation)

Why 20\%?
Theoretical scaling for precipitation extremes

\[\delta P \sim \delta \left(\varepsilon_p \int \rho w \left(-\frac{\partial q_{sat}}{\partial z} \right) dz \right) \]

Precip efficiency \hspace{1cm} Condensation

Dynamic \hspace{1cm} Thermodynamic

[Mueller Takayabu 2019]
Theoretical scaling for precipitation extremes

\[\delta P \sim \delta \left(\varepsilon_p \int \rho w \frac{-\partial q_{sat}}{\partial z} \, dz \right) \]

- Condensation rate: -15%
- Dynamic: -20%
- Thermodynamic: +5%

Precip efficiency: +20%
Theoretical scaling for precipitation extremes

Increasing near-cloud boundary layer moisture
- Positive but small contribution

Boundary layer water vapor increase with aggregation (~ +10%)

Thermodynamic contribution linked to boundary layer water vapor

Increase due to moister near-cloud boundary layer

Positive but small contribution

[Müller 2013]
Theoretical scaling for precipitation extremes

Decrease in CAPE with aggregation (-40%)

Moister near-cloud conditions
⇒ less entrainment effect
⇒ Atmosphere closer to undilute temperature profile

Negative dynamic contribution consistent with decreased CAPE
Theoretical scaling for precipitation extremes

Precip efficiency

\[\delta P \sim \delta \left(\varepsilon_p \int \rho w \left(-\frac{\partial q_{sat}}{\partial z} \right) dz \right) \]

Thermodynamic
Condensation
Dynamic

-15% +35% -20% +5%

Precip efficiency +35%
Theoretical scaling for precipitation extremes

Efficiency $\varepsilon=\alpha(1-\beta)$ [Lutsko Cronin 2018]

Cloud condensate $q_n \rightarrow$ precipitating condensate $q_p \rightarrow$ surface precipitation

- $+7\% \left(\int q_p / \int q_n \right)$
- $+25\% \left(Pr_{sfc} / Pr_{max} \right)$

\Rightarrow Reduced rain evaporation with aggregation dominates

- Due to moister conditions, and
- Faster terminal velocities from warmer temperatures (more rain less snow; no change in graupel)
Conclusions

• Self-aggregation yields increased precipitation extremes

• Thermodynamic contribution positive but small
 Due to moister near-cloud boundary layer

• Dynamic contribution negative
 Due to decreased entrainment effects, thus decreased CAPE

• Precip efficiency contribution positive and largest
 Dominated by reduced evaporation of rain, from moister and warmer conditions (latter => faster terminal velocities)

The contribution from organized convection to precip extremes is important (compare to 7%/K increase in « pop corn » convection »

[Da Silva, Shamekh, Muller 2019 (in prep.)]